
Interconnection networks

Intensive Computation

Annalisa Massini
2017/2018

2

References

• Computer Architecture: A Quantitative Approach

5th Edition, Appendix F Interconnection Networks Ch. F.4
Hennessy Patterson

Slides: Timothy Mark Pinkston and José Duato

• Advanced Computer Architecture and Parallel Processing

H. El-Rewini, M. Abd-El-Barr, John Wiley and Sons, 2005

• Parallel computing for real-rime signal processing and control

– Ch. 2 Parallel Architectures

M. O. Tokhi, M. A. Hossain, M. H. Shaheed, Springer, 2003

Intensive Computation - 2017/2018

3

Criteria for classification

• Multiprocessors interconnection networks (INs) can be
classified based on a number of criteria:

• Mode of Operation (Synchronous vs. Asynchronous)

• Control Strategy (Centralized vs. Decentralized)

• Switching Techniques (Packet switching vs. Circuit switching)

• Topology (Static Vs. Dynamic)

Intensive Computation - 2017/2018

4

Mode of operation

• According to the mode of operation, INs are classified as
synchronous versus asynchronous

• In synchronous mode of operation:

• a single global clock is used by all components in the system
such that the whole system is operating in a lock–step manner

• Asynchronous mode of operation:

• Does not require a global clock

• Handshaking signals are used instead in order to coordinate
the operation of asynchronous systems

• While synchronous systems tend to be slower compared to
asynchronous systems, they are race and hazard-free

Intensive Computation - 2017/2018

5

Control strategy

• According to the control strategy, INs can be classified as
centralized versus decentralized

• In centralized control systems:
• a single central control unit is used to oversee and control the operation of

the components of the system

• In decentralized control:
• the control function is distributed among different components in the

system

• The function and reliability of the central control unit can
become the bottleneck in a centralized control system

• For example, while the crossbar is a centralized system, the
multistage interconnection networks are decentralized

Intensive Computation - 2017/2018

6

Switching techniques

• Interconnection networks can be classified according to the
switching mechanism as circuit switching versus packet
switching networks

• In the circuit switching mechanism:
• A complete path has to be established prior to the start of communication

between a source and a destination

• The established path will remain in existence during the whole
communication period

Intensive Computation - 2017/2018

7

Switching techniques

• Interconnection networks can be classified according to the
switching mechanism as circuit switching versus packet
switching networks

• In a packet switching mechanism:
• Communication between a source and destination takes place via

messages that are divided into smaller entities, called packets

• On their way to the destination, packets can be sent from a node to
another in a store-and-forward manner until they reach their destination

Intensive Computation - 2017/2018

8

Topology

• An interconnection network topology is a mapping function
from the set of processors and memories onto the same set of
processors and memories

• In other words, the topology describes how to connect
processors and memories to other processors and memories

• For example:
• A fully connected topology is a mapping in which each processor is

connected to all other processors in the computer

• A ring topology is a mapping that connects processor k to its neighbors,
processors (k - 1) and (k + 1)

Intensive Computation - 2017/2018

9

Topology

• In general, interconnection networks can be classified as static
versus dynamic networks

• In static networks:
• direct fixed links are established among nodes to form a fixed network

• In dynamic networks:
• connections are established as needed

• Switching elements are used to establish connections among
inputs and outputs

• Depending on the switch settings, different interconnections can
be established

Intensive Computation - 2017/2018

Static Networks

Linear Network

• Every node, except the nodes at the two ends, in this
configuration is directly connected to two other nodes

• To connect n nodes in this configuration n− 1 buses are
required and the maximum internodes distance is n− 1

Intensive Computation - 2017/2018 10

line

Static Networks

Ring Interconnection Network

• n buses are required to connect n nodes

• the maximum internodes distance is n / 2

• Several commercial machines have been designed using ring
networks (e.g. Hewlett-Packard’s Exemplar V2600 and Kendal
Square Research’s KSR-2)

Intensive Computation - 2017/2018 11

ring

Static Networks

Tree Interconnection Network

• In the tree structure (n -level tree) any intermediate node acts
as a medium to establish communication between its parents
and children

