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COMPACT STORAGE FORMAT
Most of the material is from:
L. Formaggia, F. Saleri, A. Veneziani Solving Numerical PDEs: Problems, Applications, Exercises -
Appendix The treatment of sparse matrices

BSR format from:
https://software.intel.com/en-us/mkl-developer-reference-c-sparse-blas-bsr-matrix-storage-
format
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Storage Methods for Sparse Matrix

• A matrix is sparse if it contains a large number of zeros

• sparsity of the matrix = 

number of zero-valued elements / total number of elements 

• density = 1 - sparsity 

• A matrix is sparse if its sparsity is > 0.5

• But sparsity is interesting if in a matrix of size nxn

→ the number of non-zero entries is O(n)

• This means that the average number of non-zero entries in 
each row is bounded independently from n

• A non-sparse matrix is said full or dense if the number of non-
zero elements is O(n2)
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Storage Methods for Sparse Matrix

• If the location of the zero elements is known a-priori, we can 
avoid reserving storage for them

• The distribution of non-zero elements of a sparse matrix may 
be described by:

• the sparsity pattern, defined as the set {(i, j) : Aij = 0}

• the matrix graph, where nodes i and j are connected by an edge if 
and only if Aij = 0

• In order to take advantage of the large number of

zero elements, special schemes are required to 

store sparse matrices
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Storage Methods for Sparse Matrix

• The use of adequate storage techniques for sparse matrices is 
fundamental, especially with large-scale problems 

• Large sparse matrices often appear in scientific or engineering 
applications when solving partial differential equations 

• Example
• Suppose we want to solve the Navier-Stokes equations on a two-dimensional 

grid formed by 10.000 vertexes with finite elements

• The number of degrees of freedom is around 105 for the pressure and 4×105

for each component of the velocity

• The associated matrix will then be 90000×90000

• If we store all 8.1×109 coefficients, using double precision 

(8 bytes), around 60 Gigabytes are necessary! 

• This is too much (even for a very large computer) 
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Storage Methods for Sparse Matrix

• In case of a three-dimensional problem the situation becomes 
even worse, since the number of degrees of freedom grows very 
rapidly as the grid gets finer

• Nowadays it is common to deal with millions of degrees of freedom

• Therefore to store sparse matrices efficiently we need data 
formats that are more compact than the classical array
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Storage Methods for Sparse Matrix

• The adoption of sparse formats may affect the speed of certain 
operations

• For example, with a sparse format we cannot access or search 
for a particular element (or group of elements) directly, using 
the two indexes i and j to determine where entry Aij is located
in the memory 

• On the other hand, even if the operation of accessing an entry 
of a matrix in sparse format turns out to be less efficient, by 
adopting a sparse format we will nevertheless access only 
nonzero elements, thus executing only useful operations
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Storage Methods for Sparse Matrix

• Hence, in general, the sparse format is preferable in terms of 
storage as well as in terms of computing time, as long as the 
matrix is sufficiently sparse

• The main goal of sparse formats is:

• to represent only the nonzero elements

• to be able to efficiently perform the common matrix 
operations
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Storage Methods for Sparse Matrix

• We can distinguish different kinds of operations on a matrix

• The most important operations are:

1. accessing a generic element (random access)

2. accessing the elements of a whole row: important when 
multiplying a matrix by a vector

3. accessing the elements of a whole column, or equivalently, of a 
row in the transpose matrix (relevant for operations such as 
symmetrizing the matrix after imposing Dirichlet conditions)

4. adding a new element to the matrix pattern: this is a critical issue 
if the pattern is not known beforehand or it can change 
throughout the computations

5. and the common operation of multiplying a matrix and a vector
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Storage Methods for Sparse Matrix

• It is important to characterize formats for sparse matrices by 
the computational cost of these operations and by how the 
latter depends on the matrix size

• Different formats for sparse matrices exist due to the fact that
there is no format that is simultaneously optimal for all the 
above operations, and at the same time efficient in terms of 
storage capacity
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Storage Methods for Sparse Matrix

• In the following:

• n is the matrix’ size

• nz is the number of non-zero entries

• We adopt the convention of indexing entries of matrices and 
vectors (arrays) starting from 1 (as in Matlab)

• Aij will denote the entry of the matrix A on row i and column j

• To estimate how much memory the matrix occupies we assume 
that:

