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Criteria for classification 

• Multiprocessors interconnection networks (INs) can be 
classified based on a number of criteria:

• Mode of Operation (Synchronous vs. Asynchronous)

• Control Strategy (Centralized vs. Decentralized)

• Switching Techniques (Packet switching vs. Circuit switching)

• Topology (Static Vs. Dynamic)
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Mode of operation

• According to the mode of operation, INs are classified as 
synchronous versus asynchronous

• In synchronous mode of operation: 

• a single global clock is used by all components in the system 
such that the whole system is operating in a lock–step manner

• Asynchronous mode of operation: 

• Does not require a global clock

• Handshaking signals are used instead in order to coordinate 
the operation of asynchronous systems

• While synchronous systems tend to be slower compared to 
asynchronous systems, they are race and hazard-free

Intensive Computation - 2017/2018



5

Control strategy

• According to the control strategy, INs can be classified as 
centralized versus decentralized

• In centralized control systems:
• a single central control unit is used to oversee and control the operation of 

the components of the system

• In decentralized control:
• the control function is distributed among different components in the 

system

• The function and reliability of the central control unit can 
become the bottleneck in a centralized control system

• For example, while the crossbar is a centralized system, the 
multistage interconnection networks are decentralized
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Switching techniques

• Interconnection networks can be classified according to the 
switching mechanism as circuit switching versus packet 
switching networks

• In the circuit switching mechanism:
• A complete path has to be established prior to the start of communication 

between a source and a destination

• The established path will remain in existence during the whole 
communication period
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Switching techniques

• Interconnection networks can be classified according to the 
switching mechanism as circuit switching versus packet
switching networks

• In a packet switching mechanism: 
• Communication between a source and destination takes place via 

messages that are divided into smaller entities, called packets

• On their way to the destination, packets can be sent from a node to 
another in a store-and-forward manner until they reach their destination
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Topology

• An interconnection network topology is a mapping function
from the set of processors and memories onto the same set of 
processors and memories

• In other words, the topology describes how to connect 
processors and memories to other processors and memories

• For example:
• A fully connected topology is a mapping in which each processor is 

connected to all other processors in the computer

• A ring topology is a mapping that connects processor k to its neighbors, 
processors (k - 1) and (k + 1)
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Topology

• In general, interconnection networks can be classified as static
versus dynamic networks

• In static networks:
• direct fixed links are established among nodes to form a fixed network

• In dynamic networks:
• connections are established as needed

• Switching elements are used to establish connections among 
inputs and outputs

• Depending on the switch settings, different interconnections can 
be established
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Static Networks

Linear Network

• Every node, except the nodes at the two ends, in this 
configuration is directly connected to two other nodes

• To connect n nodes in this configuration n− 1 buses are 
required and the maximum internodes distance is n− 1
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Static Networks

Ring Interconnection Network

• n buses are required to connect n nodes

• the maximum internodes distance is n / 2 

• Several commercial machines have been designed using ring 
networks (e.g. Hewlett-Packard’s Exemplar V2600 and Kendal 
Square Research’s KSR-2)
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Static Networks

Tree Interconnection Network

• In the tree structure (n -level tree) any intermediate node acts 
as a medium to establish communication between its parents 
and children

• Communication can be established between any two nodes in 
the structure

• The root node can be the bottleneck
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Static Networks

Hypercube Interconnection Network

• An n -dimensional hypercube can connect 2n nodes

• The nodes are labelled using binary addresses 

• Addresses of the two neighboring nodes differ by one bit

• Many commercial multiprocessors (especially NUMA 
multiprocessors) have used hypercube interconnections
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Static Networks

Mesh and Torus Interconnection Network

• Mesh is used to connect large numbers of nodes

• It is an alternative to hypercube in large multiprocessors 

• To formulate a mesh structure with n nodes,  2(n −      ) buses 
are required 

• The maximum internodes distance is 2( − 1)

• A torus is obtained by using wraparound 

connections between the nodes at 

opposite edges 
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Dynamic Networks

• Connections in a dynamic network are established on the fly as 
needed

• Dynamic networks can be classified based on interconnection 
scheme as bus-based or switch-based

