
GPU: manycore processors  

Intensive Computation 

Annalisa Massini  

2013/2014 



These slides have been prepared by using the book: 

 

 Programming Massively Parallel Processors  

 D.B. Kirk , W.W. Hwu 

 Morgan Kaufmann 

2 



Introduction 

 Microprocessors based on a single central processing unit 

(CPU), drove rapid performance increases and cost 

reductions in computer applications for more than two 

decades.  
 

 These microprocessors brought giga (billion) floating-point 

operations per second (GFLOPS) to the desktop and 

hundreds of GFLOPS to cluster servers. 
 

 With the advances in hardware to the same software 

simply runs faster as each new generation of processors 

is introduced. 3 



Introduction 

 This drive, however, has slowed since 2003 due to 

energy consumption and heat-dissipation issues that 

have limited the increase of the clock frequency and the 

level of productive activities that can be performed in 

each clock period within a single CPU. 

 Microprocessor vendors have switched to models 

where multiple processing units, referred to as 

processor cores, are used in each chip to increase the 

processing power.  

4 



Introduction 

 The introduction of processing cores has exerted a 

tremendous impact on the software developer community 

 The majority of software applications are written as 

sequential programs running on one of the processor 

cores, which will not become significantly faster than 

those in use today. 

 The performance of applications software will improve 

with each new generation of microprocessors for parallel 

programs, in which multiple threads of execution 

cooperate to complete the work faster.  
5 



Introduction 

 The practice of parallel programming is no new. 

 The high-performance computing community has been 

developing parallel programs for decades.  

 These programs run on large-scale, expensive 
computers.  

 Only few applications can justify the use of expensive 

computers, limiting the practice of parallel programming 

to a small number of application developers. 

 Now that all new microprocessors are parallel computers, 

the number of applications that must be developed as 

parallel programs has increased dramatically. 6 



Introduction 

 Since 2003, the semiconductor industry has settled on 

two main trajectories for designing microprocessor  

 The multicore trajectory maintains the execution speed 

of sequential programs while moving into multiple cores.  

 The multicores began as two-core processors. 

 Intel Core i7 microprocessor (November 2008) has 4 

processor cores, each of which implements the full x86 

instruction set; it supports hyperthreading with 2 

hardware threads and is designed to maximize the 

execution speed of sequential programs.  
7 



Introduction 

 In contrast, the many-core trajectory focuses more on 

the execution throughput of parallel applications. 

 The many-cores began as a large number of much 

smaller cores 

 The NVIDIA GeForce GTX 280 Graphics Processing 

Unit (June 2008) has 240 cores, each of which is a 

heavily multithreaded, and shares its control and 

instruction cache with seven other cores.  

 

8 



Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

Multi-core CPU

Many-core GPU

Courtesy: John Owens

Introduction 

Many-core processors, especially the GPUs, have led the 

race of floating-point performance since 2003. 

9 

While the performance 

improvement of general-

purpose microprocessors 

has slowed significantly, 

the GPUs have continued 

to improve relentlessly. 



Introduction 

 Such a large performance gap between many-core 

GPUs and general-purpose multicore CPUs is due to 

the differences in the fundamental design philosophies 

between the two types of processors. 

10 

DRAM 

Cache 

ALU 

Control 

ALU 

ALU 

ALU 

DRAM 



Introduction 

 The design of a CPU is optimized for sequential code 

performance.  

 A sophisticated control logic allows instructions from a 

single thread of execution to execute in parallel or 

even out of their sequential order while maintaining the 

appearance of sequential execution.  

 Large cache memories are provided to reduce the 

instruction and data access latencies 

11 



Introduction 

 Memory bandwidth is an important issue.  

 Graphics chips have been operating at approximately 10 

times the bandwidth of contemporaneously available 

CPU chips. 

 General-purpose processors have to satisfy 

requirements from legacy operating systems, 

applications, and I/O devices that limit the memory 

bandwidth 

 In contrast, with simpler memory models and fewer legacy 

constraints, the GPU designers can more easily achieve 

higher memory bandwidth.  12 



Introduction 

 Different goals produce different designs 

 GPU assumes work load is highly parallel 

 CPU must be good at everything, parallel or not 

 CPU: minimize latency experienced by 1 thread 

 big on-chip caches 

 sophisticated control logic 

 GPU: maximize throughput of all threads 

 # threads in flight limited by resources  lots of resources 
(registers, bandwidth, etc.) 

 multithreading can hide latency  skip the big caches 

 share control logic across many threads 
13 



Introduction 

 GPUs are designed as numeric computing engines. 