• Communication can be established between any two nodes in
the structure

• The root node can be the bottleneck

Intensive Computation - 2017/2018 12

tree

Static Networks

Hypercube Interconnection Network

• An n -dimensional hypercube can connect 2n nodes

• The nodes are labelled using binary addresses

• Addresses of the two neighboring nodes differ by one bit

• Many commercial multiprocessors (especially NUMA
multiprocessors) have used hypercube interconnections

Intensive Computation - 2017/2018 13

cube

Static Networks

Mesh and Torus Interconnection Network

• Mesh is used to connect large numbers of nodes

• It is an alternative to hypercube in large multiprocessors

• To formulate a mesh structure with n nodes, 2(n −) buses
are required

• The maximum internodes distance is 2(− 1)

• A torus is obtained by using wraparound

connections between the nodes at

opposite edges

Intensive Computation - 2017/2018 14

n

array or mesh

n

Dynamic Networks

• Connections in a dynamic network are established on the fly as
needed

• Dynamic networks can be classified based on interconnection
scheme as bus-based or switch-based

• Bus-based networks can further be classified as single bus or
multiple buses

• Switch-based can be classified according to the structure of the
interconnection network:
• single-stage

• multistage

• crossbar networks

Intensive Computation - 2017/2018 15

16

2 × 2 Switches

Intensive Computation - 2017/2018

17

Single-stage networks

• Single stage Shuffle-
Exchange IN (left)

• Perfect shuffle mapping
function (right)

• Perfect shuffle operation:
cyclic shift 1 place left, e.g.
101 --> 011

• Exchange operation: invert
least significant bit, e.g.
101 --> 100

Intensive Computation - 2017/2018

18

Multistage Interconnection Networks

• The capability of single stage networks is limited

• If we cascade enough of them together, they form a
Multistage Interconnection Network (MIN)

• Switches can perform their own routing or can be
controlled by a central router

Intensive Computation - 2017/2018

19

Multistage Interconnection Networks

• Nonblocking
• A network is (strictly) nonblocking if it can connect any idle input to any

idle output regardless of what other connections are currently in process

• Rearrangeable nonblocking
• Network able to establish all possible connections between inputs and

outputs by rearranging its existing connections

• Blocking
• A network is blocking if it can perform many, but not all, possible

connections between terminals

• Example: log N stage networks such as Omega, Baseline, Butterfly, …

Intensive Computation - 2017/2018

BaselineOmega Reverse Baseline Butterfly

20

Omega networks

• A MIN using 2 × 2 switches and a perfect shuffle interconnect
pattern between the stages

• There is one unique path from each input to each output

• No redundant paths → no fault tolerance, blocking

Example
• Connect input 101 to output 001
• Self routing:

• Use the bits of the destination
address for dynamically
selecting a path

• Routing:
• 0 means use upper output
• 1 means use lower output

Intensive Computation - 2017/2018

21

Baseline networks

• The baseline network can be generated recursively

• The first stage N × N, the second (N/2) × (N/2) twice, the third…

Intensive Computation - 2017/2018

22

Omega networks

• log2N stages of 2 × 2 switches

• N/2 switches per stage

• S = (N/2) log2(N) total number of switches

• Number of permutations in an Omega network 2S

Intensive Computation - 2017/2018

Network Topology

• Multistage interconnection networks (MINs)

Intensive Computation - 2017/2018 23

4 stage
Omega
network

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Network Topology

• Multistage interconnection networks (MINs)

Intensive Computation - 2017/2018 24

4 stage
Baseline
network

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Network Topology

• Multistage interconnection networks (MINs)

Intensive Computation - 2017/2018 25

4 stage
Reverse
Butterfly
network

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

26

Crossbar Network

• Each junction is a switching component – connecting the row
to the column

• Can only have one connection in each column

Intensive Computation - 2017/2018

27

Crossbar Network

• The major advantage of the crossbar switch is its speed

• In one clock, a connection can be made between source and
destination

• Because of its complexity (number of switching components),
the cost of the crossbar switch can become the dominant
factor for a large multiprocessor system

