
SPARSE MATRICES

Annalisa Massini
2020-2021

COMPACT STORAGE FORMAT
Most of the material is from:
L. Formaggia, F. Saleri, A. Veneziani Solving Numerical PDEs: Problems, Applications, Exercises -
Appendix The treatment of sparse matrices

BSR format from:
https://software.intel.com/en-us/mkl-developer-reference-c-sparse-blas-bsr-matrix-storage-
format

Intensive Computation - 2020/2021 2

https://software.intel.com/en-us/mkl-developer-reference-c-sparse-blas-bsr-matrix-storage-format

Storage Methods for Sparse Matrix

• A matrix is sparse if it contains a large number of zeros

• sparsity of the matrix =

number of zero-valued elements / total number of elements

• density = 1 - sparsity

• A matrix is sparse if its sparsity is > 0.5

• But sparsity is interesting if in a matrix of size nxn

→ the number of non-zero entries is O(n)

• This means that the average number of non-zero entries in
each row is bounded independently from n

• A non-sparse matrix is said full or dense if the number of non-
zero elements is O(n2)

Intensive Computation - 2020/2021 3

Storage Methods for Sparse Matrix

• If the location of the zero elements is known a-priori, we can
avoid reserving storage for them

• The distribution of non-zero elements of a sparse matrix may
be described by:

• the sparsity pattern, defined as the set {(i, j) : Aij = 0}

• the matrix graph, where nodes i and j are connected by an edge if
and only if Aij = 0

• In order to take advantage of the large number of

zero elements, special schemes are required to

store sparse matrices

Intensive Computation - 2020/2021 4

Storage Methods for Sparse Matrix

• The use of adequate storage techniques for sparse matrices is
fundamental, especially with large-scale problems

• Large sparse matrices often appear in scientific or engineering
applications when solving partial differential equations

• Example
• Suppose we want to solve the Navier-Stokes equations on a two-dimensional

grid formed by 10.000 vertexes with finite elements

• The number of degrees of freedom is around 105 for the pressure and 4×105

for each component of the velocity

• The associated matrix will then be 90000×90000

• If we store all 8.1×109 coefficients, using double precision

(8 bytes), around 60 Gigabytes are necessary!

• This is too much (even for a very large computer)

Intensive Computation - 2020/2021 5

Storage Methods for Sparse Matrix

• In case of a three-dimensional problem the situation becomes
even worse, since the number of degrees of freedom grows very
rapidly as the grid gets finer

• Nowadays it is common to deal with millions of degrees of freedom

• Therefore to store sparse matrices efficiently we need data
formats that are more compact than the classical array

Intensive Computation - 2020/2021 6

Storage Methods for Sparse Matrix

• The adoption of sparse formats may affect the speed of certain
operations

• For example, with a sparse format we cannot access or search
for a particular element (or group of elements) directly, using
the two indexes i and j to determine where entry Aij is located
in the memory

• On the other hand, even if the operation of accessing an entry
of a matrix in sparse format turns out to be less efficient, by
adopting a sparse format we will nevertheless access only
nonzero elements, thus executing only useful operations

Intensive Computation - 2020/2021 7

Storage Methods for Sparse Matrix

• Hence, in general, the sparse format is preferable in terms of
storage as well as in terms of computing time, as long as the
matrix is sufficiently sparse

• The main goal of sparse formats is:

• to represent only the nonzero elements

• to be able to efficiently perform the common matrix
operations

Intensive Computation - 2020/2021 8

Storage Methods for Sparse Matrix

• We can distinguish different kinds of operations on a matrix

• The most important operations are:

1. accessing a generic element (random access)

2. accessing the elements of a whole row: important when
multiplying a matrix by a vector

3. accessing the elements of a whole column, or equivalently, of a
row in the transpose matrix (relevant for operations such as
symmetrizing the matrix after imposing Dirichlet conditions)

4. adding a new element to the matrix pattern: this is a critical issue
if the pattern is not known beforehand or it can change
throughout the computations

5. and the common operation of multiplying a matrix and a vector

Intensive Computation - 2020/2021 9

Storage Methods for Sparse Matrix

• It is important to characterize formats for sparse matrices by
the computational cost of these operations and by how the
latter depends on the matrix size