 GPUs will not perform well on some tasks on which 

CPUs are designed to perform well. 

 Most applications will use both CPUs and GPUs, 

executing the sequential parts on the CPU and 

numerically intensive parts on the GPUs.  

 The CUDA (Compute Unified Device Architecture) 

programming model, introduced by NVIDIA in 2007, is 

designed to support joint CPU/GPU execution of an 

application. 

 14 



Introduction: CUDA 

 Augment C/C++ with minimalist abstractions 

 let programmers focus on parallel algorithms 

 not mechanics of a parallel programming language 

 Provide straightforward mapping onto hardware 

 good fit to GPU architecture 

 maps well to multi-core CPUs too 

 Scale to 100s of cores & 10,000s of parallel threads 

 GPU threads are lightweight — create / switch is free 

 GPU needs 1000s of threads for full utilization 

15 



Introduction 

 Until 2006, OpenGL or Direct3D techniques were needed 

to program graphics chips, that is processor cores had to 

be accessed by the equivalent of graphic application 

programming interface (API) functions. 

 Only a few people could master the skills necessary to 

use these chips to achieve performance for a limited 

number of applications. 

 This is why it did not become a widespread programming 

phenomenon.  

 Everything changed in 2007 with the release of CUDA 
16 



Introduction 

 More recently, several major industry players, including 

Apple, Intel, AMD/ATI, and NVIDIA, have jointly 

developed a standardized programming model called 

OpenCL 

 The OpenCL programming model defines language 

extensions and runtime APIs to allow programmers to 

manage parallelism and data delivery in massively 

parallel processors.  

 Applications developed in OpenCL can run without 

modification on all processors that support the OpenCL 

language extensions and API. 17 



Introduction 

 The GPU is viewed as a compute device that: 

 Is a coprocessor to the CPU or host 

 Has its own DRAM (device memory) 

 Runs many threads in parallel 

 Data-parallel portions are executed on the device as 
kernels which run in parallel on many threads 

 Differences between GPU and CPU threads  

 GPU threads are extremely lightweight 

 Very little creation overhead 

 GPU needs 1000s of threads for full efficiency 

 Multi-core CPU needs only a few 
18 



Architecture of a modern GPU  

A typical CUDA-capable GPU is organized as follows  

 an array of streaming multiprocessor SMs 

 2 SMs form a building block 

 the number of SMs in a building block can vary 

Load/store 

Global Memory 

Thread Execution Manager 

Input Assembler 

Host 

Texture Texture Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Load/store Load/store Load/store Load/store Load/store 
19 



Architecture of a modern GPU  

 Each SM has a number of streaming processors (SPs) 

that share control logic and instruction cache. 

 Each SP has a multiply–add (MAD) unit and an 

additional multiply unit. 

 

Load/store 

Global Memory 

Thread Execution Manager 

Input Assembler 

Host 

Texture Texture Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Load/store Load/store Load/store Load/store Load/store 
20 



Load/store 

Global Memory 

Thread Execution Manager 

Input Assembler 

Host 

Texture Texture Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Load/store Load/store Load/store Load/store Load/store 

Architecture of a modern GPU  

 The G80 that introduced the CUDA architecture has 

128 SPs (16 SMs, each with 8 SPs).  

 With 128 SPs, that’s a total of over 500 gigaflops. 

21 



Load/store 

Global Memory 

Thread Execution Manager 

Input Assembler 

Host 

Texture Texture Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Load/store Load/store Load/store Load/store Load/store 

Architecture of a modern GPU  

 The G80 chip supports up to 768 threads per SM, 
which sums up to about 12,000 threads for this chip.  

 The more recent GT200 supports 1024 threads per SM 
and up to about 30,000 threads. 

22 



Data parallelism 

 In many applications, program sections exhibit data 

parallelism, allowing many arithmetic operations to be 

performed on program data structures simultaneously.  

 Let us consider a simple example: 

 matrix-matrix multiplication - P=MxN 

 Each element of matrix P: 

 is computed by executing the multiplication of a row of 

matrix M and a column of matrix N (dot product) 

 do not influence the computation of other matrix elemnts 

 More elements of matrix P can be computed in parallel 
23 



Data parallelism 

 For a 1000x1000 matrix multiplication has 1.000.000 
independent elements (independent dot product) each 
requiring 1.000 multiply and 1.000 additions. 