• Crossbars can be used to implement the a×b switches used in
MIN’s, so that each crossbar is small, and costs are kept down

• Blocking only if the destination is in use

Intensive Computation - 2017/2018

COMPARISON OF NETWORK

TOPOLOGIES

Intensive Computation - 2017/2018 28

Comparison of Interconnection Networks

• Intuitively, one network topology is more desirable than
another if it is:
• More efficient

• More convenient

• More regular (i.e. easy to implement)

• More expandable (i.e. highly modular)

• Unlikely to experience bottlenecks

• Clearly no one interconnection network maximizes all
these criteria

• Some tradeoffs are needed

29Intensive Computation - 2017/2018

Comparison of Interconnection Networks

Standard criteria

• Node degree d - the number of edges incident on a node

• In degree/Out degree

• Network Diameter D of a network is the maximum shortest
path between any two nodes

• Network bisection width Minimum number of links to be cut

for a network to be divided into two halves

• Symmetry The network looks the same from any node

• Scalability The network is scalable if it is expandable with
scalable performance when the machine resources are
increased

30Intensive Computation - 2017/2018

Network Topology

• Crossbar network

• Crosspoint switch complexity increases quadratically with the

number of crossbar input/output ports, N, i.e., grows as O(N2)

• Has the property of being non-blocking

Intensive Computation - 2017/2018 31

7

6

5

4

3

2

1

0

76543210

7

6

5

4

3

2

1

0

76543210

Network Topology

• Multistage interconnection networks (MINs)
• Crossbar split into several stages consisting of smaller crossbars

• Complexity grows as O(N × log N), where N is # of end nodes

• Inter-stage connections represented by a set of permutation functions

Intensive Computation - 2017/2018 32

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

Omega
topology,
perfect-shuffle
exchange

Network Topology

• Multistage interconnection networks (MINs)
• MINs interconnect N input/output ports using k x k switches

• logkN switch stages, each with N/k switches

• N/k(logkN) total number of switches

• Example Compute the switch and link costs of interconnecting 4096
nodes using a crossbar relative to a MIN, assuming that switch cost grows
quadratically with the number of input/output ports (k).

Consider the following values of k:

• MIN with 2 x 2 switches

• MIN with 4 x 4 switches

• MIN with 16 x 16 switches

Intensive Computation - 2017/2018 33

Network Topology

Multistage interconnection networks (MINs)

• Example Compute the switch and link costs N=4096 nodes

Intensive Computation - 2017/2018 34

relative_cost(2 × 2)
switches

= 40962 / (22 × 4096/2 × log
2

4096) = 170

relative_cost(4 × 4)
switches

= 40962 / (42 × 4096/4 × log
4

4096) = 170

relative_cost(16 × 16)
switches

= 40962 / (162 × 4096/16 × log
16

4096) = 85

relative_cost(2 × 2)
links

= 8192 / (4096 × (log
2

4096 + 1)) = 2/13 = 0.1538

relative_cost(4 × 4)
links

= 8192 / (4096 × (log
4

4096 + 1)) = 2/7 = 0.2857

relative_cost(16 × 16)
links

= 8192 / (4096 × (log
16

4096 + 1)) = 2/4 = 0.5

cost(crossbar)
switches

= 40962

cost(crossbar)
links

= 8192

Network Topology

• Cost reduction in MIN switch  performance reduction
• The MIN is blocking

• Paths from different sources to different destinations can require to set a
switch straight and cross at the same time (or to share the same link)

• Consider th erequests 01 and 14

Intensive Computation - 2017/2018 35

7

6

5

4

3

2

1

0

76543210

X

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

Network Topology

• To reduce blocking in MINs  Provide alternative paths
• Use larger switches (can equate to using more switches)

• Clos network: minimally three stages (non-blocking)

• A larger switch in the middle of two other switch stages provides enough
alternative paths to avoid all conflicts

