
ADVANCED ARCHITECTURE

COMPUTER ARITHMETIC

Annalisa Massini Lecture 3-4
2024-2025

References

Computer Architecture - A Quantitative Approach

Hennessy Patterson – Fifth Edition

Appendix J – Computer arithmetic - David Goldberg

Advanced Architecture - 2024/2025 2 of 65

ADDITION AND ADDERS

Advanced Architecture - 2024/2025 3 of 65

Half adder and Full adder

• Adders are usually implemented by combining multiple

copies of simple components

• The natural components for addition are half adders and

full adders

• The half adder takes two bits a and b as input and

produces a sum bit s and a carry bit cout as output

• Logic equations: and

Advanced Architecture - 2024/2025

bab a b as  ab cout 

4 of 65

Half adder and Full adder

• The full adder takes three bits a, b and c as input and

produces a sum bit s and a carry bit cout as output

• Logic equations:

and

Advanced Architecture - 2024/2025

abcba cout )(

cbaabccba cba cb as )(

S

5 of 65

Half adder and Full adder

• The half adder is a (2,2) adder:

• it takes two inputs and produces two outputs

• The full adder is a (3,2) adder:

• it takes three inputs and produces two outputs

Advanced Architecture - 2024/2025

S

6 of 65

Ripple-Carry Addition

• The principal problem in constructing an adder for n-bit

numbers out of smaller pieces is propagating the carries

from one module to the next

• The most obvious way to solve this is with a ripple-carry

adder, consisting of n full adders

Advanced Architecture - 2024/2025

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

an-1 bn-1

7 of 65

Ripple-Carry Addition

• Note that the low-order carry-in could be wired to 0, hence

the low-order adder could be a half adder

• However, setting the low-order carry-in bit to 1 is useful

for performing subtraction

Advanced Architecture - 2024/2025

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

an-1 bn-1

8 of 65

Ripple-Carry Addition

• The time a circuit takes to produce an output is

proportional to the maximum number of logic levels

through which a signal travels

• Determining the exact relationship between logic levels

and timings is highly technology dependent

Advanced Architecture - 2024/2025

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

9 of 65

Ripple-Carry Addition

• When comparing adders we simply compare the number

of logic levels in each one

• A ripple-carry adder takes:

• two levels to compute c1 from a0 and b0

• two more levels to compute c2 from c1, a1, b1 - and so on, up to cn

• So, there are a total of 2n levels

Advanced Architecture - 2024/2025

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

10 of 65

Ripple-Carry Addition

• Typical values of n are 32 for integer arithmetic and 53

for double-precision floating point

• The ripple-carry adder is the slowest adder, but also the

cheapest

• It can be built with only n simple cells, connected in a

simple, regular way

Advanced Architecture - 2024/2025

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

11 of 65

Ripple-Carry Addition

• The ripple-carry adder is relatively slow  it takes time O(n)

• But it is used because in technologies like CMOS, the

constant factor is very small

• Short ripple adders are often used as building blocks in

larger adders

Advanced Architecture - 2024/2025

an-1 bn-1 a0 b0a1 b1a2 b2

Sn-1 s0s1s2

12 of 65

Ripple-Carry Addition for Signed Numbers

• The most widely used system for representing integers is

the two’s complement, where the MSB is considered

associated with a negative weight

• The value of a two’s complement number is:

Advanced Architecture - 2024/2025

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

0

0

1

1

2

2

1

1 2222 aaaa n

n

n

n  





 

0121 aaaa nn 

an-1 bn-1

13 of 65

Ripple-Carry Addition for Signed Numbers

• The reasons for the popularity of two’s complement are:

• It makes signed addition easy  simply discard the carry-

out from the high order bit

• Subtraction is executed as an addition:

• A-B = A+(-B), recalling that

Advanced Architecture - 2024/2025

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

1 XX

an-1 bn-1

14 of 65

Ripple-Carry Addition for Signed Numbers

• The Ripple-Carry adder is used for subtraction acting on

second operand B and on c0

• If line complement is 1 then operand B is complemented

bit wise and c0=1

Advanced Architecture - 2024/2025

an-1 a0a1a2

Sn-1 s0s1s2

bn-1 b2 b1 b0

complement

15 of 65

MULTIPLICATION AND

MULTIPLIERS

Advanced Architecture - 2024/2025 16 of 65

Unsigned Multiplication

• The simplest multiplier computes the product of two

unsigned numbers, an–1an–2 ⋅ ⋅ ⋅ a0 and bn–1bn–2 ⋅ ⋅ ⋅ b0

one bit at a time

• Register Product is initially 0

Advanced Architecture - 2024/2025

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

17 of 65

Unsigned Multiplication

• Each multiply step has two parts:

(i) Partial product and accumulation:

• If the lsb of A is 1, then register B (bn–1bn–2 ⋅ ⋅ ⋅ b0) is added to P;

else 0 ⋅ ⋅ ⋅ 00 is added to P

• The sum is placed back into P

Advanced Architecture - 2024/2025

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

18 of 65

Unsigned Multiplication

(ii) Registers P and A are shifted right:

• the carry-out of the sum is moved into the high-order bit of P

• the low-order bit of P is moved into register A,

• the rightmost bit of A (not used any more) is shifted out

Advanced Architecture - 2024/2025

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

19 of 65

Unsigned Multiplication
• In summary, each multiplication step consists of: adding the

contents of P to either B or 0 (depending on the low-order bit of
A), replace P with the sum, then shift both P and A one bit right

• After n steps, the product appears in registers P and A, with A
holding the lower-order bits

Advanced Architecture - 2024/2025

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

20 of 65

Signed Multiplication
• To multiply two’s complement numbers, the obvious approach

is to convert operands to be nonnegative, do an unsigned
multiplication, and then (if the original operands were of
opposite signs) negate the result

• This requires extra time and hardware

Advanced Architecture - 2024/2025

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

21 of 65

Signed Multiplication
• A better approach to multiply A and B using the hardware below:

• If A is nonnegative and B is potentially negative, to convert the
unsigned multiplication algorithm into a two’s complement one we
need that when P is shifted, it is shifted arithmetically

• Our adder will now be adding n-bit two’s complement numbers
between −2n–1 and 2n–1 − 1

Advanced Architecture - 2024/2025

Product

B - Multiplicand

Shift Right

n bits

A - Multiplier

n bits

n bits

Carry out

22 of 65

Signed Multiplication

• If A is negative, the method of Booth recoding is used

• It is based on the fact that any sequence of 1s in a binary number
can be written as: 011…11 = 100…00 – 000…01

• Example If A = 7 = 01112, then we will successively

• add B, add B, add B, and add 0

• Booth recoding “recodes” the number 7 as 8 − 1 = 10002 − 00012

Multiplication

Advanced Architecture - 2024/2025

0010

x 0111

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001110

23 of 65

Signed Multiplication

• The idea is that:
• we subtract when we first see a 1 to replace a string of 1s in multiplier

• then later we add for the bit after the last one

Advanced Architecture - 2024/2025

0010

x 0111

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001110

24 of 65

Signed Multiplication

• The idea is that:
• we subtract when we first see a 1 to replace a string of 1s in multiplier

• then later we add for the bit after the last one

Advanced Architecture - 2024/2025

0010

x 0111

- 0010 sub (first 1 in multpl)

+ 0000 shift (0 in multiplier)

+ 0000 shift (0 in multiplier)

+ 0010 add (prior step had last 1)

00001110

25 of 65

0010

x 0111

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001110

Signed Multiplication

• The idea is that:
• we subtract when we first see a 1 to replace a string of 1s in multiplier

• then later we add for the bit after the last one

Advanced Architecture - 2024/2025

0010

x 0111

+ 11111110 sub(first 1 in multpl)

+ 0000 shift (0 in multiplier)

+ 0000 shift (0 in multiplier)

+ 0010 add(prior step had last 1)

00001110

26 of 65

0010

x 0111

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

00001110

Signed Multiplication

• Hence, to deal with negative values of A, all that is required is to
sometimes subtract B from P, instead of adding either B or 0 to P

• Rules: If the initial content of A is an–1 ⋅ ⋅ ⋅ a0, then step (i) in the
multiplication algorithm becomes:

• If ai = 0 and ai–1 = 0, then add 0 to P

• If ai = 0 and ai–1 = 1, then add B to P

• If ai = 1 and ai–1 = 0, then subtract B from P

• If ai = 1 and ai–1 = 1, then add 0 to P

For the first step, when i = 0, take ai–1 to be 0

Advanced Architecture - 2024/2025 27 of 65

SPEEDING UP

OPERATIONS

Advanced Architecture - 2024/2025 28 of 65

Speeding Up Operations

Advanced Architecture - 2024/2025

 Integer addition is the simplest operation and the most
important

 Even for programs that do not do explicit arithmetic,
addition must be performed to increment the program
counter and to calculate addresses