 A GPU can significantly accelerate the execution of the 

matrix multiplication over a traditional host CPU.  

 The data parallelism is not always as simple as this.  

 A CUDA program consists of one or more phases that 

are executed on either the host (CPU) or a device such 

as a GPU.  

24 



Data parallelism 

 The phases that exhibit little or no data parallelism are 

implemented in host code. 

 The phases that exhibit rich amount of data parallelism 

are implemented in the device code. 

 A CUDA program is a unified source code encompassing 

both host and device code.  

 The NVIDIA C compiler (nvcc) separates the two during 

the compilation process. 

25 



Data parallelism 

 The host code is straight ANSI C code  

 It is further compiled with the host’s standard C compilers 

and runs as an ordinary CPU process.  

 The device code is written using ANSI C extended with 

keywords for labeling data-parallel functions, called 

kernels, and their associated data structures.  

 The device code is typically further compiled by the nvcc 

and executed on a GPU device. 

 The kernel functions (or, simply, kernels) typically 

generate a large number of threads to exploit data 

parallelism. 
26 



Data parallelism 

 In matrix multiplication, the entire matrix multiplication 

computation can be implemented as a kernel where 

each thread is used to compute one element of 

output matrix P. 

 For a 1000  1000 matrix multiplication, the kernel would 

generate 1,000,000 threads when it is invoked. 

 CUDA threads are of much lighter weight than the 

CPU threads.  

 CUDA threads take very few clock cycles to generate 

and schedule due to efficient hardware support.  
27 



Kernel, grid, thread 

 The execution of a typical CUDA program 

 starts with host (CPU) execution  

 when a kernel function is invoked, or launched, the 

execution is moved to a device (GPU) 

 a large number of threads is generated to take advantage 

of big data parallelism 

 All the threads that are generated by a kernel during an 

invocation are collectively called a grid. 

28 



Kernel, grid, thread 

 When all threads of a kernel complete their execution, 

the corresponding grid terminates, and the execution 

continues on the host until another kernel is invoked. 

Serial Code (host)‏ 

. . . 

. . . 

Parallel Kernel (device)‏ 

KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 

KernelB<<< nBlk, nTid >>>(args); 
29 



Matrix-matrix multiplication 

 For C programs, the placement of a 2-dimensional matrix 

into this linear addressed memory is done according to the 

row-major convention: 

 All elements of a row are placed into consecutive 

memory locations.  

 The rows are then placed one after another. 

M0,2 

M1,1 

M0,1 M0,0 

M1,0 

M0,3 

M1,2 M1,3 

M2,1 M2,0 M2,2 M2,3 

M3,1 M3,0 M3,2 M3,3 M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3 M3,1 M3,0 M3,2 M3,3 

M 

30 



Matrix-matrix multiplication 

void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 

{    

for (int i = 0; i < Width; ++i)‏ 

 for (int j = 0; j < Width; ++j) {  

    float sum = 0; 

    for (int k = 0; k < Width; ++k) { 

         float a = M[i  * width + k]; 

             float b = N[k * width + j]; 

             sum += a * b; 

          } 

          P[i * Width + j] = sum; 

      } 

} 

 

M 

N 

P 

 

 

 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

i 

k 

k 

j 

31 



Matrix-matrix multiplication 

 Modify the program to port the matrix multiplication 

 function into CUDA.  
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float* Md, Nd, Pd; 

   … 

1. // Allocate device memory for M, N, P and 

  // load M, N to device memory  

2. // Kernel invocation code to have the device to perform 

  // the actual matrix multiplication 

3. // copy P from the device 

    // Free device matrices 

     } 

32 



Execution 

 The revised MatrixMultiplication() function is essentially an 

outsourcing agent that  

 ships input data to a device 

 activates the calculation on the device 

 collects the results from the device 

 

  The memory organization is very important 

 the host and devices have separate memory spaces  

 infact devices are typically hardware cards that come with 

their own dynamic random access memory (DRAM) 

 

 

33 



Kernel Execution 

 To execute a kernel on a device, the programmer needs 

 to allocate memory on the device  

 to transfer pertinent data from the host memory to the allocated 

device memory 

34 

CPU 

Host Memory 

GPU 

Device Memory 

Part 1 

Part 3 

Part 2 

 After device execution, the 

programmer needs 

 to transfer result data from the 

device memory back to the host 

memory 

 to free up the device memory that is 

no longer needed 



Cuda device memory types 

CUDA supports several types of 

memory that can be used by 

programmers to achieve high 

execution speeds in their kernels:  

 registers 

 shared memory 

 global memory 

 constant memory 

 

Registers and shared memory 

are on-chip memories. 