• Bus-based networks can further be classified as single bus or 
multiple buses

• Switch-based can be classified according to the structure of the 
interconnection network:
• single-stage 

• multistage 

• crossbar networks
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2 × 2 Switches
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Single-stage networks

• Single stage Shuffle-
Exchange IN (left) 

• Perfect shuffle mapping 
function (right)

• Perfect shuffle operation: 
cyclic shift 1 place left, e.g. 
101 --> 011

• Exchange operation: invert 
least significant bit, e.g. 
101 --> 100
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Multistage Interconnection Networks

• The capability of single stage networks is limited

• If we cascade enough of them together, they form a 
Multistage Interconnection Network (MIN)

• Switches can perform their own routing or can be 
controlled by a central router 
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Multistage Interconnection Networks

• Nonblocking
• A network is (strictly) nonblocking if it can connect any idle input to any 

idle output regardless of what other connections are currently in process

• Rearrangeable nonblocking
• Network able to establish all possible connections between inputs and 

outputs by rearranging its existing connections

• Blocking
• A network is blocking if it can perform many, but not all, possible 

connections between terminals

• Example: log N stage networks such as Omega, Baseline, Butterfly, …

Intensive Computation - 2017/2018
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Omega networks

• A MIN using 2 × 2 switches and a perfect shuffle interconnect 
pattern between the stages 

• There is one unique path from each input to each output

• No redundant paths → no fault tolerance, blocking

Example
• Connect input 101 to output 001 
• Self routing: 

• Use the bits of the destination       
address for dynamically 
selecting a path 

• Routing: 
• 0 means use upper output
• 1 means use lower output
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Baseline networks

• The baseline network can be generated recursively

• The first stage N × N, the second (N/2) × (N/2) twice, the third…
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Omega networks

• log2N stages of 2 × 2 switches

• N/2 switches per stage

• S = (N/2) log2(N) total number of switches

• Number of permutations in an Omega network 2S
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Network Topology

• Multistage interconnection networks (MINs)
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Network Topology

• Multistage interconnection networks (MINs)
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Network Topology

• Multistage interconnection networks (MINs)
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Crossbar Network

• Each junction is a switching component – connecting the row 
to the column

• Can only have one connection in each column
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Crossbar Network

• The major advantage of the crossbar switch is its speed

• In one clock, a connection can be made between source and 
destination

• Because of its complexity (number of switching components), 
the cost of the crossbar switch can become the dominant 
factor for a large multiprocessor system

• Crossbars can be used to implement the a×b switches used in 
MIN’s, so that each crossbar is small, and costs are kept down

• Blocking only if the destination is in use 
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COMPARISON OF NETWORK 

TOPOLOGIES
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Comparison of Interconnection Networks

• Intuitively, one network topology is more desirable than 
another if it is:
• More efficient

• More convenient

• More regular (i.e. easy to implement)

• More expandable (i.e. highly modular)

• Unlikely to experience bottlenecks

• Clearly no one interconnection network maximizes all 
these criteria

• Some tradeoffs are needed
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Comparison of Interconnection Networks

Standard criteria

• Node degree d - the number of edges incident on a node 

• In degree/Out degree

• Network Diameter D of a network is the maximum shortest 
path between any two nodes

• Network bisection width Minimum number of links to be cut 

for a network to be divided into two halves 

• Symmetry The network looks the same from any node

• Scalability The network is scalable if it is expandable with 
scalable performance when the machine resources are 
increased
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Network Topology

• Crossbar network

• Crosspoint switch complexity increases quadratically with the 

number of crossbar input/output ports, N, i.e., grows as O(N2)

• Has the property of being non-blocking
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Network Topology

• Multistage interconnection networks (MINs)
• Crossbar split into several stages consisting of smaller crossbars

• Complexity grows as O(N × log N), where N is # of end nodes

• Inter-stage connections represented by a set of permutation functions
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Network Topology

• Multistage interconnection networks (MINs)
• MINs interconnect N input/output ports using k x k switches 

• logkN switch stages, each with N/k switches 

• N/k(logkN) total number of switches

• Example Compute the switch and link costs of interconnecting 4096 
nodes using a crossbar relative to a MIN, assuming that switch cost grows 
quadratically with the number of input/output ports (k).  

