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ADDITION AND ADDERS
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Half adder and Full adder

• Adders are usually implemented by combining multiple 

copies of simple components

• The natural components for addition are half adders and 

full adders

• The half adder takes two bits a and b as input and 

produces a sum bit s and a carry bit cout as output

• Logic equations:                     and 
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Half adder and Full adder

• The full adder takes three bits a, b and c as input and 

produces a sum bit s and a carry bit cout as output

• Logic equations:                                                 

and 
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Half adder and Full adder

• The half adder is a (2,2) adder:

• it takes two inputs and produces two outputs

• The full adder is a (3,2) adder:

• it takes three inputs and produces two outputs
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Ripple-Carry Addition

• The principal problem in constructing an adder for n-bit 

numbers out of smaller pieces is propagating the carries 

from one module to the next

• The most obvious way to solve this is with a ripple-carry 

adder, consisting of n full adders
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Ripple-Carry Addition

• Note that the low-order carry-in could be wired to 0, hence 

the low-order adder could be a half adder

• However, setting the low-order carry-in bit to 1 is useful 

for performing subtraction
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Ripple-Carry Addition

• The time a circuit takes to produce an output is 

proportional to the maximum number of logic levels 

through which a signal travels

• Determining the exact relationship between logic levels 

and timings is highly technology dependent
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Ripple-Carry Addition

• When comparing adders we simply compare the number 

of logic levels in each one

• A ripple-carry adder takes:

• two levels to compute c1 from a0 and b0

• two more levels to compute c2 from c1, a1, b1 - and so on, up to cn

• So, there are a total of 2n levels
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Ripple-Carry Addition

• Typical values of n are 32 for integer arithmetic and 53 

for double-precision floating point

• The ripple-carry adder is the slowest adder, but also the 

cheapest

• It can be built with only n simple cells, connected in a 

simple, regular way
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Ripple-Carry Addition

• The ripple-carry adder is relatively slow  it takes time O(n)

• But it is used because in technologies like CMOS, the 

constant factor is very small

• Short ripple adders are often used as building blocks in 

larger adders
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Ripple-Carry Addition for Signed Numbers

• The most widely used system for representing integers is 

the  two’s complement, where the MSB is considered 

associated with a negative weight

• The value of a two’s complement number is:
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Ripple-Carry Addition for Signed Numbers

• The reasons for the popularity of two’s complement are:

• It makes signed addition easy  simply discard the carry-

out from the high order bit

• Subtraction is executed as an addition: 

• A-B = A+(-B), recalling that
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Ripple-Carry Addition for Signed Numbers

• The Ripple-Carry adder is used for subtraction acting on 

second operand B and on c0 

• If line complement is 1 then operand B is complemented 

bit wise and c0=1
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MULTIPLICATION AND 

MULTIPLIERS
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Unsigned Multiplication

• The simplest multiplier computes the product of two 

unsigned numbers, an–1an–2 ⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0

one bit at a time

• Register Product is initially 0
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Unsigned Multiplication

• Each multiply step has two parts:

(i) Partial product and accumulation:

• If the lsb of A is 1, then register B (bn–1bn–2 ⋅ ⋅ ⋅ b0) is added to P; 

else 0 ⋅ ⋅ ⋅ 00 is added to P

• The sum is placed back into P

Advanced Architecture - 2024/2025 

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

18 of 65



Unsigned Multiplication

(ii) Registers P and A are shifted right:

• the carry-out of the sum is moved into the high-order bit of P 

• the low-order bit of P is moved into register A, 

• the rightmost bit of A (not used any more) is shifted out
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Unsigned Multiplication
• In summary, each multiplication step consists of: adding the 

contents of P to either B or 0 (depending on the low-order bit of 
A), replace P with the sum, then shift both P and A one bit right

• After n steps, the product appears in registers P and A, with A 
holding the lower-order bits
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Signed Multiplication
• To multiply  two’s complement numbers, the obvious approach 

is to convert operands to be nonnegative, do an unsigned 
multiplication, and then (if the original operands were of 
opposite signs) negate the result 

• This requires extra time and hardware

Advanced Architecture - 2024/2025 

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

21 of 65



Signed Multiplication
• A better approach to multiply A and B using the hardware below:

• If A is nonnegative and B is potentially negative, to convert the 
unsigned multiplication algorithm into a two’s complement one we 
need that when P is shifted, it is shifted arithmetically

• Our adder will now be adding n-bit two’s complement numbers 
between −2n–1 and 2n–1 − 1
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Signed Multiplication