Grid 

Global Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 

35 



CUDA device memory model 

Host code can 

 transfer data to and from the 

device by using global and 

constant memory 

Device code can 

 R/W per-thread registers 

 R/W per-thread local memory 

 R/W per-block shared memory 

 R/W per-grid global memory 

 Read-only per-grid constant 
memory 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 

36 



CUDA device memory model 

Note that the host memory is 

not explicitly shown, but is 

assumed to be contained in 

the host 

 

The CUDA memory model is 

supported by API functions 

that help programmers to 

manage data in these 

memories 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 

37 



CUDA device memory model: API 

 cudaMalloc() 

 allocates a piece of global 

memory for an object 

 requires two parameters 

 the address of a 

pointer variable that 

must point to the 

allocated object 

 the size of the object 

to be allocated, in bytes 

Grid 

Global 

Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 

38 



CUDA device memory model: API 

 cudaFree() 

 frees the storage space from 

the device global memory  

 is called with pointer to the 

object as input  

Grid 

Global 

Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 

39 



CUDA device memory model: API 

 cudaMemcpy() 

 memory data transfer 

 requires four parameters 

 Pointer to destination  

 Pointer to source 

 Number of bytes copied 

 Type of transfer  

 Host to Host - Host to Device - 

Device to Host - Device to Device 

 Transfer to device is 

asynchronous 

Grid 

Global 

Memory 

Block (0, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Block (1, 0)‏ 

Shared Memory 

Thread (0, 0)‏ 

Registers 

Thread (1, 0)‏ 

Registers 

Host 

40 



41 

CUDA device memory model: API 

 Code example:  

 Allocate a  64 * 64 single precision float array 

 Attach the allocated storage to Md 

 “d” is often used to indicate a device data structure 
 

TILE_WIDTH = 64; 

Float* Md 

int size = TILE_WIDTH * TILE_WIDTH * sizeof(float); 
 

cudaMalloc((void**)&Md, size); 

 

cudaFree(Md); 

 



42 

CUDA device memory model: API 

 Code example:  

 Transfer a  float array 

 M is in host memory and Md is in device memory 

 cudaMemcpyHostToDevice and 

cudaMemcpyDeviceToHost are symbolic constants 
 

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost); 

 
Note that the two symbolic constants, cudaMemcpyHostToDevice 

and cudaMemcpyDeviceToHost are recognized, predefined 

constants of the CUDA programming environment. 



CUDA device memory model: example 

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float* Md, Nd, Pd; 

   … 

1. // Allocate and Load M, N to device memory  

     cudaMalloc(&Md, size); 

     cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

     cudaMalloc(&Nd, size); 

     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 
 

“d” is used to indicate a 

device data structure 

Note that the two symbolic constants, cudaMemcpyHostToDevice 

and cudaMemcpyDeviceToHost are recognized, predefined 

constants of the CUDA programming environment. 
43 



CUDA device memory model: example 

// Allocate P on the device 

     cudaMalloc(&Pd, size); 

2.   // Kernel invocation code – to be shown later 

     … 

3.    // Read P from the device 

      cudaMemcpy(P, Pd, size, CudaMemcpyDeviceToHost); 

       // Free device matrices 

      cudaFree(Md); cudaFree(Nd); cudaFree (Pd); 

     } 
 

44 



Keyword  __global__ 

 In CUDA, a kernel function specifies the code to be 

executed by all threads during a parallel phase. 