• Different formats for sparse matrices exist due to the fact that
there is no format that is simultaneously optimal for all the
above operations, and at the same time efficient in terms of
storage capacity

Intensive Computation - 2020/2021 10

Storage Methods for Sparse Matrix

• In the following:

• n is the matrix’ size

• nz is the number of non-zero entries

• We adopt the convention of indexing entries of matrices and
vectors (arrays) starting from 1 (as in Matlab)

• Aij will denote the entry of the matrix A on row i and column j

• To estimate how much memory the matrix occupies we assume
that:

• an integer occupies 4 bytes

• a real number (floating point repres.) 8 bytes (double precision)

• For example, storing a square matrix having n = 12 would require
12 × 12 × 8 = 1152 bytes

Intensive Computation - 2020/2021 11

The Coordinate format: COO format

• The simplest storage scheme for sparse matrices is the format
by coordinate

• The data structure consists of three arrays:

• A - a real array containing all the real (or complex) values of the
nonzero elements in any order

• I - an integer array containing their row indices

• J - a second integer array containing their column indices

• I, J and A all have nz elements, as many as the number of non-zero
elements of the matrix

Intensive Computation - 2020/2021 12

The Coordinate format: COO format

Example

The matrix A
1. 0. 0. 2. 0.

3. 4. 0. 5. 0.

6. 0. 7. 8. 9.

0. 0. 10. 11. 0.

0. 0. 0. 0. 12.

is represented (for example) by
A 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.

I 5 3 3 2 1 1 4 2 3 2 3 4

J 5 5 3 4 1 4 4 1 1 2 4 3

• Notice that elements are listed in an arbitrary order

Intensive Computation - 2020/2021 13

The Coordinate format: COO format

Example - n=12 and nz=58

Intensive Computation - 2020/2021 14

101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

The space occupied is:

- 8 × n × n =
= 8 x 12 x 12 = 1152 bytes

in full format

The Coordinate format: COO format

Example - n=12 and nz=58

Intensive Computation - 2020/2021 15

101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 . . .

. . . 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 . . .

1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 . . .

. . . 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 . . .

1 2 4 1 2 3 4 5 2 3 5 6 1 2 4 5 7 2 3 4 . . .

. . . 10 11 6 8 9 11 12 7 8 10 11 8 9 10 11 12 9 11 12

The space occupied is:

- 8 × n × n = 1152 bytes
in full format

- (4+4+8)×nz = 16 x 58 =
= 928 bytes

in COO format

. . . 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

. . . 8 8 9 9 9 9 9 10 10 10 10 11 11 11 11 11 12 12 12

. . . 5 6 7 8 3 5 6 8 9 4 5 7 8 10 5 6 7 8 9 . . .

A

I

J

The Coordinate format: COO format

• COO format does not guarantee rapid access to an element,
nor to rows or columns

• Finding the generic element of the matrix from the row and
column indexes normally requires a number of operations
proportional to nz

• In fact, it is necessary to go through all elements of I and J until
one hits those indexes, using expensive comparison operations

• Using specific techniques to store the indexes in special search
data structure, it is possible to reduce the cost to O(log2(nz)),
but at a higher storing price

Intensive Computation - 2020/2021 16

The Coordinate format: COO format

• The operation of multiplying a matrix A and a vector x can be
done directly, by running through the elements of the three arrays

• A possible code for the product y = Ax using MATLAB

y=zeros(nz,1);

for k=1:nz

i=I(k);

j=J(k);

y(i)= y(i) + A(k)*x(j); % notice the use of i and j

end

Intensive Computation - 2020/2021 17

The Coordinate format: COO format

Observations

• The additional cost of this operation (compared to the
analogue for a full matrix) depends essentially on indirect
addressing:

• accessing y(i) requires first of all to access I(k)

• The access and update of arrays x and y does not proceed by
consecutive elements→ the possibility of optimizing the use
of the processor’s cache is greatly reduced

Intensive Computation - 2020/2021 18

The Coordinate format: COO format

Observations

• Operations are performed only on non-zero elements and in
general we have nz << n2