• If A is negative, the method of Booth recoding is used

• It is based on the fact that any sequence of 1s in a binary number 
can be written as: 011…11 = 100…00 – 000…01 

• Example If A = 7 = 01112, then we will successively 

• add B, add B, add B, and add 0

• Booth recoding “recodes” the number 7 as 8 − 1 = 10002 − 00012

Multiplication

Advanced Architecture - 2024/2025 

0010

x 0111

+ 0010 add (1 in multiplier)

+     0010 add   (1 in multiplier)

+    0010 add   (1 in multiplier)

+   0000   shift (0 in multiplier)

00001110

23 of 65



Signed Multiplication

• The idea is that:
• we subtract when we first see a 1 to replace a string of 1s in multiplier

• then later we add for the bit after the last one
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Signed Multiplication

• The idea is that:
• we subtract when we first see a 1 to replace a string of 1s in multiplier

• then later we add for the bit after the last one
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Signed Multiplication

• The idea is that:
• we subtract when we first see a 1 to replace a string of 1s in multiplier

• then later we add for the bit after the last one
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Signed Multiplication

• Hence, to deal with negative values of A, all that is required is to 
sometimes subtract B from P, instead of adding either B or 0 to P

• Rules: If the initial content of A is an–1 ⋅ ⋅ ⋅ a0, then step (i) in the 
multiplication algorithm becomes:

• If ai = 0 and ai–1 = 0, then add 0 to P

• If ai = 0 and ai–1 = 1, then add B to P

• If ai = 1 and ai–1 = 0, then subtract B from P

• If ai = 1 and ai–1 = 1, then add 0 to P

For the first step, when i = 0, take ai–1 to be 0
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SPEEDING UP 

OPERATIONS
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Speeding Up Operations
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 Integer addition is the simplest operation and the most 
important

 Even for programs that do not do explicit arithmetic, 
addition must be performed to increment the program 
counter and to calculate addresses

 The delay of an N-bit ripple-carry adder is:

tripple = NtFA

where tFA is the delay of a full adder

 There are different  techniques to increase the speed of 
integer operations (which also lead to faster floating 
point operations), as the Carry Select Adder (CSA) and 
Carry Look-ahead Adder (CLA)

29 of 65



Carry-Select Adder

• The carry-select adder improves speed dividing 
operands bits in blocks

• A carry-select adder consists of:
• short ripple carry adders acting on blocks of bits 

• multiplexers 

• The two blocks of bits is added with two ripple-carry 
adders, one with the carry-in equal 

to 0 and the other with the carry-in

equal to  1

Carry-select adder - Wikipedia
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Carry-Select Adder

• In the figure below two 4-bit ripple-carry adders are 

multiplexed together

• The resulting carry and sum bits are selected by the carry-in

• The correct result is selected by the actual carry-in which  

selects which adder had the correct assumption 

Carry-select adder - Wikipedia
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Carry-Select Adder

Uniform-sized adder

A 16-bit carry-select adder with a uniform block size of 4 has:  

• three of these blocks 

• a 4-bit ripple-carry adder

A carry select block is not needed for the four LSBs

The delay of this adder will be four full adder delays plus

three 2-to-1 MUX delays

Carry-select adder - Wikipedia
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Carry-Select Adder

Variable-sized adder

A 16-bit carry-select adder with variable size can be created 

using block sizes of 2-2-3-4-5

• This break-up is ideal when the full-adder delay is equal to 

the MUX delay

• The total delay is two full adder delays plus four mux 

delays

Carry-select adder - Wikipedia
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Carry-Lookahead Adder

• A carry-lookahead adder improves speed by reducing 

the amount of time required to determine carry bits

• The carry-lookahead adder calculates one or more carry 

bits before the sum, which reduces the wait time to 

calculate the result of the larger-value bits of the adder

• Remember that:
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Carry-Lookahead Adder

We define:

• Carry Generate 

• Carry propagate                             or

Then the expression of the carry is:

and the expression of the sum is:
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If we consider 4 bits, we have c1, c2, c3, c4, depend only on c0:
c1 = a0b0 + (a0+b0)c0 = g0 + p0c0

c2 = a1b1 + (a1+b1)c1 = g1 + p1c1 = g1 + p1g0 + p1p0c0

c3 = a2b2 + (a2+b2)c2 = g2 + p2c2 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = a3b3 + (a3+b3)c3 = g3 + p3c3 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0
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Carry-Lookahead Addition

• Structure of a 4-bit CLA

• A CLA requires:

• one logic level to form p and g

• two levels to form the carries

• two for the sum

• for a total of five logic levels

• Improvement over the 2n 

levels required for the ripple-

carry adder
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Carry-Lookahead Addition
• A 16-bit adder can be built from four 4-bit CLAs and a 4-bit 

Look-ahead Carry Unit (LCU) at the second level

• A 64-bit adder can be built from four 16-bit adder shown 
above, and an additional LCU that accepts bits from each 
LCU above and generates carry bits fed back to 

• https://en.wikipedia.org/wiki/Lookahead_carry_unit
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Carry-Lookahead Addition

We can use the carry-

lookahead idea to build an 

adder that has about log2n 

logic levels, as in a tree

Starting from

• G01 = g1 + p1g0

• P01 = p1p0

In general, for any j with i < j

and j + 1 < k, we have the 

recursive relations:

• ck+1 = Gik + Pikci

• Gik = Gj+1,k + Pj+1,kGij

• Pik = Pij Pj+1,k
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Carry-Lookahead Addition

First part of carry-lookahead

tree:

• signals flow from the top to the 

bottom

• various values of P and G are 

computed

Second part of carry-

lookahead tree:

• signals flow from the bottom to 

the top, combining with P and G 

to form the carries
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Carry-Lookahead Addition

• Using the recursive 

relations, practical

CLAs are designed by 

combining cells in a 

binary tree structure

• The numbers to be 

added flow into the top 

and go downward 

through the tree, 

combining with c0 at 

the bottom and flowing 

back up the tree to 

form the carries
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Carry-Lookahead Addition

• The bits in a CLA pass 

through about log2 n

logic levels, compared 

with 2n for a ripple-carry 

adder

• But the ripple-carry 

adder has n cells and 

the CLA has 2n cells, 

even if they will take n 

log n space

• Speed improvement
especially for a large n
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Speeding Up Multiplications

• Methods that increase the speed of multiplication can be 
divided into two classes: 

• single adder 

• multiple adders

• In the simple multiplier we described, each multiplication step 
passes through the single adder

• The amount of computation in each step depends on the used 
adder (consider the difference between an RCA and a CLA)

• If the space for many adders is available, then multiplication 
speed can be increased thanks to the replication of resources
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PIPELINED ARITHMETIC

OPERATIONS
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Pipelined arithmetic

• Consider the instruction pipelining:

• The processor goes through a repetitive cycle of fetching and 
processing instructions

• In the absence of hazards:

• the processor is continuously fetching instructions from their locations 

• the pipeline is kept full 

• a savings in time is achieved

• Similarly, a pipelined ALU will save time if it is fed a stream of 
data from sequential locations

• A single, isolated operation is not speeded up by pipeline

• The speedup is achieved when a vector of operands is 
presented to the units in the ALU
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Pipelined arithmetic

• The relative simplicity of two-operand adders usually does not 
justify their implementation as pipelines

• In special-purpose design, when many successive additions are 
needed, such implementations are justifiable

• Some adders can be implemented as pipeline, such as the 
conditional-sum adder or the carry-save adder (for multiple 
operands) 

• But, for example, some design of the carry look-ahead adder 
cannot be pipelined because some carry signals propagate 
backward

• There are very simple schemes for the pipelined adders and
multipliers along the lines of the ripple-carry adder
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Pipelined Addition

• For n bits operands, a 
pipeline adder consists 
of n stages of half 
adders

• Registers (FF D) are 
inserted at each stage 
to synchronize the 
computation

• At each clock cycle a 
new pair of operands is 
applied to the inputs of 
the adder
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Pipelined Addition

• After n clock cycles,  
the sum of the first pair 
of operands is obtained 

• The computing time for 
a single sum is the 
same of the carry-
ripple adder

• A new sum is obtained 
at each clock cycle 
starting from the  
(n+1)-th clock cycle
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Pipelined Addition

• The number of HA is 
O(n2), whereas the 
circuit complexity of 
the carry-ripple adder 
is O(n)

• The added circuit 
complexity pays off if 
long sequences of 
numbers are being 
added
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Pipelined Unsigned Multiplication
𝑎3 𝑎2 𝑎1 𝑎0
𝑏3 𝑏2 𝑏1 𝑏0
𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1
𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2

𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3
𝑝7 𝑝6 𝑝5 𝑝4 𝑝3 𝑝2 𝑝1 𝑝0
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 The product of 
two n bit 
operands has 
length 2n