 

 The keyword __global__ indicates that the function is a 

kernel and that it can be called from a host functions to 

generate a grid of thread on a device  

 

 The function will be executed on the device and can only 

be called from the host 

45 



Keyword __device__ and __host__ 

 __device__  indicates the function is a CUDA device function 

 executes on a CUDA device  

 can only be called from a kernel function or another device function 

 can have neither recursive function calls nor indirect function 

calls through pointers in them 

 __host__  indicates the function is a CUDA host function 

 is simply a traditional C function that executes on the host  

 can only be called from another host function.  

 by default, all functions in a CUDA program are host functions if 

they do not have any of the CUDA keywords in their declaration 

46 



47 

CUDA Function Declarations 

host host __host__   float HostFunc() 

host device __global__ void  KernelFunc() 

device device __device__ float DeviceFunc() 

Only callable 

from the: 

Executed 

on the: 

 Then C function declarations are extended by  CUDA with 

three qualifier keywords: 

 

_global_  _device_ _host_ 



Keyword threadIdx.x and threadIdx.y 

 Other extensions of C are the keywords threadIdx.x 

threadIdx.y and threadIdx.z which refer to the 

thread indices. 

 All threads execute the same kernel code a mechanism to 

allow them to distinguish themselves /direct themselves 

toward the parts of the data structure they work on. 

 These keywords identify predefined variables 

 Different threads will see different values in their variables 
threadIdx.x threadIdx.y and threadIdx.z. 

 Coordinates reflect the threads multidimensional organization 
48 



Matrix multiplication kernel 

// Matrix multiplication kernel – thread specification 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 

// 2D Thread ID 

int tx = threadIdx.x; 

int ty = threadIdx.y; 
// Pvalue stores the Pd element that is computed by the thread 

float Pvalue = 0; 

for (int k = 0; k < Width; ++k) 
{ 

float Mdelement = Md[ty * Md.width + k]; 

float Ndelement = Nd[k * Nd.width + tx]; 

Pvalue += Mdelement * Ndelement; 
} 

// Write the matrix to device memory each thread writes one element 

Pd[ty * Width + tx] = Pvalue; 
} 

49 



Threads and blocks 

 When a kernel is invoked, or launched, it is 

executed as grid of parallel threads. 

 Each CUDA thread grid typically is 

comprised of thousands to millions of 

lightweight GPU threads per kernel 

invocation. 

 Creating enough threads to fully utilize the 

hardware often requires a large amount of 

data parallelism. 

 For example, each element of a large array 

might be computed in a separate thread.  50 

i = blockIdx.x * blockDim.x 

+ threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 
0 1 2 254 255 

… 



51 

Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Threads and blocks 

 Threads in a grid are organized 
into a two-level hierarchy  

 At the top level, each grid consists 
of one or more thread blocks 

 All blocks in a grid have the same 
number of threads 

 In the figure: Grid 1 is organized as 
a 2x2 array of 4 blocks 

 Each block has a unique three-
dimensional coordinate given by 
the CUDA keywords blockIdx.x 
blockIdx.y and blockIdx.z. 



52 

Threads and blocks 

 Each thread block is, in turn, 
organized as a three-dimensional 
array of threads with a total size of 
up to 512 threads.  

 The coordinates of threads in a 
block are uniquely defined by three 
thread indices: threadIdx.x, 
threadIdx.y and 
threadIdx.z.  

Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)



53 

Threads and blocks 

 Not all applications will use all 
three dimensions of a thread block 

 In figure, each thread block is 
organized into: 

 a 4x2x2 three-dimensional array of 
threads.  

 This gives Grid 1 a total of 4x16 = 
64 threads.  

 

This is obviously a simplified example. 

Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)



Threads and blocks 

Summing up 

 Parallel kernels are composed of many threads 

 all threads execute the same sequential program 

 

 Threads are grouped into thread blocks 

 threads in the same block can cooperate 

 

 Threads/blocks have unique IDs 

 

Thread t 

t0 t1 … tB 

Block b 

54 



Execution configuration 

When the host code invokes a kernel, it sets the grid and 
thread block dimensions via execution configuration 
parameters. 

 

 Two struct variables of type dim3 are declared. 

 

 Example 
// Setup the execution configuration 

dim3 dimGrid(1, 1); 

dim3 dimBlock(Width, Width); 

// Launch the device computation threads! 

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

 
 

55 



Execution configuration 

 Example 
// Setup the execution configuration 

dim3 dimGrid(1, 1); 

dim3 dimBlock(Width, Width); 

// Launch the device computation threads! 

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

 

 dimBlock describes the configuration of blocks, defined as 
16x16 groups of threads.  

 dimGrid describes the configuration of the grid (in this 
example, we only have one (1x1) block in each grid. 