• An advantage of this format is that:

• It is easy to add a new element to the matrix

• In fact, it is enough to add a new entry to the arrays I, J and A

• For this reason, COO is often used when the pattern is not
known a priori

Intensive Computation - 2020/2021 19

The skyline format

• The format called skyline is among the first used to store
matrices arising from the method of finite elements

• The idea is to store the area formed by the elements between
the first and last non-zero coefficient, on each row

• This forces to store some null entries

Intensive Computation - 2020/2021 20

101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

The skyline format

• This extra cost will be small if the matrix has non-zero entries
clustered around the diagonal

• Indeed, algorithms have been developed to cluster non zero
elements by permuting the rows and columns of the matrix
(see, for example, the Cuthill-McKee algorithm)

Intensive Computation - 2020/2021 21

101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

Skyline for symmetric matrices

• If a matrix is symmetric we can store only:

• Its lower triangular part (diagonal included)

• Or we can store the diagonal on an auxiliary array and treat the
off-diagonal entries separately, having the advantage of allowing
the direct access to the diagonal elements

Intensive Computation - 2020/2021 22

Skyline for symmetric matrices

The skyline format with diagonal array is given by:

• D - real array storing diagonal entries

• AL - real array storing all skyline elements row-wise (except the diagonal)
This can clearly include null coefficients

• I - integer array storing pointers to rows of matrix A

• The kth component of array I points to the first element of row (k + 1) in AL

Intensive Computation - 2020/2021 23

Skyline for symmetric matrices

• All elements of AL from position I(k) to I(k+1)-1 are the
off-diagonal elements belonging to row k + 1, in column order

• Notice that:

• The first row is not stored, since it only has the diagonal element

• I(k) points to the first non-zero element on the (k+1)-th row

• The difference I(k+1)- I(k)gives the number of the off-
diagonal elements on row k + 1 belonging to the skyline

Intensive Computation - 2020/2021 24

Skyline for symmetric matrices

Example

• We want to store the symmetric matrix obtained from the
lower triangular part of matrix A (seen before) using the skyline
format

• This matrix can be obtained with the Matlab instruction
tril(A)+ tril(A,-1)’

Intensive Computation - 2020/2021 25

101 104 0 113 0 0 0 0 0 0 0 0
104 105 109 114 118 0 0 0 0 0 0 0

0 109 110 0 119 125 0 0 0 0 0 0
113 114 0 115 120 0 130 0 0 0 0 0

0 118 119 120 121 126 131 135 0 0 0 0
0 0 125 0 126 127 0 136 142 0 0 0
0 0 0 130 131 0 132 137 0 147 0 0
0 0 0 0 135 136 137 138 143 148 151 0
0 0 0 0 0 142 0 143 144 0 152 156
0 0 0 0 0 0 147 148 0 149 153 0
0 0 0 0 0 0 0 151 152 153 154 157
0 0 0 0 0 0 0 0 156 0 157 158

Skyline for symmetric matrices

Example

• Diagonal D

• Pointer I and lower skyline elements AL

Intensive Computation - 2020/2021 26

101 105 110 115 120 121 127 132 138 144 149 154 158

1 2 3 6 9 12 15 18 21 24 27 30

104 109 113 114 0 118 119 120 125 0 126 130 131 0 135 136 137 142 0 143 147 148 0 151 152 153 156 0 157

101 104 0 113 0 0 0 0 0 0 0 0
104 105 109 114 118 0 0 0 0 0 0 0

0 109 110 0 119 125 0 0 0 0 0 0
113 114 0 115 120 0 130 0 0 0 0 0

0 118 119 120 121 126 131 135 0 0 0 0
0 0 125 0 126 127 0 136 142 0 0 0
0 0 0 130 131 0 132 137 0 147 0 0
0 0 0 0 135 136 137 138 143 148 151 0
0 0 0 0 0 142 0 143 144 0 152 156
0 0 0 0 0 0 147 148 0 149 153 0
0 0 0 0 0 0 0 151 152 153 154 157
0 0 0 0 0 0 0 0 156 0 157 158