Consider the following values of k:

• MIN with 2 x 2 switches

• MIN with 4 x 4 switches

• MIN with 16 x 16 switches
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Network Topology

Multistage interconnection networks (MINs)

• Example Compute the switch and link costs N=4096 nodes
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relative_cost(2 × 2)
switches

= 40962 / (22 × 4096/2 × log
2

4096) = 170

relative_cost(4 × 4)
switches

= 40962 / (42 × 4096/4 × log
4

4096) = 170

relative_cost(16 × 16)
switches

= 40962 / (162 × 4096/16 × log
16

4096) = 85

relative_cost(2 × 2)
links

= 8192 / (4096 × (log
2

4096 + 1)) = 2/13 = 0.1538

relative_cost(4 × 4)
links

= 8192 / (4096 × (log
4

4096 + 1)) = 2/7 = 0.2857

relative_cost(16 × 16)
links

= 8192 / (4096 × (log
16

4096 + 1)) = 2/4 = 0.5

cost(crossbar)
switches

= 40962

cost(crossbar)
links

= 8192



Network Topology

• Cost reduction in MIN switch  performance reduction
• The MIN is blocking 

• Paths from different sources to different destinations can require to set a 
switch straight and cross at the same time (or to share the same link)

• Consider th erequests 01 and 14
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Network Topology

• To reduce blocking in MINs  Provide alternative paths
• Use larger switches (can equate to using more switches)

• Clos network: minimally three stages (non-blocking)

• A larger switch in the middle of two other switch stages provides enough 
alternative paths to avoid all conflicts

• Use more switches 

• Add logkN - 1 stages, mirroring the original topology

• Rearrangeably non-blocking

• Allows for non-conflicting paths

• Doubles network hop count (distance), d

• Centralized control can rearrange established paths

• Benes topology: 2(log2N) - 1 stages (rearrangeable non-blocking)

• Recursively applies the three-stage Clos network concept to the middle-
stage set of switches to reduce all switches to 2 x 2
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CLOS NETWORK
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Clos network

• Clos network is a multistage switching network

• Clos networks have three stages - the ingress stage, middle 
stage, and the egress stage - made up of crossbars
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Clos network

Clos networks are defined by three integers n, m, and r

• n is the number of
• input of each (of the r) ingress stage crossbar switches

• output of each (of the r) egress stage crossbar switches

• r is the number of
• crossbar switches in the ingress stage 

• crossbar switches in the egress stage

• input and output of  switches in the middle 

stage crossbar switches

• m is the number of
• middle stage crossbar switches 

• output of each (of the r) ingress stage crossbar switches

• input of each (of the r) egress stage crossbar switches
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Clos network

Thus:

• The ingress stage has r switches n x m

• The middle stage has m switches - r x r

• The egress stage has r switches - m x n

• Each middle stage switch is connected 
exactly once to each ingress stage 
switch and to each egress stage switch
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Clos network

• Each call entering an ingress crossbar can be routed through 
any of the available middle stage crossbar, to the relevant 
egress crossbar switch

• A middle stage crossbar is available

for a new call if both the link 

connecting the ingress switch to the 

middle stage switch, and the link 

connecting the middle stage switch 

to the egress switch, are free
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Clos network

• The advantage of Clos network is 
that connection between a large 
number of input and output
ports can be made by using only 
small-sized switches
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Strict-sense nonblocking Clos networks

• If m ≥ 2n−1, the Clos network is strict-sense nonblocking
(Clos  paper 1953)

• This means that an unused input on an ingress switch can 
always be connected to an unused output on an egress 
switch, without having to re-arrange existing calls
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Strict-sense nonblocking Clos networks

• Assume that:
• there is a free terminal on the input of an ingress switch, and 

• this has to be connected to a free terminal on a particular egress switch

• In the worst case:
• n−1 other calls are active on the ingress switch in question, and

• n−1 other calls are active on the egress switch in question

• Assume, also in the worst case, that:
• each of these calls passes through a different middle-stage switch