 
 56 



Execution configuration 

 Example 
// Setup the execution configuration 

dim3 dimGrid(1, 1); 

dim3 dimBlock(Width, Width); 

// Launch the device computation threads! 

MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

 

 The final line of code invokes the kernel. 

 It provides  
 the dimensions of the grid in terms of number of blocks  

 the dimensions of the blocks in terms of number of threads. 
 

57 



Execution configuration 

In general 

 a grid is organized as a 3D array of blocks.  

 each block is organized into a 3D array of threads.  
 

 The total size of a block is limited to 512 threads, with 

flexibility in distributing these elements into the three 

dimensions if the total number of threads <= 512 

For example (512, 1, 1), (8, 16, 2), and (16, 16, 2) 
 

The exact organization of a grid is determined by the execution 

configuration provided at kernel launch. 

 

58 



Syncthreads 

 CUDA allows threads in the same block to coordinate their 

activities using a barrier synchronization function 
_syncthreads() 

 When a kernel function calls _syncthreads(), the 

thread that executes the function call will be held at the 

calling location until every thread in the block reaches the 

location. 

 This ensures that all threads in a block have completed a 

phase of their execution of the kernel before any moves on 

to the next phase.  

59 



60 

Execution configuration 

Thread scheduling is strictly an implementation concept  

Once a block is assigned to a streaming multiprocessor, it 

is further divided into 32-thread units called warps.  

Warps are not part of the CUDA specification and their size is 

implementation specific.  

The warp is the unit of thread scheduling in SMs.  

Each warp consists of 32 threads of consecutive threadIdx 

values. 

With enough warps around, the hardware will likely find a 

warp to execute at any point in time, thus filling the latency of 

expensive operations (latency hiding). 



Cuda device memory types 

CUDA supports several types of 

memory that can be used by 

programmers to achieve high 

execution speeds in their kernels:  

 registers 

 shared memory 

 global memory 

 constant memory 

 

Registers and shared memory 

are on-chip memories. 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 

61 



Cuda device memory types 

R/W per-grid global memory 

R only per-grid constant 

memory 

Shared memory is an efficient 

means for threads to cooperate 

by sharing their input data and 

the intermediate results 

62 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 



Cuda device memory types 

Shared memory is allocated 

to thread blocks; all threads in 

a block can access variables 

in the shared memory 

locations allocated to the 

block.  

Registers are allocated to 

individual threads; each 

thread can only access its 

own registers. 

63 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 



Cuda device memory types 

By declaring a CUDA variable in one of the CUDA memory 
types, a CUDA programmer dictates the visibility and 
access speed of the variable.  

The table presents the CUDA syntax for declaring program 
variables into the various types of device memory. 

Such declaration gives a scope and lifetime to the variable.  

Variable declaration Memory Scope Lifetime 

Automatic Variable  register thread kernel 

__device__ __shared__   int SharedVar; shared block kernel 

__device__              int GlobalVar; global grid application 

__device__ __constant__ int ConstantVar; constant grid application 64 



Use of device memories 

Global memory is large but slow, whereas the shared 

memory is small but fast. 

A common strategy is to partition the data into subsets 

called tiles such that each tile fits into the shared memory 

 size of tiles is chosen so they can fit into the shared memory 

 each tile corresponds to a block of threads: 

 load the tile from global memory to shared memory 

 use multiple threads to exploit parallelism in memory access 

 execute the computation on the tile in the shared memory; each 

thread can use a memory element more than once  

 copy results from share memory to global memory 
65 



66 

Threads and blocks 

Summing up 

A CUDA kernel is executed by a grid of threads  
 All threads in a grid run the same kernel code (SPMD)‏ 

 Each thread has an index that it uses to compute memory 
addresses and make control decisions 

 

i = blockIdx.x * blockDim.x + 

threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 

0 1 2 254 255 

… 
66 



Threads and blocks 

Summing up 

 Divide thread array into multiple blocks 

 Threads within a block cooperate via shared memory, 

atomic operations and barrier synchronization 

 Threads in different blocks cannot cooperate 

… 

… 
1 2 254 255 

Thread Block 1 
0 

i = blockIdx.x * blockDim.x + 

threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 

i = blockIdx.x * blockDim.x 

+ threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 
0 1 2 254 255 

Thread Block 0 

… 

… 
1 2 254 255 

Thread Block N-1 
0 

i = blockIdx.x * blockDim.x + 

threadIdx.x; 

C_d[i] = A_d[i] + B_d[i]; 

… 67 



68 

Matrix Multiplication Example 

 The matrix multiplication example illustrates the basic 

features of memory and thread management in CUDA 

programs 

 Leave shared memory usage until later 

 Local, register usage 

 Thread ID usage 

 Memory data transfer API between host and device 

 Assume square matrix for simplicity 



Matrix Multiplication Example 

 Let us consider a matrix 4x4. 