• Use more switches

• Add logkN - 1 stages, mirroring the original topology

• Rearrangeably non-blocking

• Allows for non-conflicting paths

• Doubles network hop count (distance), d

• Centralized control can rearrange established paths

• Benes topology: 2(log2N) - 1 stages (rearrangeable non-blocking)

• Recursively applies the three-stage Clos network concept to the middle-
stage set of switches to reduce all switches to 2 x 2

Intensive Computation - 2017/2018 36

CLOS NETWORK

Intensive Computation - 2017/2018 37

Clos network

• Clos network is a multistage switching network

• Clos networks have three stages - the ingress stage, middle
stage, and the egress stage - made up of crossbars

Intensive Computation - 2017/2018 38

Clos network

Clos networks are defined by three integers n, m, and r

• n is the number of
• input of each (of the r) ingress stage crossbar switches

• output of each (of the r) egress stage crossbar switches

• r is the number of
• crossbar switches in the ingress stage

• crossbar switches in the egress stage

• input and output of switches in the middle

stage crossbar switches

• m is the number of
• middle stage crossbar switches

• output of each (of the r) ingress stage crossbar switches

• input of each (of the r) egress stage crossbar switches

Intensive Computation - 2017/2018 39

Clos network

Thus:

• The ingress stage has r switches n x m

• The middle stage has m switches - r x r

• The egress stage has r switches - m x n

• Each middle stage switch is connected
exactly once to each ingress stage
switch and to each egress stage switch

Intensive Computation - 2017/2018 40

Clos network

• Each call entering an ingress crossbar can be routed through
any of the available middle stage crossbar, to the relevant
egress crossbar switch

• A middle stage crossbar is available

for a new call if both the link

connecting the ingress switch to the

middle stage switch, and the link

connecting the middle stage switch

to the egress switch, are free

Intensive Computation - 2017/2018 41

Clos network

• The advantage of Clos network is
that connection between a large
number of input and output
ports can be made by using only
small-sized switches

Intensive Computation - 2017/2018 42

Strict-sense nonblocking Clos networks

• If m ≥ 2n−1, the Clos network is strict-sense nonblocking
(Clos paper 1953)

• This means that an unused input on an ingress switch can
always be connected to an unused output on an egress
switch, without having to re-arrange existing calls

Intensive Computation - 2017/2018 43

Strict-sense nonblocking Clos networks

• Assume that:
• there is a free terminal on the input of an ingress switch, and

• this has to be connected to a free terminal on a particular egress switch

• In the worst case:
• n−1 other calls are active on the ingress switch in question, and

• n−1 other calls are active on the egress switch in question

• Assume, also in the worst case, that:
• each of these calls passes through a different middle-stage switch

• Hence, in the worst case:
• 2n−2 of the middle stage switches are unable to carry the new call

• Therefore, to ensure strict-sense nonblocking operation,
another middle stage switch is required, making a total of 2n−1

Intensive Computation - 2017/2018 44

Rearrangeably nonblocking Clos networks

• If m ≥ n, the Clos network is rearrangeably nonblocking

• This means that an unused input on an ingress switch can
always be connected to an unused output on an egress switch,
but for this to take place, existing calls may have to be
rearranged by assigning them to different middle stage
switches in the Clos network

• To prove this, it is sufficient to consider m = n, with the Clos
network fully utilised; that is, r×n calls in progress

Intensive Computation - 2017/2018 45

Rearrangeably nonblocking Clos networks

• The proof shows how any permutation of these r×n input
terminals onto r×n output terminals may be broken down into
smaller permutations which may each be implemented by the
individual crossbar switches in a Clos network with m = n

• The proof uses Hall's marriage theorem

• Suppose there are r boys and r girls

• The theorem states that if every subset of k boys (for each
k such that 0 ≤ k ≤ r) between them know k or more girls,
then each boy can be paired off with a girl that he knows

• This is a (obvious) necessary condition for pairing to take
place; and it is also sufficient

Intensive Computation - 2017/2018 46

Rearrangeably nonblocking Clos networks

• In the context of a Clos network, each boy represents an
ingress switch, and each girl represents an egress switch