Skyline for symmetric matrices

Example

• Diagonal D

• Pointers I and lower skyline elements AL

• Note that in the nth place of the array I we have left a pointer
at the beginning of an hypothetical position. In this way:

• We can compute the number of skyline elements in the last row,
that is I(n) − I(n-1)

• I(n)− 1 is the total number of elements in the skyline

Intensive Computation - 2020/2021 27

1 2 3 6 9 12 15 18 21 24 27 30

104 109 113 114 0 118 119 120 125 0 126 130 131 0 135 136 137 142 0 143 147 148 0 151 152 153 156 0 157

101 105 110 115 120 121 127 132 138 144 149 154 158

Skyline for symmetric matrices

The product y = Ax following MATLAB syntax is given by:

y=D.*x;

for k=2:n

nex = I(k)-I(k-1);

ik = I(k-1):I(k)-1;

jcol= k-nex:k-1;

y(k) = y(k)+dot(AL(ik),x(jcol));

y(jcol)= y(jcol)+AL(ik)*x(k);

end

• We operate symmetrically on rows and columns to exploit the
fact that only the lower triangular part was stored in AL

Intensive Computation - 2020/2021 28

Skyline for symmetric matrices

• The memory needed to store the matrix in this format depends
on how effectively the skyline reproduces the actual pattern

• In our case:

• The full format requires: 12 x 12 x 8 = 1152

• Array AL contains 29 real numbers (including six 0s)

• Array D of fixed length n=12 containing reals

• Array I of fixed length n=12 containing integers

• Total: (29 + 12) x 8 +n x 4 = 376

• In general, we need (nAL + n) x 8 + n x 4

• Generally, Skyline is more convenient than the COO format if
the coefficients are well clustered around the diagonal

Intensive Computation - 2020/2021 29

Skyline for general matrices

• As for non-symmetric matrices, a reasonable way to proceed is
to split A into:

• The diagonal D

• The strictly lower triangular part E

• The strictly upper triangular part F

• Using the Matlab syntax, these matrices would be defined as:

D=diag(diag(A));

E=tril(A,-1);

F=triu(A,1);

Intensive Computation - 2020/2021 30

Skyline for general matrices

• In general, we need two arrays of indexes: one for pointer to
array E and one for pointers to array FT

• If the pattern of A is symmetric, the skyline of E coincides with
that of FT, and the same array of pointers I is for both triangular
parts

• Diagonal D

• Pointer I, lower skyline elements E and upper skyline elements FT

Intensive Computation - 2020/2021 31

101 105 110 115 121 127 132 138 144 149 154 158

1 2 3 6 9 12 15 18 21 24 27 30

104 109 113 114 0 118 119 120 125 0 126 130 131 0 135 136 137 142 0 143 147 148 0 151 152 153 156 0 157

102 106 0 107 103 116 111 108 122 0 112 0 123 117 133 128 124 139 0 129 140 134 150 145 141 155 156 0 146

Skyline for general matrices

• The product matrix-vector y = Ax now reads

y=D.*x;

for k=2:n

nex = I(k)-I(k-1);

ik = I(k-1):I(k)-1;

jcol = k-nex:k-1;

y(k) = y(k)+dot(E(ik),x(jcol));

y(jcol)= y(jcol)+FT(ik)*x(k);

end

• icol and ik contain all indexes corresponding to the columns
of row k, so the scalar product dot(E(ik),x(jcol)) and
the multiplication vector-constant FT(ik)*x(k)are optimized

Intensive Computation - 2020/2021 32

Skyline for general matrices

• Notice that in this format the access to diagonal entries is direct

• Being able to access diagonal entries directly has certain
advantages:
• For instance there are methods that, to impose essential boundary

condition, only need the access to diagonal elements

• The cost of extracting a row is independent of the matrix’ size

• The fact that the data relative to a row are stored consecutively
in the memory allows the system to optimize the processor’s
cache memory when multiplying a matrix by a vector

• The extraction of column is an expensive operation that
requires many comparisons, and whose cost grows linearly in n

Intensive Computation - 2020/2021 33

The Compressed Sparse Row (CSR) format

• The problem with the skyline format is that the memory used
depends on the numeration of elements and is in general
impossible to avoid the unnecessary storage of zero elements