 The delay of an N-bit ripple-carry adder is:

tripple = NtFA

where tFA is the delay of a full adder

 There are different techniques to increase the speed of
integer operations (which also lead to faster floating
point operations), as the Carry Select Adder (CSA) and
Carry Look-ahead Adder (CLA)

29 of 65

Carry-Select Adder

• The carry-select adder improves speed dividing
operands bits in blocks

• A carry-select adder consists of:
• short ripple carry adders acting on blocks of bits

• multiplexers

• The two blocks of bits is added with two ripple-carry
adders, one with the carry-in equal

to 0 and the other with the carry-in

equal to 1

Carry-select adder - Wikipedia

Advanced Architecture - 2024/2025 30 of 65

https://en.wikipedia.org/wiki/Carry-select_adder

Carry-Select Adder

• In the figure below two 4-bit ripple-carry adders are

multiplexed together

• The resulting carry and sum bits are selected by the carry-in

• The correct result is selected by the actual carry-in which

selects which adder had the correct assumption

Carry-select adder - Wikipedia

Advanced Architecture - 2024/2025 31 of 65

https://en.wikipedia.org/wiki/Carry-select_adder

Carry-Select Adder

Uniform-sized adder

A 16-bit carry-select adder with a uniform block size of 4 has:

• three of these blocks

• a 4-bit ripple-carry adder

A carry select block is not needed for the four LSBs

The delay of this adder will be four full adder delays plus

three 2-to-1 MUX delays

Carry-select adder - Wikipedia

Advanced Architecture - 2024/2025 32 of 65

https://en.wikipedia.org/wiki/Carry-select_adder

Carry-Select Adder

Variable-sized adder

A 16-bit carry-select adder with variable size can be created

using block sizes of 2-2-3-4-5

• This break-up is ideal when the full-adder delay is equal to

the MUX delay

• The total delay is two full adder delays plus four mux

delays

Carry-select adder - Wikipedia

Advanced Architecture - 2024/2025 33 of 65

https://en.wikipedia.org/wiki/Carry-select_adder

Carry-Lookahead Adder

• A carry-lookahead adder improves speed by reducing

the amount of time required to determine carry bits

• The carry-lookahead adder calculates one or more carry

bits before the sum, which reduces the wait time to

calculate the result of the larger-value bits of the adder

• Remember that:

Advanced Architecture - 2024/2025

iiiiii cbab a c)(1 

iiiiiiiiiiiiiiii cbacbacba cba cb a s )(

34 of 65

Carry-Lookahead Adder

We define:

• Carry Generate

• Carry propagate or

Then the expression of the carry is:

and the expression of the sum is:

Advanced Architecture - 2024/2025

iii ba g 

iii b a p 

iiiiiiiii cpgcbab a c )(1

iiiiii cpcba s )(

iii b a p 

35 of 65

Advanced Architecture - 2024/2025

If we consider 4 bits, we have c1, c2, c3, c4, depend only on c0:
c1 = a0b0 + (a0+b0)c0 = g0 + p0c0

c2 = a1b1 + (a1+b1)c1 = g1 + p1c1 = g1 + p1g0 + p1p0c0

c3 = a2b2 + (a2+b2)c2 = g2 + p2c2 = g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = a3b3 + (a3+b3)c3 = g3 + p3c3 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

a3 b3

g3 p3

a2 b2

g2 p2

a1 b1

g1 p1

a0 b0

g0 p0

c1c2c3c4

c0

Carry-Lookahead Adder

36 of 65

Advanced Architecture - 2024/2025

• So, a carry-lookahead adder on n bits requires a fan-in of

n + 1 at the OR gate as well as at the rightmost AND gate

• The irregular structure and long wires make it impractical

to build a full carry-lookahead adder when n is large

a3 b3

g3 p3

a2 b2

g2 p2

a1 b1

g1 p1

a0 b0

g0 p0

c1c2c3c4

c0

Carry-Lookahead Adder

37 of 65

Carry-Lookahead Addition

• Structure of a 4-bit CLA

• A CLA requires:

• one logic level to form p and g

• two levels to form the carries

• two for the sum

• for a total of five logic levels

• Improvement over the 2n

levels required for the ripple-

carry adder

Advanced Architecture - 2024/2025

iiiiii cpcba s )(

38 of 65

Carry-Lookahead Addition
• A 16-bit adder can be built from four 4-bit CLAs and a 4-bit

Look-ahead Carry Unit (LCU) at the second level

• A 64-bit adder can be built from four 16-bit adder shown
above, and an additional LCU that accepts bits from each
LCU above and generates carry bits fed back to

• https://en.wikipedia.org/wiki/Lookahead_carry_unit

Advanced Architecture - 2024/2025 39 of 65

https://en.wikipedia.org/wiki/Lookahead_carry_unit

Carry-Lookahead Addition

We can use the carry-

lookahead idea to build an

adder that has about log2n

logic levels, as in a tree

Starting from

• G01 = g1 + p1g0

• P01 = p1p0

In general, for any j with i < j

and j + 1 < k, we have the

recursive relations:

• ck+1 = Gik + Pikci

• Gik = Gj+1,k + Pj+1,kGij

• Pik = Pij Pj+1,k

Advanced Architecture - 2024/2025 40 of 65

Carry-Lookahead Addition

First part of carry-lookahead

tree:

• signals flow from the top to the

bottom

• various values of P and G are

computed

Second part of carry-

lookahead tree:

• signals flow from the bottom to

the top, combining with P and G

to form the carries

Advanced Architecture - 2024/2025 41 of 65

Carry-Lookahead Addition

• Using the recursive

relations, practical

CLAs are designed by

combining cells in a

binary tree structure

• The numbers to be

added flow into the top

and go downward

through the tree,

combining with c0 at

the bottom and flowing

back up the tree to

form the carries

Advanced Architecture - 2024/2025 42 of 65

Carry-Lookahead Addition

• The bits in a CLA pass

through about log2 n

logic levels, compared

with 2n for a ripple-carry

adder

• But the ripple-carry

adder has n cells and

the CLA has 2n cells,

even if they will take n

log n space

• Speed improvement
especially for a large n

Advanced Architecture - 2024/2025 43 of 65

Speeding Up Multiplications

• Methods that increase the speed of multiplication can be
divided into two classes:

• single adder

• multiple adders

• In the simple multiplier we described, each multiplication step
passes through the single adder

• The amount of computation in each step depends on the used
adder (consider the difference between an RCA and a CLA)

• If the space for many adders is available, then multiplication
speed can be increased thanks to the replication of resources

Advanced Architecture - 2024/2025 44 of 65

PIPELINED ARITHMETIC

OPERATIONS

Advanced Architecture - 2024/2025 45 of 65

Pipelined arithmetic

• Consider the instruction pipelining:

• The processor goes through a repetitive cycle of fetching and
processing instructions

• In the absence of hazards:

• the processor is continuously fetching instructions from their locations

• the pipeline is kept full

• a savings in time is achieved

• Similarly, a pipelined ALU will save time if it is fed a stream of
data from sequential locations

• A single, isolated operation is not speeded up by pipeline

• The speedup is achieved when a vector of operands is
presented to the units in the ALU

Advanced Architecture - 2024/2025 46 of 65

Pipelined arithmetic

• The relative simplicity of two-operand adders usually does not
justify their implementation as pipelines

• In special-purpose design, when many successive additions are
needed, such implementations are justifiable

• Some adders can be implemented as pipeline, such as the
conditional-sum adder or the carry-save adder (for multiple
operands)

• But, for example, some design of the carry look-ahead adder
cannot be pipelined because some carry signals propagate
backward

• There are very simple schemes for the pipelined adders and
multipliers along the lines of the ripple-carry adder

Advanced Architecture - 2024/2025 47 of 65

Pipelined Addition

• For n bits operands, a
pipeline adder consists
of n stages of half
adders

• Registers (FF D) are
inserted at each stage
to synchronize the
computation

• At each clock cycle a
new pair of operands is
applied to the inputs of
the adder

Advanced Architecture - 2024/2025

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

ti
m

e

48 of 65

Pipelined Addition

• After n clock cycles,
the sum of the first pair
of operands is obtained

• The computing time for
a single sum is the
same of the carry-
ripple adder

• A new sum is obtained
at each clock cycle
starting from the
(n+1)-th clock cycle