• an integer occupies 4 bytes

• a real number (floating point repres.) 8 bytes (double precision)

• For example, storing a square matrix having n = 12 would require 
12 × 12 × 8 = 1152 bytes
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The Coordinate format: COO format

• The simplest storage scheme for sparse matrices is the format 
by coordinate

• The data structure consists of three arrays: 

• A - a real array containing all the real (or complex) values of the 
nonzero elements in any order

• I - an integer array containing their row indices

• J - a second integer array containing their column indices

• I, J and A all have nz elements, as many as the number of non-zero 
elements of the matrix
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The Coordinate format: COO format

Example

The matrix A 
1. 0.    0.    2. 0.

3.  4.    0.    5.   0.

6. 0.    7.    8.   9.

0.  0.  10.  11.   0.

0.  0.     0.   0.  12.

is represented (for example) by
A 12. 9.  7.  5.  1.  2. 11. 3.  6.  4.  8. 10.

I 5    3   3   2   1   1    4   2   3   2   3    4

J 5    5   3   4   1   4    4   1   1   2   4    3

• Notice that elements are listed in an arbitrary order
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The Coordinate format: COO format

Example - n=12 and nz=58
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101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

The space occupied is:

- 8 × n × n = 
= 8 x 12 x 12 = 1152 bytes 

in full format  



The Coordinate format: COO format

Example - n=12 and nz=58
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101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 . . . 

. . . 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 . . .

1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 . . .

. . . 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 . . .

1 2 4 1 2 3 4 5 2 3 5 6 1 2 4 5 7 2 3 4 . . .

. . . 10 11 6 8 9 11 12 7 8 10 11 8 9 10 11 12 9 11 12

The space occupied is:

- 8 × n × n = 1152 bytes 
in full format  

- (4+4+8)×nz = 16 x 58 =
= 928 bytes 

in COO format

. . . 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

. . . 8 8 9 9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12

. . . 5 6 7 8 3 5 6 8 9 4 5 7 8 10 5 6 7 8 9 . . .

A

I

J



The Coordinate format: COO format

• COO format does not guarantee rapid access to an element, 
nor to rows or columns

• Finding the generic element of the matrix from the row and 
column indexes normally requires a number of operations 
proportional to nz

• In fact, it is necessary to go through all elements of I and J until 
one hits those indexes, using expensive comparison operations

• Using specific techniques to store the indexes in special search 
data structure, it is possible to reduce the cost to O(log2(nz)), 
but at a higher storing price
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The Coordinate format: COO format

• The operation of multiplying a matrix A and a vector x can be 
done directly, by running through the elements of the three arrays

• A possible code for the product y = Ax using MATLAB

y=zeros(nz,1);

for k=1:nz

i=I(k); 

j=J(k);

y(i)= y(i) + A(k)*x(j); % notice the use of i and j

end
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The Coordinate format: COO format

Observations

• The additional cost of this operation (compared to the 
analogue for a full matrix) depends essentially on indirect 
addressing: 

• accessing y(i) requires first of all to access I(k)

• The access and update of arrays x and y does not proceed by 
consecutive elements→ the possibility of optimizing the use 
of the processor’s cache is greatly reduced 
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The Coordinate format: COO format

Observations

• Operations are performed only on non-zero elements and in 
general we have  nz << n2

• An advantage of this format is that:

• It is easy to add a new element to the matrix

• In fact, it is enough to add a new entry to the arrays I, J and A

• For this reason, COO is often used when the pattern is not 
known a priori
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The skyline format

• The format called skyline is among the first used to store 
matrices arising from the method of finite elements

• The idea is to store the area formed by the elements between 
the first and last non-zero coefficient, on each row

• This forces to store some null entries
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101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158



The skyline format

• This extra cost will be small if the matrix has non-zero entries 
clustered around the diagonal

• Indeed, algorithms have been developed to cluster non zero
elements by permuting the rows and columns of the matrix 
(see, for example, the Cuthill-McKee algorithm) 
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101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158



Skyline for symmetric matrices

• If a matrix is symmetric we can store only:

• Its lower triangular part (diagonal included)

• Or we can store the diagonal on an auxiliary array and treat the 
off-diagonal entries separately, having the advantage of allowing 
the direct access to the diagonal elements
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Skyline for symmetric matrices

The skyline format with diagonal array is given by:

• D - real array storing diagonal entries

• AL - real array storing all skyline elements row-wise (except the diagonal) 
This can clearly include null coefficients

• I - integer array storing pointers to rows of matrix A

• The kth component of array I points to the first element of row (k + 1) in AL
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Skyline for symmetric matrices

• All elements of AL from position I(k) to I(k+1)-1 are the 
off-diagonal elements belonging to row k + 1, in column order

• Notice that:

• The first row is not stored, since it only has the diagonal element

• I(k) points to the first non-zero element on the (k+1)-th row

• The difference I(k+1)- I(k)gives the number of the off-
diagonal elements on row k + 1 belonging to the skyline
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Skyline for symmetric matrices

Example

• We want to store the symmetric matrix obtained from the 
lower triangular part of matrix A (seen before) using the skyline
format 

• This matrix can be obtained with the Matlab instruction
tril(A)+ tril(A,-1)’
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101 104 0 113 0 0 0 0 0 0 0 0
104 105 109 114 118 0 0 0 0 0 0 0

0 109 110 0 119 125 0 0 0 0 0 0
113 114 0 115 120 0 130 0 0 0 0 0

0 118 119 120 121 126 131 135 0 0 0 0
0 0 125 0 126 127 0 136 142 0 0 0
0 0 0 130 131 0 132 137 0 147 0 0
0 0 0 0 135 136 137 138 143 148 151 0
0 0 0 0 0 142 0 143 144 0 152 156
0 0 0 0 0 0 147 148 0 149 153 0
0 0 0 0 0 0 0 151 152 153 154 157
0 0 0 0 0 0 0 0 156 0 157 158



Skyline for symmetric matrices

Example

• Diagonal D

• Pointer I and lower skyline elements AL
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101 105 110 115 120 121 127 132 138 144 149 154 158

1 2 3 6 9 12 15 18 21 24 27 30

104 109 113 114 0 118 119 120 125 0 126 130 131 0 135 136 137 142 0 143 147 148 0 151 152 153 156 0 157

101 104 0 113 0 0 0 0 0 0 0 0
104 105 109 114 118 0 0 0 0 0 0 0

0 109 110 0 119 125 0 0 0 0 0 0
113 114 0 115 120 0 130 0 0 0 0 0

0 118 119 120 121 126 131 135 0 0 0 0
0 0 125 0 126 127 0 136 142 0 0 0
0 0 0 130 131 0 132 137 0 147 0 0
0 0 0 0 135 136 137 138 143 148 151 0
0 0 0 0 0 142 0 143 144 0 152 156
0 0 0 0 0 0 147 148 0 149 153 0
0 0 0 0 0 0 0 151 152 153 154 157
0 0 0 0 0 0 0 0 156 0 157 158



Skyline for symmetric matrices

Example

• Diagonal D

• Pointers I and lower skyline elements AL

• Note that in the nth place of the array I we have left a pointer 
at the beginning of an hypothetical position. In this way:

• We can compute the number of skyline elements in the last row, 
that is I(n) − I(n-1)

• I(n)− 1 is the total number of elements in the skyline
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1 2 3 6 9 12 15 18 21 24 27 30

104 109 113 114 0 118 119 120 125 0 126 130 131 0 135 136 137 142 0 143 147 148 0 151 152 153 156 0 157

101 105 110 115 120 121 127 132 138 144 149 154 158



Skyline for symmetric matrices

The product y = Ax following MATLAB syntax is given by:

y=D.*x;

for k=2:n

nex = I(k)-I(k-1);

ik = I(k-1):I(k)-1;

jcol= k-nex:k-1;

y(k) = y(k)+dot(AL(ik),x(jcol));

y(jcol)= y(jcol)+AL(ik)*x(k);

end

• We operate symmetrically on rows and columns to exploit the 
fact that only the lower triangular part was stored in AL
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Skyline for symmetric matrices

• The memory needed to store the matrix in this format depends 
on how effectively the skyline reproduces the actual pattern

• In our case:

• The full format requires: 12 x 12 x 8 = 1152

• Array AL contains 29 real numbers (including six 0s)

• Array D of fixed length n=12 containing reals 

• Array I of fixed length n=12 containing integers

• Total: (29 + 12) x 8 +n x 4 = 376

• In general, we need (nAL + n) x 8 + n x 4 

• Generally, Skyline is more convenient than the COO format if 
the coefficients are well clustered around the diagonal
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Skyline for general matrices