• The CSR (Compressed Sparse Row) format can be seen as a
compressed version of COO, and also as an improved skyline,
that stores non-zero elements only

Intensive Computation - 2020/2021 34

The Compressed Sparse Row (CSR) format

The CSR format uses three arrays:

• A - real array of length nz storing the non-zero entries of the
matrix, ordered row-wise. It coincides with array A of the COO
format

• J - integer array of length nz, whose entry J(k) indicates the
column of the element A(k). It coincides with array J of the COO
format

• I - integer array of length n containing pointers to the rows.
Then I(k) gives the position where the k-th row in A and J
begins

Intensive Computation - 2020/2021 35

The Compressed Sparse Row (CSR) format

• Array I is usually of length n + 1, so that the number of non-zero
entries on row k is always I(k+1)-1-I(k)

• To make this hold, the last element I(n+1) will contain nz + 1
and in this way we also have that nz=I(n+1)-I(1)

Intensive Computation - 2020/2021 36

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 . . .

. . . 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

1 4 9 13 18 25 30 35 42 47 51 56 59

1 2 4 1 2 3 4 5 2 3 5 6 1 2 4 5 7 2 3 4 . . .

. . . 10 11 6 8 9 11 12 7 8 10 11 8 9 10 11 12 9 11 12

. . . 5 6 7 8 3 5 6 8 9 4 5 7 8 10 5 6 7 8 9 . . .

. . . 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 . . .

The Compressed Sparse Row (CSR) format

• The CSR format uses 8 × nz + 4 × (nz + n + 1) bytes

• CSR format suits square and rectangular matrices alike

• Operations:
• quick extraction of row i→ elements between I(i) and I(i+1)-1

• column extraction requires localizing on each row the values of J
corresponding to the wanted column

• If we adopt no particular ordering, the cost operation is proportional to nz

• If, instead, column indexes of each row in J are ordered in increasing order as in
our example, with a binary-search algorithm the extraction cost for a column
becomes proportional to n log2(m), where m is the mean number of elements
on each row

• the access to a generic element has normally a cost proportional to m, yet
if we order columns it reduces to log2m

Intensive Computation - 2020/2021 37

The Compressed Sparse Row (CSR) format

The matrix-vector product y = Ax is given by

y=zeros(n,1);

% y=A(I(1:n)).*x if the diagonal is stored first

for k=1:n

ik=I(k):I(k+1)-1;

% ik=I(k)+1:I(k+1)-1; if the diagonal is stored first

jcol =J(ik); y(k)=y(k)+dot(A(ik),x(jcol));

end

Intensive Computation - 2020/2021 38

The CSC (Compressed Sparse Column) format

• The CSC (Compressed Sparse Column) format stores matrices
by ordering them column-wise

• It is easy to extract a column as opposed to rows

• The roles of vectors I and J is exchanged compared with the CSR
format

• When performing matrix-vector multiplication with a sparse
matrix in CSC format it is preferable to compute the result as a
linear combination of the columns of the matrix

• Indeed, if ci indicates the i-th column of matrix A, we have that
Ax = Σi xici

Intensive Computation - 2020/2021 39

The CSC (Compressed Sparse Column) format

• Therefore, the matrix-vector product y = Ax on a CSC matrix
may be computed as:

y=zeros(n,1);

for k=1:n

xcoeff=x(k);

jk=I(k):I(k+1)-1;

ik=J(jk);

y(ik)=y(ik) + xcoeff * A(jk)’;

end

Intensive Computation - 2020/2021 40

The MSR (Modified Sparse Row) format

• The MSR (Modified Sparse Row) format is a special version of
CSR for square matrices exploiting the fact that:

• The diagonal elements of many matrices are usually nonzero
(matrices generated by finite elements)

• The diagonal elements are accessed more often than the rest
of the elements

• Diagonal entries can be stored in one single array, since their
indexes are implicitly known from their position in the array

• As for the symmetric skyline, only off-diagonal elements are
stored in a special fashion, i.e. through a format akin to CSR

Intensive Computation - 2020/2021 41

The MSR (Modified Sparse Row) format

The MSR format uses two arrays:

• V - real array of values:

• In the first n entries of V we store the diagonal

• The place n+1 in V is left with no significant value (may sometimes
carry some information concerning the matrix)

• From place n+2 onwards off-diagonal elements are stored, row-wise

• V has length nz + 1

• B - Bind

• B has the same length as V → nz + 1

• The first n + 1 point to where rows begin

• From n+2 to nz+1 there are the column indexes of the elements
stored in the corresponding places in V

Intensive Computation - 2020/2021 42

The MSR (Modified Sparse Row) format

Example

• Array B

• Array V

Intensive Computation - 2020/2021 43

. . . 111 112 113 114 116 117 118 119 120 122 123 124 125 126 128 129 130 131 133 . . .

101 105 110 115 121 127 132 138 144 149 154 158 * 102 103 104 106 107 108 109 . . .

. . . 134 135 136 137 139 140 141 142 143 145 146 147 148 150 151 152 153 155 156 157

. . . 6 1 2 5 7 9 2 3 4 6 7 8 3 5 8 9 4 5 8 . . .

14 16 20 23 27 33 37 41 51 54 58 60 2 4 1 3 4 5 2 5 . . .

. . . 10 5 6 7 9 10 11 6 8 11 12 7 8 11 8 9 10 12 9 11

101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

The MSR (Modified Sparse Row) format

• The MSR format turns out to be very efficient in memory terms

• It is one of the most compact formats for sparse matrices

• It is used in several linear algebra libraries for large problems

• The drawback is that it only applies to square matrices

• The matrix-vector product is coded as:
y=V(1:n).*x;

for k=1:n

ik=B(k):B(k+1)-1;

jcol =B(ik);

y(k)=y(k)+dot(A(ik),x(jcol));

end

Intensive Computation - 2020/2021 44

BSR (Block Sparse Row) format

• The BSR format is a CSR with dense submatrices of fixed shape
instead of scalar items

• The block size must evenly divide the shape of the matrix

• In this example the block size is 3 x 3

Intensive Computation - 2020/2021 45

101 102 0 103 0 0 0 0 0 0 0 0

104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0

113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0

0 0 125 0 126 127 0 128 129 0 0 0

0 0 0 130 131 0 132 133 0 134 0 0

0 0 0 0 135 136 137 138 139 140 141 0

0 0 0 0 0 142 0 143 144 0 145 146

0 0 0 0 0 0 147 148 0 149 150 0

0 0 0 0 0 0 0 151 152 153 154 155

0 0 0 0 0 0 0 0 156 0 157 158

A B

C D E

F G H

I L

BSR (Block Sparse Row) format

• The BSR format store the non-zero blocks of the sparse matrix

• A non-zero block is the block that contains at least one non-
zero element

Intensive Computation - 2020/2021 46

101 102 0 103 0 0 0 0 0 0 0 0

104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0

113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0

0 0 125 0 126 127 0 128 129 0 0 0

0 0 0 130 131 0 132 133 0 134 0 0

0 0 0 0 135 136 137 138 139 140 141 0

0 0 0 0 0 142 0 143 144 0 145 146

0 0 0 0 0 0 147 148 0 149 150 0

0 0 0 0 0 0 0 151 152 153 154 155

0 0 0 0 0 0 0 0 156 0 157 158

A B

C D E

F G H

I L

BSR (Block Sparse Row) format

The BSR format consists of four arrays:

• Values - real array containing the elements of the non-zero
blocks of a sparse matrix
• The elements are stored block-by-block in row-major order

• All elements of non-zero blocks are stored, even if some of them are
equal to zero

• Within each non-zero block elements are stored in column-major order in
the case of one-based indexing, and in row-major order in the case of the
zero-based indexing

Intensive Computation - 2020/2021 47

A B

C D E

F G H

I L

BSR (Block Sparse Row) format

The BSR format consists of four arrays:

• Columns - integer array where element i is the number of the
column in the block matrix that contains the i-th non-zero block

• PointerB - integer array where element j gives the index of the
element in the columns array that is first non-zero block in
row j of the block matrix

• PointerE - integer array where element j gives the index of the
element in the columns array that contains the last non-zero
block in a row j of the block matrix plus 1

Intensive Computation - 2020/2021 48

BSR (Block Sparse Row) format

Example

• Values

• Columns

• PointerB

• PointerE

Intensive Computation - 2020/2021 49

101 104 0 102 105 109 0 106 110 103 107 0 0 108 111 0 0 112 . . .