 Let us consider 4 blocks 2x2. 

 The four thread of block (0,0) compute 

Pd0,0 Pd1,0 Pd0,1 and Pd1,1 

 Arrows show which elements of Md and 

Nd are used by thread (0,0) and (1,0) of 

block (0,0) 
Pd1,0 Md2,0 

Md1,1 

Md1,0 Md0,0 

Md0,1 

Md3,0 

Md2,1 

Pd0,0 

Md3,1 Pd0,1 

Pd2,0 Pd3,0 

Nd0,3 Nd1,3 

Nd1,2 

Nd1,1 

Nd1,0 Nd0,0 

Nd0,1 

Nd0,2 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 

69 



Matrix Multiplication Example 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 

{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column index of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

 

float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 

  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 

 

  Pd[Row*Width+Col] = Pvalue; 

} 
70 



Matrix Multiplication Example 

 The table shows which element are accessed in the global 

memory by all  threads of block (0,0) 

 Each thread accesses 4 elements of Md and 4 elements of 

Nd, with a clear superimposition  

 Example: thread (0,0) and thread (1,0) access the whole 

row 0 of M 

 
P0,0 

thread0,0 

P1,0 

thread1,0 

P0,1 

thread0,1 

P1,1 

thread1,1 

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0 

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1 

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2 

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3 

Access 

order 
71 



Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 

Performance 

Each thread accesses to 
global memory to load matrix 
elements 

 

Each element is accessed 
twice, then if threads 
collaborate in accesses to 
the global memory we can 
reduce the traffic to the 
global memory  

72 



Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 

Performance 

The potential reduction in 
global memory traffic in the 
matrix multiplication example 
is proportional to the 
dimension of the blocks 
used 

 

With NxN blocks, the 
potential reduction of global 
memory traffic would be N.  

73 



Traffic to the global memory 

 Threads have to collaborate to reduce the traffic to the 

global memory. 

 The threads collaboratively load Md and Nd elements into 

the shared memory. 

 The shared memory is small and the capacity can not be 

exceeded when loading Md and Nd  

 This can be obtained by dividing the Md and Nd matrices 

into smaller tiles that can fit into the shared memory.  

 In the simplest form, the tile dimensions equal those of the 

block. 

 WIDTH 74 



Pd1,0 Md2,0 

Md1,1 

Md1,0 Md0,0 

Md0,1 

Md3,0 

Md2,1 

Pd0,0 

Md3,1 Pd0,1 

Pd2,0 Pd3,0 

Nd0,3 Nd1,3 

Nd1,2 

Nd1,1 

Nd1,0 Nd0,0 

Nd0,1 

Nd0,2 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 

Divide Md and Nd in tile 

 Divide Md and Nd in 2x2 tile as shown 

 the calculation of each dot product is performed 

in two phases 

 In each phase the threads can collaboratively 

load the subset (one element of Md and one 

element of Nd ) into the shared memory 

75 



Execution phases of threads 

The shared memory array for the Md and Nd  elements are called Mds and Nds 

Phase 1 Phase 2 

T0,0 Md0,0  

‏↓

Mds0,0 

Nd0,0 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

Md2,0  

 ‏↓

Mds0,0  

Nd0,2 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

T1,0 Md1,0 

‏↓

Mds1,0  

Nd1,0 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

Md3,0  

 ‏↓

Mds1,0  

Nd1,2 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

T0,1 Md0,1 

‏↓

Mds0,1 

Nd0,1 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

Md2,1 

 ‏↓

Mds0,1 

Nd0,3 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

T1,1 Md1,1 

‏↓

Mds1,1 

Nd1,1 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

Md3,1  

 ‏↓

Mds1,1  

Nd1,3 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

time 

76 



Execution phases of threads 

 At the beginning of Phase 1, 

the four threads of block(0,0) 

collaboratively load a tile of 

Md into shared memory.  

