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Redundant number systems
• Conventional radix-r systems use [0, r-1] digit set

radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• If the digit set (in radix-r system) contains more than r digits, the 
system is redundant
• radix-2 → 0, 1, 2 or -1, 0, 1

• radix-10 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

• radix-10 → -6, -5,- 4, -3, -2, -1, 0, 1, 2, 3, 4, 5 

• Redundancy may result from adopting the digit set wider than 
radix and the number interpretation is conventional

• Redundancy – representation of numbers is not unique
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Signed-digit numbers

• A radix-r redundant signed-digit number system is based on 
digit set S = {- β, -(β - 1), … , -1, 0, 1, … , α}, 

where

• The digit set S contains more than r values multiple 
representations for any number in signed digit format    
redundant

• A symmetric signed digit has α = β

• Carry-free addition is an attractive property of redundant
signed-digit numbers
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Signed digit representation

• In mathematical notation for numbers, signed-digit 
representation is a positional system with signed digits

• The representation may not be unique

• Signed-digit representation can be used to accomplish fast 
addition of integers because it can eliminate chains of 
dependent carries
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MODIFIED SIGNED DIGIT

REPRESENTATION
A. K. Cherri, M. A. Karim, “Modified-signed digit arithmetic using an 

efficient symbolic substitution”, Appl. Opt. (1988)
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Modified signed digit representation
• The set of digit is 

• The representation is not unique:

• The number of possible representation depends on the length of 
the sequence of digits

• To perform the addition, truth table are used
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   1,0,11,0,1 

712481111

7180011

71281011









Modified signed digit representation
• Truth tables 

• Three steps are needed to obtain the sum
• Left table is applied in step 1 and 3

• Right table is applied in step 2

• Output: sum  lower row - complemented sum  upper row
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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Modified signed digit representation
• Example
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RB - REDUNDANT BINARY NUMBER 

REPRESENTATION

G. A. De Biase, A. Massini “Redundant binary number representation 

for an inherently parallel arithmetic on optical computers”, 

Appl. Opt., 32 (1993)
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RB - Redundant Binary Representation

• An integer D obtained by

• This weight sequence characterizes the RB number 
representation and is:

• All position weights are doubled: the left digit is called r 
(redundant) and the right digit n (normal)
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RB - Redundant Binary Representation

• RB representation of a number can be obtained from its binary 
representation by the following recoding rules:  

0 00 1 01

• The RB number obtained in this way is in canonical form

• This coding operation is performable in parallel in constant 
time (one elemental logic step)
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RB - Redundant Binary Representation

• Each RB number has a canonical form and several redundant 
representations

• Examples of unsigned RB numbers (canonical and redundant)
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1010101010010101100101011117
0100111010000110000101001106
1000101000010100100100011015
0001110011001000000100001004

0010100010010001010113

0000110010000001000102

0000100000010011

0000000000



Table for addition

• Truth table
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Table for addition

• Two steps: parallel application of the table 2 on all rn pairs

• Output: sum on the lower row and zero on the upper row
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• Example
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RB - Redundant Binary Representation

• In analogy with the 2's complement binary system, a signed RB 
number is obtained by

n even

• The same procedure of the addition of two unsigned RB 
numbers obtains the algebraic sum of two signed RB numbers 

Intensive Computation - 2017/2018 21

   2/
3

0

2/
1

2

22
ii

n

i

i

ii
n

ni

i aaD











 



RB - Redundant Binary Representation

• The additive inverse of an RB number is obtained by following a 
procedure similar to that used in the 2's complement number 
system, taking into account that the negation of all RB 
representations of the number 0 is (-2)10 whereas in the 2's 
complement binary system it is (- 1) 10

• Procedure
• Step 1 - all digits of the RB number are complemented

• Step 2 - algebraic sum between the RB canonical form of (2) 10 and the RB 
number

• The output is the additive inverse of the considered RB number
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RB - Redundant Binary Representation

• The decoding of RB numbers, with the correct truncation, can 
be performed with the following procedure that derives directly 
from the RB number definition

• Procedure 

• The input is RBn and RBr

• Binary addition RB + RBr.

• Only the first n/2 bits are considered

• The output is the corresponding binary or 2's complement
binary number
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RB - Redundant Binary Representation

• Zero and Its Detection

• In the case of unsigned RB numbers the (0)10 has only the RB 
canonical form and is easily detectable

• In the case of signed RB numbers, (0)10 has many RB 
representations

• Example for six-digit signed RB numbers: 

(000000) (101011) (101100)

(100111) (010111) (011100)

• This difficulty can be overcome by using the number (- 1) 10

instead of (0) 10
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RB - Redundant Binary Representation

• Zero and Its Detection

• In fact, any redundant representation of the number (- 1) 10

obtains the canonical representation of the (- 1) 10 if the 
following rules acting on rn pairs are applied 

0101 1001

• Then, if the result of an algebraic sum between an RB number 
and an RB representation of (-1) 10 is an RB representation of the 
number (-1) 10  again, this RB number is a representation of (0) 10
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RB - Redundant Binary Representation

• Zero and Its Detection

• Then the procedure to detect the number (0) 10 is:

Procedure
• Input an RB number

• Step 1 - algebraic sum between the RB canonical form of (- 1) 10 and the RB 
number

• Step 2 - application of rules to the result

• Output is the RB canonical form of (-1) 10 or of another RB number
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