• A boy is said to know a girl if the corresponding ingress and
egress switches carry the same call

• Each set of k boys must know at least k girls because k ingress
switches are carrying k×n calls and these cannot be carried by
less than k egress switches

Intensive Computation - 2017/2018 47

Rearrangeably nonblocking Clos networks

• Hence each ingress switch can be paired off with an egress
switch that carries the same call, via a one-to-one mapping

• These r calls can be carried by one middle-stage switch

• If this middle-stage switch is now removed from the Clos
network, m is reduced by 1, and we are left with a smaller Clos
network

• The process then repeats itself until m = 1, and every call is
assigned to a middle-stage switch

Intensive Computation - 2017/2018 48

Network Topology

• Myrinet-2000 Clos Network for 128 hosts

Backplane of the
M3-E128 Switch

http://myri.com

M3-SW16-8F fiber
line card (8 ports)

Intensive Computation - 2017/2018 49

BENES NETWORK

Intensive Computation - 2017/2018 50

Benes Network

Intensive Computation - 2017/2018 51

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

16 port Crossbar network

Benes Network

Intensive Computation - 2017/2018 52

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

16 port, 3 stage Clos network

Benes Network

Intensive Computation - 2017/2018 53

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

16 port, 5 stage Clos network

Benes Network

Intensive Computation - 2017/2018 54

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

16 port, 7 stage Clos network = Benes topology

Benes Network

Intensive Computation - 2017/2018 55

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

Alternative paths from 0 to 1 in a 16 port Benes topology

Benes Network

Intensive Computation - 2017/2018 56

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

Alternative paths from 4 to 0 in a 16 port Benes topology

Benes Network

Intensive Computation - 2017/2018 57

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

15

14

13

12

11

10

9

8

Contention free, paths 0 to 1 and 4 to 1 in a 16 port Benes topology

Looping algorithm

Intensive Computation - 2017/2018 58

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

Realizing permutations on a Benes network
 Start from arbitrarily chosen input by arbitrarily setting the corresponding

switch
 Connect the input to the requested output
 Connect back the other output of the switch in the last stage to the

corresponding input
 The algorithm follows this procedure, looping back and forth between inputs

and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

Intensive Computation - 2017/2018 59

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

Looping algorithm

Intensive Computation - 2017/2018 60

7

6

5

4

3
2

1

0

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

Looping algorithm

Intensive Computation - 2017/2018 61

7

6

5

4

3

2

1

0

7

6

5

4

3
2

1

0

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

Looping algorithm

Intensive Computation - 2017/2018 62

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

7

6

5

4

3

2

1

0

7

6

5

4

3
2

1

0

Looping algorithm

Intensive Computation - 2017/2018 63

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

7
6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

Looping algorithm

Intensive Computation - 2017/2018 64

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1
0

Looping algorithm

Intensive Computation - 2017/2018 65

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

7

6

5

4

3

2

1

0

7

6

5
4

3

2

1

0

Looping algorithm

Intensive Computation - 2017/2018 66

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

Looping algorithm

Intensive Computation - 2017/2018 67

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

7

6

5
4

3

2

1

0

7
6

5

4

3

2

1

0

Looping algorithm

Intensive Computation - 2017/2018 68

 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output
 The other output of the switch in the last stage is connected to the

corresponding input
 The algorithm follows this procedure, looping back and forth between

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free

input

0 1 2 3 4 5 6 7

5 6 1 2 4 7 3 0

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

LOG N STAGE MIN

EQUIVALENCE

T. Calamoneri, A. Massini - Efficient Algorithms for Checking the Equivalence of
Multistage Interconnection Networks

Journal of Parallel and Distributed Computing, 64, 135 - 150, 2004

Intensive Computation - 2017/2018 69

Topological and functional equivalence

• There are two different concepts of equivalence:
• Topological equivalence: isomorphism

• Functional equivalence: capability of always performing the same set of
assignments