Advanced Architecture - 2024/2025

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

ti
m

e

49 of 65

Pipelined Addition

• The number of HA is
O(n2), whereas the
circuit complexity of
the carry-ripple adder
is O(n)

• The added circuit
complexity pays off if
long sequences of
numbers are being
added

Advanced Architecture - 2024/2025

HA HA HAHA

HA HA HA

HA HA

HA

a2 b2 a1 b1 a0 b0a3 b3

s0s1s2s3

ti
m

e

50 of 65

Pipelined Unsigned Multiplication
𝑎3 𝑎2 𝑎1 𝑎0
𝑏3 𝑏2 𝑏1 𝑏0
𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1
𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2

𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3
𝑝7 𝑝6 𝑝5 𝑝4 𝑝3 𝑝2 𝑝1 𝑝0

Advanced Architecture - 2024/2025

HA HAHA

FA FA FA

HA HA

HA

a3b2
a3b1 a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a0b1a1b0a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

 The product of
two n bit
operands has
length 2n

 Result is obtained
by executing n-1
sums

51 of 65

ti
m

e

ti
m

e

Pipelined Unsigned Multiplication
𝑎3 𝑎2 𝑎1 𝑎0
𝑏3 𝑏2 𝑏1 𝑏0
𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1
𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2

𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3
𝑝7 𝑝6 𝑝5 𝑝4 𝑝3 𝑝2 𝑝1 𝑝0

Advanced Architecture - 2024/2025

 Inputs to the
multiplier are
logical AND
among pairs of
bits

 There are 2(n-1)
stages of FA or
HA

HA HAHA

FA FA FA

HA HA

HA

a3b2
a3b1 a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a0b1a1b0a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

52 of 65

Pipelined Unsigned Multiplication

Advanced Architecture - 2024/2025

 After stage (n-1)
all bit products
(AND) are added

 Last (n-1) stages
represent a
pipelined adder

 Bit p2n-1 of the
result is obtained
as OR among the
carries generated
by the most left
HA of each stage

HA HAHA

FA FA FA

HA HA

HA

a3b2
a3b1 a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a0b1a1b0a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

53 of 65

ti
m

e

Pipelined Unsigned Multiplication

Advanced Architecture - 2024/2025

 After 2(n-1) clock
cycles, the
product of the
first pair of
operands is
obtained

 A new result is
obtained at each
clock cycle
starting from the
(2n-1)-th clock
cycle

HA HAHA

FA FA FA

HA HA

HA

a3b2
a3b1 a0b0a3b3

p0p1p2p3

FA FA FA

HA HA HA

a0b1a1b0a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5p6p7

54 of 65

ti
m

e

Pipelined Signed Multiplication

• Signed numbers are
arithmetically extended
to the length 2n of the
product

• Example with 3-bit operands

Advanced Architecture - 2024/2025

HA HAHA

FA FA FA

FA

HA HA

a3b2

a1b4

a0b0

p0p1p2p3

FA FA FA

FA

FA FA

a0b1a1b0a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5

a3b1a4b0a4b1a5b0

a0b4

a0b5

𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0
𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0
𝑎5𝑏0 𝑎4𝑏0 𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

𝑎5𝑏1 𝑎4𝑏1 𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1
𝑎5𝑏2 𝑎4𝑏2 𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2
𝑎4𝑏3 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3
𝑎3𝑏4 𝑎2𝑏4 𝑎1𝑏4 𝑎0𝑏4
𝑎2𝑏5 𝑎1𝑏5 𝑎0𝑏5

𝑝5 𝑝4 𝑝3 𝑝2 𝑝1 𝑝0

55 of 65

ti
m

e

Pipelined Signed Multiplication
• Partial products of length

2n are considered (the
remaining part is
ignored)

• All stages except the first
consist of FAs

• Example with 3-bit operands

Advanced Architecture - 2024/2025

HA HAHA

FA FA FA

FA

HA HA

a3b2

a1b4

a0b0

p0p1p2p3

FA FA FA

FA

FA FA

a1b0a0b1a1b1a2b0a2b1a3b0

a0b2a1b2a2b2

a0b3a1b3a2b3

p4p5

a3b1a4b0a4b1a5b0

a0b4

a0b5

𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0
𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0
𝑎5𝑏0 𝑎4𝑏0 𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0

