
 1

Intensive Computation

15th march 2016

Exercise 1

Write a script that:

- takes in input n, number of rows and columns, and s, sparsity

- creates the sparse matrices A and B, nxn, with n>10, with sparsity s, consisting of integer

random values in the interval [1,100]

- calls functions toCSR and toCSC that produce the CSR and CSC compact representation

- calls function extractCol that takes in input the index h and extracts column h from the CSR

representation of B

- computes the product C-CSR= A-CSR*B-CSR

- calls function extractRow that takes in input the index h and extracts row h from the CSC

representation of A

- computes the product C-CSC= A-CSC*B-CSC

- computes the product C-RC= A-CSR*B-CSC

- compares the execution times to obtain C-CSR, C-CSC, C-RC on matrices with size

n≥100, using cputime, etime, tic,…, toc.

Exercise 2

Write a script that:

- builds two banded matrices M1 and M2 taking in input: n, number of rows and columns, k,

the parameter for the size b of the band with b=2k+1 (in other words, k is the number of

diagonals under, or over, the main diagonal), and s, sparsity inside the band

- the banded sparse matrices must have n>10, k>n/3, and given sparsity s, consisting of

random values in the interval [1,10]

- calls function toSkyline that produces the Skyline compact representation

- computes the product C-Sky= A-Sky*B-Sky

- calls function toELL that produces the Ellpack-Itpack compact representation

- computes the product C-ELL= A-ELL*B-ELL

- compares the memory occupation

- compares the execution of the two formats by using the command profile

 2

Sparse Matrices in Matlab

S=sparse(A) converts a full matrix to sparse form by squeezing out any zero elements. If S is

already sparse, sparse(S) returns S.

S=sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate an m-by-n sparse matrix

with elements vector s with indices in vectors i and j, such that S(i(k),j(k))

= (k), with space allocated for nzmax nonzeros. Vectors i, j, and s are all the

same length.

A=full(S) converts a sparse matrix S to full storage organization.

Example:
>> x =[5 9 1 7 3]

>> S=sparse ([2 4 1 3 6] ,[1 1 3 3 7],x)

S=

(2,1) 5

(4,1) 9

(1,3) 1

(3,3) 7

(6,7) 3

>> full(S)

ans =

0 0 1 0 0 0 0

5 0 0 0 0 0 0

0 0 7 0 0 0 0

9 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 3

Matlab includes many commands for dealing with a sparse matrix:

nnz(A) returns the number of nonzero matrix elements

nzmax(A) returns the maximum number of nonzero matrix elements allocated

find(A) returns all (i,j) indices of nonzero elements

nonzeros(A) returns all the nonzero elements

spy(S) plots the sparsity pattern of any matrix S

R=spones(S) generates a matrix R with the same sparsity structure as S, but with 1's in the

nonzero positions.

TF = issparse(S) returns logical 1 (true) if the storage class of S is sparse and logical 0

(false) otherwise.

R=sprand(m,n,density) is a random, m-by-n, sparse matrix with approximately

density*m*n uniformly distributed nonzero entries (0≤density≤1)

A=spdiags(b,d,m,n) creates an m-by-n sparse matrix by taking the columns of B and placing

them along the diagonals specified by d.

sprandsym(S) returns a symmetric random matrix whose lower triangle and diagonal have the

same structure as S. Its elements are normally distributed, mean 0 and variance 1.

 3

Example:

>> n=10;

>> e=ones(n,1);

>> b=[e,-e,3*e,-e,2*e];

>> d=[-n/2 -1 0 1 n/2];

>> a=spdiags(b,d,n,n)

a =

(1,1) 3

(2,1) -1

(6,1) 1

(1,2) -1

(2,2) 3

(3,2) -1

………

>> aa=full(a)

aa =

 3 -1 0 0 0 2 0 0 0 0

-1 3 -1 0 0 0 2 0 0 0

 0 -1 3 -1 0 0 0 2 0 0

 0 0 -1 3 -1 0 0 0 2 0

 0 0 0 -1 3 -1 0 0 0 2

 1 0 0 0 -1 3 -1 0 0 0

 0 1 0 0 0 -1 3 -1 0 0

 0 0 1 0 0 0 -1 3 -1 0

 0 0 0 1 0 0 0 -1 3 -1

 0 0 0 0 1 0 0 0 -1 3

Example of tridiagonal matrix:

>> b=ones(4,1);

>> A=spdiags([b 3*b b],-1:1,4,4)

A =

(1,1) 3

(2,1) 1

(1,2) 1

(2,2) 3

(3,2) 1

(2,3) 1

(3,3) 3

(4,3) 1

(3,4) 1

(4,4) 3

>> d=full(A)

d =

3 1 0 0

1 3 1 0

0 1 3 1

0 0 1 3

 4

Example: comparison of memory occupation

>> b=ones(100,1);

>> A=spdiags([b 3*b b],-1:1,100,100)

>> d=full(A);

>> whos

Name Size Bytes Class

A 100x100 3980 double array (sparse)

b 100x1 800 double array

d 100x100 80000 double array

Example: comparison of execution time needed to compute the square of a matrix in the full and in

the sparse representation

>> a=eye(1000);

>> t=cputime;

>> b=a^2;

>> temp=cputime-t

temp =

3.7454

>> a=sparse(1:1000,1:1000,1,1000,1000);

>> t=cputime;

>> c=a^2;

>> temp=cputime-t

temp =

0.4406

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates according to the

n-by-n adjacency matrix A, where n is the number of nodes. Coordinates is an n-by-2

matrix, where n is the number of nodes and each coordinate pair represents one node.

Example

One interesting construction for graph analysis is the Bucky ball. This is composed of 60 points

distributed on the surface of a sphere in such a way that the distance from any point to its nearest

neighbors is the same for all the points. Each point has exactly three neighbors. The Bucky ball

models different physical objects, such as the C60 molecule, a form of pure carbon with 60 atoms in

a nearly spherical configuration and the seams in a soccer ball

[B,v]=bucky; % B= adjacency matrix, v= coordinate matrix

gplot(B,v)

axis square

[B,v]=bucky;

axis('square');hold on

gplot(B(1:30,1:30),v)

for k=1:30

text(v(k,1),v(k,2),num2str(k))

end