• As for non-symmetric matrices, a reasonable way to proceed is 
to split A into:

• The diagonal D

• The strictly lower triangular part E 

• The strictly upper triangular part F

• Using the Matlab syntax, these matrices would be defined as:

D=diag(diag(A));

E=tril(A,-1); 

F=triu(A,1);
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Skyline for general matrices

• In general, we need two arrays of indexes: one for pointer to 
array E and one for pointers to array FT

• If the pattern of A is symmetric, the skyline of E coincides with 
that of FT, and the same array of pointers I is for both triangular 
parts

• Diagonal D

• Pointer I, lower skyline elements E and upper skyline elements FT
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101 105 110 115 121 127 132 138 144 149 154 158

1 2 3 6 9 12 15 18 21 24 27 30

104 109 113 114 0 118 119 120 125 0 126 130 131 0 135 136 137 142 0 143 147 148 0 151 152 153 156 0 157

102 106 0 107 103 116 111 108 122 0 112 0 123 117 133 128 124 139 0 129 140 134 150 145 141 155 156 0 146



Skyline for general matrices

• The product matrix-vector  y = Ax now reads

y=D.*x;

for k=2:n

nex = I(k)-I(k-1);

ik = I(k-1):I(k)-1;

jcol = k-nex:k-1;

y(k) = y(k)+dot(E(ik),x(jcol));

y(jcol)= y(jcol)+FT(ik)*x(k);

end

• icol and ik contain all indexes corresponding to the columns 
of row k, so the scalar product dot(E(ik),x(jcol)) and 
the multiplication vector-constant FT(ik)*x(k)are optimized
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Skyline for general matrices

• Notice that in this format the access to diagonal entries is direct

• Being able to access diagonal entries directly has certain 
advantages:
• For instance there are methods that, to impose essential boundary 

condition, only need the access to diagonal elements

• The cost of extracting a row is independent of the matrix’ size

• The fact that the data relative to a row are stored consecutively 
in the memory allows the system to optimize the processor’s 
cache memory when multiplying a matrix by a vector

• The extraction of column is an expensive operation that 
requires many comparisons, and whose cost grows linearly in n
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The Compressed Sparse Row (CSR) format

• The problem with the skyline format is that the memory used 
depends on the numeration of elements and is in general 
impossible to avoid the unnecessary storage of zero elements

• The CSR (Compressed Sparse Row) format can be seen as a 
compressed version of COO, and also as an improved skyline, 
that stores non-zero elements only
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The Compressed Sparse Row (CSR) format

The CSR format uses three arrays:

• A - real array of length nz storing the non-zero entries of the 
matrix, ordered row-wise. It coincides with array A of the COO 
format

• J - integer array of length nz, whose entry J(k) indicates the 
column of the element A(k). It coincides with array J of the COO 
format

• I - integer array of length n containing pointers to the rows. 
Then I(k) gives the position where the k-th row in A and J 
begins
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The Compressed Sparse Row (CSR) format

• Array I is usually of length n + 1, so that the number of non-zero 
entries on row k is always I(k+1)-1-I(k)

• To make this hold, the last element I(n+1) will contain nz + 1 
and in this way we also have that nz=I(n+1)-I(1)
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101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 . . .

. . . 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

1 4 9 13 18 25 30 35 42 47 51 56 59

1 2 4 1 2 3 4 5 2 3 5 6 1 2 4 5 7 2 3 4 . . .

. . . 10 11 6 8 9 11 12 7 8 10 11 8 9 10 11 12 9 11 12

. . . 5 6 7 8 3 5 6 8 9 4 5 7 8 10 5 6 7 8 9 . . .

. . . 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 . . .