𝑎5𝑏1 𝑎4𝑏1 𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1
𝑎5𝑏2 𝑎4𝑏2 𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2
𝑎4𝑏3 𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎0𝑏3
𝑎3𝑏4 𝑎2𝑏4 𝑎1𝑏4 𝑎0𝑏4
𝑎2𝑏5 𝑎1𝑏5 𝑎0𝑏5

𝑝5 𝑝4 𝑝3 𝑝2 𝑝1 𝑝0

56 of 65

ti
m

e

CIRCUIT AREA AND TIME

EVALUATION

Advanced Architecture - 2024/2025 57 of 65

Circuit area and time

• To discuss about the time and area, it is useful the analytical
model called unit-gate model presented in
• A. Tyagi, A reduced-area scheme for carry-select adders, IEEE Trans.

Comput., 1993

is commonly used

• They propose a simplistic model for gate-count and gate-delay:

• Each gate except EX-OR counts as one elementary gate

• An EX-OR gate is counted as two elementary gates, because in
static CMOS, an EX-OR gate is implemented as two elementary
gates (NAND)

• The delay through an elementary gate is counted as one gate-
delay unit, but an EX-OR gate is two gate-delay units

Advanced Architecture - 2024/2025 58 of 65

Circuit area and time

• If the fan-in and fan-out of the gates are ignored, unfair
comparisons are produced for circuits containing gates with a
large difference in fan-in or fan-out

• For example, gates in the CLA adder have different fan-in

• A carry-ripple adder has no gates with fan-in and fan-out greater
than 2

• The gate-count and gate-delay comparisons may not always be
consistent with the area-time comparisons if the fan-in of gates
is not taken into account

• The best comparison for a VLSI implementation is actual area
and time

Advanced Architecture - 2024/2025 59 of 65

Circuit area and time

• In summary, we consider:

• Any gate (but the EX-OR) counts as one gate for both area
and delay  Agate and Tgate

• An exclusive-OR gate counts as two elementary gates for
both area and delay  AEX-OR = 2Agate and TEX-OR = 2Tgate

• To take into account the fan-in and fan-out, we consider that an
m-input gate counts as:

• m − 1 gates for area  Am-gate = (m-1)Agate

• log2m gates for delay  Tm-gate = log2m Tgate

Advanced Architecture - 2024/2025 60 of 65

Circuit area and time

• A half adder (HA) has:

• Delay: 2 unit gates – THA= 2 Tgate

• Area: 3 unit gates – AHA= 3 Agate

Advanced Architecture - 2024/2025 61 of 65

Circuit area and time

• A half adder (HA) has:

• Delay: 2 unit gates – THA= 2 Tgate

• Area: 3 unit gates – AHA= 3 Agate

• A full adder (FA) has:

• Delay: 4 unit gates – TFA= 4 Tgate

• Area: 7 unit gates – AFA= 7 Agate

Advanced Architecture - 2024/2025 62 of 65

Circuit area and time

• A half adder (HA) has:

• Delay: 2 unit gates – THA= 2 Tgate

• Area: 3 unit gates – AHA= 3 Agate

• A full adder (FA) has:

• Delay: 4 unit gates – TFA= 4 Tgate = 2 THA

• Area: 7 unit gates – AFA= 7 Agate = 2 AHA + Agate

Advanced Architecture - 2024/2025 63 of 65

Circuit area and time

• A ripple-carry adder for n-bits operands has:

• Delay: TRC-adder  TRC-adder = n TFA = 2n THA = 4n Tgate

• Area: ARC-adder  ARC-adder = n AFA = 2n AHA + n Agate = 7n Agate

Advanced Architecture - 2024/2025

a0 b0a1 b1a2 b2

Sn-1 s0s1s2

an-1 bn-1

64 of 65

Circuit area and time

Exercise
Compute the time (propagation delay) and area required by the 4-bits Carry-
Save-Adder, that is an adder for three values A, B and C, shown here below.

Compute the speedup of 4-bits Carry-Save-Adder with respect to the
standard binary ripple-carry adder.

Advanced Architecture - 2024/2025

Delay and Area for the Ripple-carry adder
•TRC-adder = n TFA = 2n THA = 4n Tgate

•ARC-adder = n AFA = 2n AHA + n Agate = 7n Agate

65 of 65