 Similarly a  tile of Nd  

 Loaded values are used in the 

calculation of the dot product.  

 Remark Each value in the 

shared memory is used twice.  

 Note how Md0,1 and Nd1,0 are 

used 

Phase 1 

T0,0 Md0,0  

‏↓

Mds0,0 

Nd0,0 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

T1,0 Md1,0 

‏↓

Mds1,0  

Nd1,0 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

T0,1 Md0,1 

‏↓

Mds0,1 

Nd0,1 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

T1,1 Md1,1 

‏↓

Mds1,1 

Nd1,1 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

77 



Execution phases of threads 

 In Phase 2 the tile for Md and 

Nd are loaded to complete the 

calculation of the dot product 

Phase 2 

T0,0 Md2,0  

 ‏↓

Mds0,0  

Nd0,2 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

T1,0 Md3,0  

 ‏↓

Mds1,0  

Nd1,2 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

T0,1 Md2,1 

 ‏↓

Mds0,1 

Nd0,3 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

T1,1 Md3,1  

 ‏↓

Mds1,1  

Nd1,3 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

Pd1,0 Md2,0 

Md1,1 

Md1,0 Md0,0 

Md0,1 

Md3,0 

Md2,1 

Pd0,0 

Md3,1 Pd0,1 

Pd2,0 Pd3,0 

Nd0,3 Nd1,3 

Nd1,2 

Nd1,1 

Nd1,0 Nd0,0 

Nd0,1 

Nd0,2 

Pd1,1 

Pd0,2 Pd2,2 Pd3,2 Pd1,2 

Pd3,1 Pd2,1 

Pd0,3 Pd2,3 Pd3,3 Pd1,3 

Note that in each 

phase, the same 

Mds and Nds are 

used 

78 



kernel tiled function 

kernel tiled function for the use of the shared memory 

 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int 
Width) 

{ 

1.  __shared__float Mds[TILE_WIDTH][TILE_WIDTH]; 

2.  __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; 

 

3.  int bx = blockIdx.x;  int by = blockIdx.y; 

4.  int tx = threadIdx.x; int ty = threadIdx.y; 

 

// Identify the row and column of the Pd element to work on 

5.  int Row = by * TILE_WIDTH + ty; 

6.  int Col = bx * TILE_WIDTH + tx; 

 

79 



 

7.    float Pvalue = 0; 

// Loop over the Md and Nd tiles required to compute the Pd element 

8.    for (int m = 0; m < Width/TILE_WIDTH; ++m) { 

// Collaborative loading of Md and Nd tiles into shared memory 

9.       Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];  

10.     Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width]; 

11.     __syncthreads(); 

12.     for (int k = 0; k < TILE_WIDTH; ++k) 

13.    Pvalue += Mds[ty][k] * Nds[k][tx]; 

14.    synchthreads(); 

 } 

15.  Pd[Row*Width+Col] = Pvalue; 

   } 

Kernel tiled function 

80 



81 

Md 

Nd 

Pd 

Pdsub 

TILE_WIDTH 

WIDTH WIDTH 

TILE_WIDTH TILE_WIDTH 

 

 

 

bx 

tx 
0 1 TILE_WIDTH-1 2 

0 1 2 

by 
ty 

2 
1 
0 

TILE_WIDTH-1 

2 

1 

0 

T
IL

E
_

W
ID

T
H

 
T

IL
E

_
W

ID
T

H
 

 
T

IL
E

_
W

ID
T

H
E

 

W
ID

T
H

 
W

ID
T

H
 

Tiled Multiply 

 Each block computes a submatrix  Pdsub 

which dimensions are TILE_WIDTH 

 Each thread computes an element of 

Pdsub 

m 

k bx 

by 

k 

m 



Granularity Considerations 

 For Matrix Multiplication, should I use 8X8, 16X16 or 32X32 

tiles? 

 For 8X8, we have 64 threads per Block.  

 Since each SM can take up to 768 threads, it can take up to 12 

Blocks. However, each SM can only take up to 8 Blocks, only 512 

threads will go into each SM! 

 For 16X16, we have 256 threads per Block.  

 Since each SM can take up to 768 threads, it can take up to 3 

Blocks and achieve full capacity unless other resource 

considerations overrule. 

 For 32X32, we have 1024 threads per Block.  

 Not even one can fit into an SM! 

 

82 