. . . 113 0 0 114 118 0 0 119 125 115 120 0 116 121 126 0 122 127 . . .

. . . 117 123 0 0 124 128 0 0 129 130 0 0 131 135 0 0 136 142 . . .

. . . 132 137 0 133 138 143 0 139 144 134 140 0 0 141 145 0 0 146 . . .

. . . 147 0 0 148 151 0 0 152 156 149 153 0 150 154 157 0 155 158

1 2 1 2 3 2 3 4 3 4

1 3 6 9

3 6 9 11

A B

C D E

F G H

I L

BSR (Block Sparse Row) format

• The length of the values array is equal to the number of all
elements in the non-zero blocks

• The length of the columns array is equal to the number of non-
zero blocks

• The length of the pointerB and pointerE arrays is equal to the
number of block rows in the block matrix

Intensive Computation - 2020/2021 50

A B

C D E

F G H

I L

Diagonal format

• Diagonally structured matrices are matrices whose nonzero
elements are located along a small number of diagonals

The diag format consist of:

• DIAG - a rectangular real array storing the diagonals

• DIAG has size n x Nd, where Nd is the number of diagonals

• IOFF - an integer array containing the offsets of each diagonal
with respect to the main diagonal

• IOFF ha size Nd

Intensive Computation - 2020/2021 51

Diagonal format

• The order in which the diagonals are stored in of DIAG is
generally unimportant

• Since several more operations are performed with the main
diagonal, storing it in the first column may be slightly
advantageous

• Note that all the diagonals except the main diagonal have
fewer than n elements, so there are positions in DIAG that will
not be used

Intensive Computation - 2020/2021 52

Diagonal format

Example

• Matrix

• DIAG IOFF

Intensive Computation - 2020/2021 53

101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

-3 -2 -1 0 1 2 3

Element DIAG(i, j)
is located in
position ai,i+ioff(j)

of the original
matrix

113 0 104 101 102 0 103
118 114 109 105 106 107 108
125 119 0 110 0 111 112
130 0 120 115 116 0 117
135 131 126 121 122 123 124
142 136 0 127 0 128 129
147 0 137 132 133 0 134
151 148 143 138 139 140 141
156 152 0 144 0 145 146

0 0 153 149 150 0 0
0 0 157 154 155 0 0
0 0 0 158 0 0 0

Ellpack-Itpack format

• The Ellpack-Itpack format is a general scheme, popular on
vector machines

• The Ellpack-Itpack format consists of two rectangular arrays:

• COEF - real array (similar to DIAG) that contains the nonzero
elements of A (completing the row by zeros as necessary)

• JCOEF - integer array that contains the column positions of each
entry in COEF

• COEF and JCOEF have size n x Nd, where n is the number of rows
and Nd is the maximum number of nonzero elements per row,
whith Nd small

Intensive Computation - 2020/2021 54

Ellpack-Itpack format

Example

• Matrix

COEF JCOEF

Intensive Computation - 2020/2021 55

101 102 0 103 0 0 0 0 0 0 0 0
104 105 106 107 108 0 0 0 0 0 0 0

0 109 110 0 111 112 0 0 0 0 0 0
113 114 0 115 116 0 117 0 0 0 0 0

0 118 119 120 121 122 123 124 0 0 0 0
0 0 125 0 126 127 0 128 129 0 0 0
0 0 0 130 131 0 132 133 0 134 0 0
0 0 0 0 135 136 137 138 139 140 141 0
0 0 0 0 0 142 0 143 144 0 145 146
0 0 0 0 0 0 147 148 0 149 150 0
0 0 0 0 0 0 0 151 152 153 154 155
0 0 0 0 0 0 0 0 156 0 157 158