• Topological equivalence and functional equivalence are
different:
• All rearrangeable MINs are functionally equivalent (because the can

realize all the permutations) though not necessarily topologically
equivalent

• Not rearrangeable MINs can be topologically equivalent but not
functionally equivalent, as in the case of log N stage MINs

Intensive Computation - 2017/2018 70

71

Topological equivalence

• Networks are topologically equivalent if one network can be
easily reproduced from the other networks by simply
rearranging nodes at each stage  isomorphism

Intensive Computation - 2017/2018

BaselineOmega Reverse Baseline Butterfly

Topological equivalence

Bermond, Fourneau and Jean-Marie (1987) give the
characterization of MINs topologically equivalent to the Reverse
Baseline network. It is based on:

• the Banyan property
• A MIN has the Banyan property if and only if for any input and any output

there exists a unique path connecting them, passing through each stage
once

Intensive Computation - 2017/2018 72

BaselineOmega Reverse Baseline Butterfly

Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the
characterization of MINs topologically equivalent to the
Reverse Baseline network

It is based on:

• the P(∗, ∗) property
• Property P(i,j) An N-MIN has property P(i, j) for 1 ≤ i ≤ j ≤ log N if the

subgraph Gi,j induced by the nodes of the stage from i to j has exactly
2log N−1−j+i connected components

• Property P(*,*) An N-MIN has property P(∗, ∗) if and only if it satisfies
P(i, j) for every ordered pair i, j such that 1 ≤ i ≤ j ≤ log N

Intensive Computation - 2017/2018 73

Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the
characterization of MINs topologically equivalent to the Reverse
Baseline network

Theorem All the MINs satisfying the Banyan Property and P(∗, ∗)
are topologically equivalent to the Reverse Baseline

Intensive Computation - 2017/2018 74

BaselineOmega Reverse Baseline Butterfly

Topological equivalence

• Another way to prove the equivalence of log N stage MINs
Calamoneri and Massini (2004)

• It is based on the Layered Cross Product Even and Litman
(1992)
• An l-layered graph, G = (V1, V2, . . . , Vl , E) consists of l layers of nodes, Vi

is the set of nodes in layer i, where 1 ≤ i ≤ l; E is a set of edges connecting
nodes of two adjacent layers

• The Layered Cross Product, G = G’⊗G’’, of two l-layered graphs G’ = (V’1,
V’2, . . . , V’l, E’) and G’’ = (V’’1, V’’2, . . . , V’’l, E’’) is an l-layered graph G =
(V1, V2, . . . , Vl , E) where Vi is the cartesian product of V’i and V’’i , 1 ≤ i ≤
l, and an edge <(u’, u’’),(v’, v’’)> belongs to E if and only if <u’ , v’> ∈ E’
and <u’’ , v’’> ∈ E’’. G’ and G’’ are called the first and second factor of G,
respectively

Intensive Computation - 2017/2018 75

Topological equivalence

• The operation of decomposition in factors is the inverse
operation of the LCP

• Theorem Let G′ and G′′ be two s stage MINs, and let G′
decomposable as G′1 ⊗ G′2 . Then G′′ is topologically
equivalent to G′ if and only if G′′ can be decomposed as G′1 ⊗
G′2

• Corollary Given two N-MINs G′ = G′1⊗G′2 and G′′ = G′′1⊗G′′2 ,
they are topologically equivalent if their factors are
topologically equivalent

Intensive Computation - 2017/2018 76

Topological equivalence

• Lemma A MIN G satisfies the Banyan and P(∗, ∗) properties if
and only if it can be decomposed as ∆ ⊗∇, where ∆ and ∇
denote binary trees with the root on the top and in the bottom,
respectively

• Theorem A MIN G is decomposable as ∆ ⊗∇ if and only if G is
topologically equivalent to the Reverse Baseline