 Result is obtained 
by executing n-1 
sums
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Pipelined Unsigned Multiplication
𝑎3 𝑎2 𝑎1 𝑎0
𝑏3 𝑏2 𝑏1 𝑏0
𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1
𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2

𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3
𝑝7 𝑝6 𝑝5 𝑝4 𝑝3 𝑝2 𝑝1 𝑝0
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Pipelined Unsigned Multiplication
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 After stage (n-1) 
all bit products 
(AND) are added

 Last (n-1) stages 
represent a 
pipelined adder

 Bit p2n-1 of the 
result is obtained 
as OR among the 
carries generated 
by the most left 
HA of each stage
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Pipelined Unsigned Multiplication
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 After 2(n-1) clock 
cycles,  the 
product of the 
first pair of 
operands is 
obtained 

 A new result is 
obtained at each 
clock cycle
starting from the 
(2n-1)-th clock 
cycle
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Pipelined Signed Multiplication

• Signed numbers are 
arithmetically extended 
to the length 2n of the 
product 

• Example with 3-bit operands
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Pipelined Signed Multiplication
• Partial products of length 

2n are considered (the 
remaining part is 
ignored) 

• All stages except the first 
consist of FAs

• Example with 3-bit operands
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CIRCUIT AREA  AND TIME 

EVALUATION
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Circuit area and time

• To discuss about the time and area, it is useful the analytical 
model called unit-gate model presented in 
• A. Tyagi, A reduced-area scheme for carry-select adders, IEEE Trans. 

Comput., 1993

is commonly used

• They propose a simplistic model for gate-count and gate-delay:

• Each gate except EX-OR counts as one elementary gate

• An EX-OR gate is counted as two elementary gates, because in 
static CMOS, an EX-OR gate is implemented as two elementary
gates (NAND)

• The delay through an elementary gate is counted as one gate-
delay unit, but an EX-OR gate is two gate-delay units
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Circuit area and time

• If the fan-in and fan-out of the gates are ignored, unfair 
comparisons are produced for circuits containing gates with a 
large difference in fan-in or fan-out

• For example, gates in the CLA adder have different fan-in

• A carry-ripple adder has no gates with fan-in and fan-out greater 
than 2

• The gate-count and gate-delay comparisons may not always be 
consistent with the area-time comparisons if the fan-in of gates 
is not taken into account

• The best comparison for a VLSI implementation is actual area 
and time
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Circuit area and time

• In summary, we consider:

• Any gate (but the EX-OR) counts as one gate for both area 
and delay  Agate and Tgate

• An exclusive-OR gate counts as two elementary gates for 
both area and delay  AEX-OR = 2Agate  and   TEX-OR = 2Tgate

• To take into account the fan-in and fan-out, we consider that an 
m-input gate counts as:

• m − 1  gates for area    Am-gate = (m-1)Agate

• log2m gates for delay   Tm-gate = log2m Tgate

Advanced Architecture - 2024/2025 60 of 65



Circuit area and time

• A half adder (HA) has:

• Delay: 2 unit gates – THA= 2 Tgate

• Area:  3 unit gates – AHA= 3 Agate 
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Circuit area and time

• A half adder (HA) has:

• Delay: 2 unit gates – THA= 2 Tgate

• Area: 3 unit gates – AHA= 3 Agate 

• A full adder (FA) has:

• Delay: 4 unit gates – TFA= 4 Tgate

• Area: 7 unit gates – AFA= 7 Agate 
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Circuit area and time

• A half adder (HA) has:

• Delay: 2 unit gates – THA= 2 Tgate

• Area: 3 unit gates – AHA= 3 Agate 

• A full adder (FA) has:

• Delay: 4 unit gates – TFA= 4 Tgate = 2 THA 

• Area: 7 unit gates – AFA= 7 Agate = 2 AHA + Agate 
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Circuit area and time

• A ripple-carry adder for n-bits operands has:

• Delay: TRC-adder      TRC-adder = n TFA = 2n THA = 4n Tgate

• Area:  ARC-adder     ARC-adder = n AFA = 2n AHA + n Agate = 7n Agate
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Circuit area and time

Exercise
Compute the time (propagation delay) and area required by the 4-bits Carry-
Save-Adder, that is an adder for three values A, B and C, shown here below. 

Compute the speedup of 4-bits Carry-Save-Adder with respect to the 
standard binary ripple-carry adder. 
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Delay and Area for the Ripple-carry adder 
•TRC-adder = n TFA = 2n THA = 4n Tgate

•ARC-adder = n AFA = 2n AHA + n Agate = 7n Agate
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