The Compressed Sparse Row (CSR) format

• The CSR format uses 8 × nz + 4 × (nz + n + 1) bytes

• CSR format suits square and rectangular matrices alike

• Operations:
• quick extraction of row i→ elements between I(i) and I(i+1)-1

• column extraction requires localizing on each row the values of J 
corresponding to the wanted column

• If we adopt no particular ordering, the cost operation is proportional to nz

• If, instead, column indexes of each row in J are ordered in increasing order as in 
our example, with a binary-search algorithm the extraction cost for a column 
becomes proportional to n log2(m), where m is the mean number of elements 
on each row

• the access to a generic element has normally a cost proportional to m, yet 
if we order columns it reduces to log2m
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The Compressed Sparse Row (CSR) format

The matrix-vector product y = Ax is given by

y=zeros(n,1);

% y=A(I(1:n)).*x if the diagonal is stored first

for k=1:n

ik=I(k):I(k+1)-1;

% ik=I(k)+1:I(k+1)-1; if the diagonal is stored first

jcol =J(ik); y(k)=y(k)+dot(A(ik),x(jcol));

end
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The CSC (Compressed Sparse Column) format

• The CSC (Compressed Sparse Column) format stores matrices 
by ordering them column-wise

• It is easy to extract a column as opposed to rows

• The roles of vectors I and J is exchanged compared with the CSR 
format

• When performing matrix-vector multiplication with a sparse 
matrix in CSC format it is preferable to compute the result as a 
linear combination of the columns of the matrix

• Indeed, if ci indicates the i-th column of matrix A, we have that 
Ax = Σi xici
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The CSC (Compressed Sparse Column) format

• Therefore, the matrix-vector product y = Ax on a CSC matrix 
may be computed as:

y=zeros(n,1);

for k=1:n

xcoeff=x(k);

jk=I(k):I(k+1)-1;

ik=J(jk);

y(ik)=y(ik) + xcoeff * A(jk)’;

end
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The MSR (Modified Sparse Row) format

• The MSR (Modified Sparse Row) format is a special version of 
CSR for square matrices exploiting the fact that:

• The diagonal elements of many matrices are usually nonzero
(matrices generated by finite elements) 

• The diagonal elements are accessed more often than the rest 
of the elements

• Diagonal entries can be stored in one single array, since their 
indexes are implicitly known from their position in the array

• As for the symmetric skyline, only off-diagonal elements are 
stored in a special fashion, i.e. through a format akin to CSR
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The MSR (Modified Sparse Row) format

The MSR format uses two arrays:

• V - real array of values:

• In the first n entries of V we store the diagonal

• The place n+1 in V is left with no significant value (may sometimes 
carry some information concerning the matrix)

• From place n+2 onwards off-diagonal elements are stored, row-wise

• V has length nz + 1

• B - Bind

• B has the same length as V → nz + 1

• The first n + 1 point to where rows begin 

• From n+2 to nz+1 there are the column indexes of the elements 
stored in the corresponding places in V
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The MSR (Modified Sparse Row) format

Example

• Array B

• Array V
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. . . 111 112 113 114 116 117 118 119 120 122 123 124 125 126 128 129 130 131 133 . . .

101 105 110 115 121 127 132 138 144 149 154 158 * 102 103 104 106 107 108 109 . . . 

. . . 134 135 136 137 139 140 141 142 143 145 146 147 148 150 151 152 153 155 156 157

. . . 6 1 2 5 7 9 2 3 4 6 7 8 3 5 8 9 4 5 8 . . . 

14 16 20 23 27 33 37 41 51 54 58 60 2 4 1 3 4 5 2 5 . . . 

. . . 10 5 6 7 9 10 11 6 8 11 12 7 8 11 8 9 10 12 9 11

101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158



The MSR (Modified Sparse Row) format

• The MSR format turns out to be very efficient in memory terms

• It is one of the most compact formats for sparse matrices

• It is used in several linear algebra libraries for large problems

• The drawback is that it only applies to square matrices

• The matrix-vector product is coded as:
y=V(1:n).*x;

for k=1:n

ik=B(k):B(k+1)-1;

jcol =B(ik);

y(k)=y(k)+dot(A(ik),x(jcol));

end
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BSR (Block Sparse Row) format

• The BSR format is a CSR with dense submatrices of fixed shape
instead of scalar items

• The block size must evenly divide the shape of the matrix

• In this example the block size is 3 x 3 
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101 102 0 103 0 0 0 0 0 0 0 0

104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0

113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0

0 0 125 0 126 127 0 128 129 0 0 0

0 0 0 130 131 0 132 133 0 134 0 0

0 0 0 0 135 136 137 138 139 140 141 0

0 0 0 0 0 142 0 143 144 0 145 146

0 0 0 0 0 0 147 148 0 149 150 0

0 0 0 0 0 0 0 151 152 153 154 155

0 0 0 0 0 0 0 0 156 0 157 158

A B

C D E

F G H

I L



BSR (Block Sparse Row) format

• The BSR format store the non-zero blocks of the sparse matrix

• A non-zero block is the block that contains at least one non-
zero element
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101 102 0 103 0 0 0 0 0 0 0 0