Intensive Computation - 2017/2018 77

Topological equivalence

Intensive Computation - 2017/2018 78

(,8)1 (,12)1 (,10)1 (,14)1 (,9)1 (,13)1 (,11)1 (,15)1

(,4)2 (,4)3 (,6)2 (,6)3 (,5)2 (,5)3 (,7)2 (,7)3

(,2)4 (,2)5 (,2)6 (,2)7 (,3)4 (,3)5 (,3)6 (,3)7

(,1)8 (,1)9 (,1)10 (,1)11 (,1)12 (,1)13 (,1)14 (,1)15

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

15

1

2 3

4 5 6 7

8 9 10 11 12 13 14

(1,8) (1,9) (1,10) (1,11) (1,12) (1,13) (1,14) (1,15)

(2,4) (2,5) (2,6) (2,7) (3,4) (3,5) (3,6) (3,7)

(4,2) (4,3) (6,2) (6,3) (5,2) (5,3) (7,2) (7,3)

(8,1) (12,1) (10,1) (14,1) (9,1) (13,1) (11,1) (15,1)

(1,15)(1,8) (1,12) (1,10) (1,14) (1,9) (1,13) (1,11)

(2,4) (2,6) (2,5) (2,7) (3,4) (3,6) (3,5) (3,7)

(4,2) (4,3) (5,2) (5,3) (6,2) (6,3) (7,2) (7,3)

(8,1) (9,1) (10,1) (11,1) (12,1) (13,1) (14,1) (15,1)

(1,8) (1,9) (1,10) (1,11) (1,12) (1,14) (1,15)(1,13)

(2,4) (3,4) (2,5) (3,5) (2,6) (3,6) (2,7) (3,7)

(4,2) (5,2) (6,2) (7,2) (4,3) (5,3) (6,3) (7,3)

(8,1) (9,1) (10,1) (11,1) (12,1) (13,1) (14 ,1) (15,1)



Omega Flip

Butterfly Reverse Baseline

Nabla

Topological equivalence

• MINs consisting of log N stages such as Omega, Flip (Reverse
Omega), Baseline and Reverse Baseline, Butterfly and Reverse
Butterfly are all equivalent networks

• They have attractive features, but they are not rearrangeable

Intensive Computation - 2017/2018 79

BaselineOmega Reverse Baseline Butterfly

Topological equivalence

• For this reason, MINs obtained by concatenating two logN
stage MINs with the center stage overlapped, have been
intensively studied

• Indeed, 2 log N − 1 is the theoretically minimum number of
stages required for obtaining rearrangeable multistage
interconnection networks

Intensive Computation - 2017/2018 80

BaselineOmega Reverse Baseline Butterfly

2 LOGN-1 STAGE MIN

EQUIVALENCE

T. Calamoneri, A. Massini - Efficient Algorithms for Checking the Equivalence of
Multistage Interconnection Networks

Journal of Parallel and Distributed Computing, 64, 135 - 150, 2004

Intensive Computation - 2017/2018 81

2logN-1 stage MIN equivalence

• The popular (2 log N − 1) stage Benes network is rearrangeable
and the Looping algorithm provides a method and a proof for
its rearrangeability

• Unfortunately the Looping algorithm can be used only on
(2 log N − 1) stage symmetric MINs with recursive structure
such as Baseline-Reverse Baseline and Butterfly-Reverse
Butterfly networks

• Looping algorithm does not work on the Omega-Omega−1 or
Double Baseline even if they are equivalent to the Benes
network

Intensive Computation - 2017/2018 82

2logN-1 stage MIN equivalence

• It is typical to concatenate all the combinations of pairs of
networks among Butterfly, Omega, Flip, Baseline, their
reverses, etc. to obtain a new N-MIN

• Both the two log N stage MINs constituting a (2log N- 1) stage
MIN can be decomposed as LCP of ∆ ⊗∇

• As a consequence, we obtain that the factors of (2log N- 1)
stage MIN are the concatenation of a ∆ and a ∇ (roots merging)
and of a ∇ and a ∆ (leaves merging), r

Intensive Computation - 2017/2018 83

2logN-1 stage MIN equivalence

• It is obvious how to merge the last layer of a ∇ with the first
layer of a ∆

• But there are many ways of merging the last layer of a ∆ and
the first layer of a ∇ respectively