101 102 103 0 0 0 0
104 105 106 107 108 0 0
109 110 111 112 0 0 0
113 114 115 116 117 0
118 119 120 121 122 123 124
125 126 127 128 129 0 0
130 131 132 133 134 0 0
135 136 137 138 139 140 141
142 143 144 145 146 0 0
147 148 149 150 0 0 0
151 152 153 154 155 0 0
156 157 158 0 0 0 0

1 2 4 0 0 0 0
1 2 3 4 5 0 0
2 3 5 6 0 0 0
1 2 4 5 7 0
2 3 4 5 6 7 8
3 5 6 8 9 0 0
4 5 7 8 10 0 0
5 6 7 8 9 10 11
6 8 9 11 12 0 0
7 8 10 11 0 0 0
8 9 10 11 12 0 0
9 11 12 0 0 0 0

MATLAB AND SPARSE MATRICES
Material from:

https://it.mathworks.com/help/matlab/math/constructing-sparse-matrices.html

Intensive Computation - 2020/2021 56

https://it.mathworks.com/help/matlab/math/constructing-sparse-matrices.html

Matlab and Sparse Matrices

• MATLAB never creates sparse matrices automatically

• A representation of the pattern is given by the command spy

• You must determine if a matrix contains a large enough
percentage of zeros to benefit from sparse techniques

• The density of a matrix is the number of nonzero elements
divided by the total number of matrix elements

• For matrix M, this would be

nnz(M)/prod(size(M)) or nnz(M) / numel(M)

• Matrices with very low density are often good candidates for
use of the sparse format

Intensive Computation - 2020/2021 57

Matlab and Sparse Matrices

Converting Full to Sparse

• You can convert a full matrix to sparse storage using the sparse
function with a single argument

S = sparse(A)

• For example, given the matrix A:

A = [0 0 0 5

0 2 0 0

1 3 0 0

0 0 4 0];

• Output: nonzero elements of S, with their row and column indices

• The elements are sorted by columns

Intensive Computation - 2020/2021 58

(3,1) 1

(2,2) 2

(3,2) 3

(4,3) 4

(1,4) 5

S = sparse(A)

produces:

Matlab and Sparse Matrices

Converting Full to Sparse

• You can convert a sparse matrix to full storage using the full
function, provided the matrix order is not too large

• For example A = full(S)reverses the example conversion

• Converting a full matrix to sparse storage is not the most
frequent way of generating sparse matrices

• If the order of a matrix is small enough that full storage is
possible, then conversion to sparse storage rarely offers
significant savings

Intensive Computation - 2020/2021 59

Matlab and Sparse Matrices

Creating Sparse Matrices Directly

• You can create a sparse matrix from a list of nonzero elements
using the sparse function with five arguments

S = sparse(i,j,s,m,n)

where

• i and j are vectors of row and column indices, respectively, for
the nonzero elements of the matrix

• s is a vector of nonzero values whose indices are specified by the
corresponding (i,j) pairs

• m is the row dimension for the resulting matrix

• n is the column dimension

• The matrix S of the previous example can be generated with:
S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)

Intensive Computation - 2020/2021 60

Matlab and Sparse Matrices

Creating Sparse Matrices Directly

• The matrix representation of the second difference operator is
a tridiagonal matrix with -2s on the diagonal and 1s on the
super- and sub-diagonal

• One way to generate it is:

D = sparse(1:n,1:n,-2*ones(1,n),n,n);

E = sparse(2:n,1:n-1,ones(1,n-1),n,n);

S = E+D+E'

Intensive Computation - 2020/2021 61

Matlab and Sparse Matrices

Creating Sparse Matrices Directly

Intensive Computation - 2020/2021 62

For n = 5, MATLAB responds with
S =

(1,1) -2

(2,1) 1

(1,2) 1

(2,2) -2

(3,2) 1

(2,3) 1

(3,3) -2

(4,3) 1

(3,4) 1

(4,4) -2

(5,4) 1

(4,5) 1

(5,5) -2

The full command
F = full(S)

displays the corresponding
full matrix

F = full(S)

F =

-2 1 0 0 0

1 -2 1 0 0

0 1 -2 1 0

0 0 1 -2 1

0 0 0 1 -2