104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0

113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0

0 0 125 0 126 127 0 128 129 0 0 0

0 0 0 130 131 0 132 133 0 134 0 0

0 0 0 0 135 136 137 138 139 140 141 0

0 0 0 0 0 142 0 143 144 0 145 146

0 0 0 0 0 0 147 148 0 149 150 0

0 0 0 0 0 0 0 151 152 153 154 155

0 0 0 0 0 0 0 0 156 0 157 158

A B

C D E

F G H

I L



BSR (Block Sparse Row) format

The BSR format consists of four arrays:

• Values - real array containing the elements of the non-zero 
blocks of a sparse matrix
• The elements are stored block-by-block in row-major order

• All elements of non-zero blocks are stored, even if some of them are 
equal to zero

• Within each non-zero block elements are stored in column-major order in 
the case of one-based indexing, and in row-major order in the case of the 
zero-based indexing
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A B

C D E

F G H

I L



BSR (Block Sparse Row) format

The BSR format consists of four arrays:

• Columns - integer array where element i is the number of the 
column in the block matrix that contains the i-th non-zero block

• PointerB - integer array where element j gives the index of the 
element in the columns array that is first non-zero block in 
row j of the block matrix

• PointerE - integer array where element j gives the index of the 
element in the columns array that contains the last non-zero 
block in a row j of the block matrix plus 1
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BSR (Block Sparse Row) format

Example

• Values

• Columns

• PointerB

• PointerE
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101 104 0 102 105 109 0 106 110 103 107 0 0 108 111 0 0 112 . . .

. . . 113 0 0 114 118 0 0 119 125 115 120 0 116 121 126 0 122 127 . . .

. . . 117 123 0 0 124 128 0 0 129 130 0 0 131 135 0 0 136 142 . . .

. . . 132 137 0 133 138 143 0 139 144 134 140 0 0 141 145 0 0 146 . . .

. . . 147 0 0 148 151 0 0 152 156 149 153 0 150 154 157 0 155 158

1 2 1 2 3 2 3 4 3 4

1 3 6 9

3 6 9 11

A B

C D E

F G H

I L



BSR (Block Sparse Row) format

• The length of the values array is equal to the number of all 
elements in the non-zero blocks

• The length of the columns array is equal to the number of non-
zero blocks

• The length of the pointerB and pointerE arrays is equal to the 
number of block rows in the block matrix
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Diagonal format

• Diagonally structured matrices are matrices whose nonzero 
elements are located along a small number of diagonals

The diag format consist of:

• DIAG - a rectangular real array storing the diagonals

• DIAG has size n x Nd, where Nd is the number of diagonals 

• IOFF - an integer array containing the offsets of each diagonal 
with respect to the main diagonal  

• IOFF ha size Nd
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Diagonal format

• The order in which the diagonals are stored in of DIAG is 
generally unimportant

• Since several more operations are performed with the main 
diagonal, storing it in the first column may be slightly 
advantageous

• Note that all the diagonals except the main diagonal have 
fewer than n elements, so there are positions in DIAG that will 
not be used
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Diagonal format

Example

• Matrix

• DIAG IOFF
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101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

-3 -2 -1 0 1 2 3

Element DIAG(i, j) 
is located in
position ai,i+ioff(j)

of the original 
matrix

113 0 104 101 102 0 103
118 114 109 105 106 107 108
125 119 0 110 0 111 112
130 0 120 115 116 0 117
135 131 126 121 122 123 124
142 136 0 127 0 128 129
147 0 137 132 133 0 134
151 148 143 138 139 140 141
156 152 0 144 0 145 146

0 0 153 149 150 0 0
0 0 157 154 155 0 0
0 0 0 158 0 0 0



Ellpack-Itpack format

• The Ellpack-Itpack format is a general scheme, popular on 
vector machines

• The Ellpack-Itpack format consists of two rectangular arrays:

• COEF - real array (similar to DIAG) that contains the nonzero 
elements of A (completing the row by zeros as necessary)

• JCOEF - integer array that contains the column positions of each 
entry in COEF