Intensive Computation - 2017/2018 84

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

16 17

18 19 20 21

22 23 24 25 26 27 28 29

15

1

2 3

4 5 6 7

8 9 10 11 12 13 14

16 17 18 19

20 21

22

(17,19)

(21,21)

(13,4)

(15,8)
(15,12) (15,10) (15,14) (15,9)

(15,13) (15,11)

(16,16)

(16,18) (16,17) (16,19) (17,16) (17,18)
(17,17)

(18,20)

(18,21) (19,20)

(19,21) (20,20)

(20,21)
(21,20)

(22,22) (23,22) (24,22) (25,22) (26,22) (27,22) (28,22) (29,22)

(9,2)
(9,3) (10,2) (10,3)

(11,2)
(11,3) (12,2)

(12,3)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(13,6) (13,5)
(13,7)

(14,4) (14,6) (14,5)
(14,7)

(15,15)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(9,2)
(9,3)

(10,2) (10,3)(11,2) (11,3)
(12,2)

(12,3)

(13,4) (13,6)
(13,5)

(13,7)(14,4)
(14,6)

(14,5)

(14,7)

(15,8) (15,12) (15,10)
(15,14) (15,9)

(15,13)
(15,11)

(15,15)

(17,19)(16,16)

(16,18)
(16,17)

(16,19)(17,16)
(17,18)

(17,17)

(21,21)(18,20) (18,21)

(19,20) (19,21)(20,20) (20,21)

(21,20)

(22,22)(23,22) (24,22) (25,22) (26,22) (27,22) (28,22) (29,22)

A Flip and a OmegaA reverse Butterfly and a Butterfly

1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

16 17

18 19 20 21

22 23 24 25 26 27 28 29

15

1

2 3

4 5 6 7

8 9 10 11 12 13 14

16 17 18 19

20 21

22

(17,19)

(21,21)

(13,4)

(15,8)

(15,12) (15,10) (15,14) (15,9) (15,13) (15,11)

(16,16) (16,18)(16,17) (16,19)(17,16) (17,18)(17,17)

(18,20) (18,21)(19,20) (19,21)(20,20) (20,21)(21,20)

(22,22) (23,22)(24,22) (25,22)(26,22) (27,22)(28,22) (29,22)

(9,2)
(9,3) (10,2) (10,3)

(11,2)
(11,3) (12,2)

(12,3)

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

(13,6) (13,5)
(13,7)

(14,4) (14,6) (14,5)
(14,7)

(15,15)

(1,1) (2,1)(3,1) (4,1)(5,1) (6,1)(7,1) (8,1)

(9,2) (9,3) (10,2)
(10,3)(11,2)

(11,3) (12,2)

(12,3)

(13,4)

(13,6)(13,5)
(13,7) (14,4)

(14,6)(14,5)

(14,7)

(15,8)
(15,12)

(15,10) (15,14)(15,9) (15,13)
(15,11)

(15,15)

(17,19)(16,16)

(16,18)
(16,17)

(16,19)(17,16)
(17,18)

(17,17)

(21,21)(18,20) (18,21)

(19,20) (19,21)(20,20) (20,21)

(21,20)

(22,22)(23,22) (24,22) (25,22) (26,22) (27,22) (28,22) (29,22)

Two reverse Butterflies Two Omega

2logN-1 stage MIN equivalence

Intensive Computation - 2017/2018 85

2logN-1 stage MIN equivalence

• Theorem The number of distinct equivalence classes of (2 logN
- 1) MINs is (log N − 1)!

• We can represent these classes representing the MINs using
butterfly stages

• In particular we can represent the first half of the MIN as a
butterfly and the second half by a permutation of butterfly
stages (that are: log N -1)

Intensive Computation - 2017/2018 86

Classes for N=16

Intensive Computation - 2017/2018 87

1 2 3 3 2 1

1 2 3 2 3 1

1 2 3 1 3 2

1 2 3 3 1 2

1 2 3 2 1 3

1 2 3 1 2 3