• COEF and JCOEF have size n x Nd, where n is the number of rows 
and Nd is the maximum number of nonzero elements per row, 
whith Nd small
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Ellpack-Itpack format

Example

• Matrix

COEF JCOEF
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101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

101 102 103 0 0 0 0
104 105 106 107 108 0 0
109 110 111 112 0 0 0
113 114 115 116 117 0
118 119 120 121 122 123 124
125 126 127 128 129 0 0
130 131 132 133 134 0 0
135 136 137 138 139 140 141
142 143 144 145 146 0 0
147 148 149 150 0 0 0
151 152 153 154 155 0 0
156 157 158 0 0 0 0

1 2 4 0 0 0 0
1 2 3 4 5 0 0
2 3 5 6 0 0 0
1 2 4 5 7 0
2 3 4 5 6 7 8
3 5 6 8 9 0 0
4 5 7 8 10 0 0
5 6 7 8 9 10 11
6 8 9 11 12 0 0
7 8 10 11 0 0 0
8 9 10 11 12 0 0
9 11 12 0 0 0 0



MATLAB AND SPARSE MATRICES
Material from:

https://it.mathworks.com/help/matlab/math/constructing-sparse-matrices.html
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https://it.mathworks.com/help/matlab/math/constructing-sparse-matrices.html


Matlab and Sparse Matrices

• MATLAB never creates sparse matrices automatically

• A representation of the pattern is given by the command spy

• You must determine if a matrix contains a large enough 
percentage of zeros to benefit from sparse techniques

• The density of a matrix is the number of nonzero elements 
divided by the total number of matrix elements

• For matrix M, this would be

nnz(M)/prod(size(M))  or    nnz(M) / numel(M)

• Matrices with very low density are often good candidates for 
use of the sparse format
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Matlab and Sparse Matrices

Converting Full to Sparse

• You can convert a full matrix to sparse storage using the sparse
function with a single argument

S = sparse(A)

• For example, given the matrix A:

A = [ 0 0 0 5

0 2 0 0

1 3 0 0

0 0 4 0];

• Output: nonzero elements of S, with their row and column indices 

• The elements are sorted by columns
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(3,1)   1

(2,2)   2

(3,2)   3

(4,3)   4

(1,4)   5

S = sparse(A)

produces:



Matlab and Sparse Matrices

Converting Full to Sparse

• You can convert a sparse matrix to full storage using the full
function, provided the matrix order is not too large

• For example A = full(S)reverses the example conversion

• Converting a full matrix to sparse storage is not the most 
frequent way of generating sparse matrices

• If the order of a matrix is small enough that full storage is 
possible, then conversion to sparse storage rarely offers 
significant savings

Intensive Computation - 2020/2021 59



Matlab and Sparse Matrices

Creating Sparse Matrices Directly

• You can create a sparse matrix from a list of nonzero elements 
using the sparse function with five arguments

S = sparse(i,j,s,m,n)

where

• i and j are vectors of row and column indices, respectively, for 
the nonzero elements of the matrix

• s is a vector of nonzero values whose indices are specified by the 
corresponding (i,j) pairs

• m is the row dimension for the resulting matrix

• n is the column dimension

• The matrix S of the previous example can be generated with:
S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)
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Matlab and Sparse Matrices

Creating Sparse Matrices Directly

• The matrix representation of the second difference operator is 
a tridiagonal matrix with -2s on the diagonal and 1s on the 
super- and sub-diagonal

• One way to generate it is:

D = sparse(1:n,1:n,-2*ones(1,n),n,n);

E = sparse(2:n,1:n-1,ones(1,n-1),n,n);

S = E+D+E'

Intensive Computation - 2020/2021 61



Matlab and Sparse Matrices

Creating Sparse Matrices Directly
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For n = 5, MATLAB responds with
S =

(1,1)       -2

(2,1)        1

(1,2)        1

(2,2)       -2

(3,2)        1

(2,3)        1

(3,3)       -2

(4,3)        1

(3,4)        1

(4,4)       -2

(5,4)        1

(4,5)        1

(5,5)       -2

The full command
F = full(S) 

displays the corresponding 
full matrix

F = full(S)

F =

-2  1  0  0  0

1 -2  1  0  0

0  1 -2  1  0

0  0  1 -2  1

0  0  0  1 -2