• Hence, in the worst case:
• 2n−2 of the middle stage switches are unable to carry the new call

• Therefore, to ensure strict-sense nonblocking operation, 
another middle stage switch is required, making a total of 2n−1
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Rearrangeably nonblocking Clos networks

• If m ≥ n, the Clos network is rearrangeably nonblocking

• This means that an unused input on an ingress switch can 
always be connected to an unused output on an egress switch, 
but for this to take place, existing calls may have to be 
rearranged by assigning them to different middle stage 
switches in the Clos network

• To prove this, it is sufficient to consider m = n, with the Clos 
network fully utilised; that is, r×n calls in progress
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Rearrangeably nonblocking Clos networks

• The proof shows how any permutation of these r×n input 
terminals onto r×n output terminals may be broken down into 
smaller permutations which may each be implemented by the 
individual crossbar switches in a Clos network with m = n

• The proof uses Hall's marriage theorem

• Suppose there are r boys and r girls

• The theorem states that if every subset of k boys (for each 
k such that 0 ≤ k ≤ r) between them know k or more girls, 
then each boy can be paired off with a girl that he knows

• This is a (obvious) necessary condition for pairing to take 
place; and it is also sufficient
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Rearrangeably nonblocking Clos networks

• In the context of a Clos network, each boy represents an 
ingress switch, and each girl represents an egress switch

• A boy is said to know a girl if the corresponding ingress and 
egress switches carry the same call 

• Each set of k boys must know at least k girls because k ingress 
switches are carrying k×n calls and these cannot be carried by 
less than k egress switches
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Rearrangeably nonblocking Clos networks

• Hence each ingress switch can be paired off with an egress 
switch that carries the same call, via a one-to-one mapping

• These r calls can be carried by one middle-stage switch

• If this middle-stage switch is now removed from the Clos 
network, m is reduced by 1, and we are left with a smaller Clos 
network

• The process then repeats itself until m = 1, and every call is 
assigned to a middle-stage switch
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Network Topology

• Myrinet-2000 Clos Network for 128 hosts

Backplane of the  
M3-E128 Switch

http://myri.com

M3-SW16-8F fiber 
line card (8 ports)

Intensive Computation - 2017/2018 49



BENES NETWORK
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Benes Network
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Looping algorithm
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Realizing permutations on a Benes network
 Start from arbitrarily chosen input by arbitrarily setting the corresponding 

switch 
 Connect the input to the requested output 
 Connect back the other output of the switch in the last stage to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between inputs 

and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free input



Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input



Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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Looping algorithm
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 
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 Example on a Benes network of size N=8
 The algorithm starts from an arbitrarily chosen
 The input is connected to the requested output 
 The other output of the switch in the last stage is connected to the 

corresponding input 
 The algorithm follows this procedure, looping back and forth between 

inputs and outputs, until the original switch is reached
 If there are inputs not connected, the algorithm starts again from a free 

input
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LOG N STAGE MIN 

EQUIVALENCE

T. Calamoneri, A. Massini - Efficient Algorithms for Checking the Equivalence of 
Multistage Interconnection Networks

Journal of Parallel and Distributed Computing, 64, 135 - 150, 2004
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Topological and functional equivalence

• There are two different concepts of equivalence:
• Topological equivalence: isomorphism

• Functional equivalence: capability of always performing the same set of 
assignments 

• Topological equivalence and functional equivalence are  
different:
• All rearrangeable MINs are functionally equivalent (because the can 

realize all the permutations) though not necessarily topologically 
equivalent

• Not rearrangeable MINs can be topologically equivalent but not 
functionally equivalent, as in the case of log N stage MINs
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71

Topological equivalence

• Networks are topologically equivalent if one network can be 
easily reproduced from the other networks by simply 
rearranging nodes at each stage  isomorphism
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Topological equivalence

Bermond, Fourneau and Jean-Marie (1987) give the  
characterization of MINs topologically equivalent to the Reverse 
Baseline network. It is based on:

• the Banyan property 
• A MIN has the Banyan property if and only if for any input and any output 

there exists a unique path connecting them, passing through each stage 
once
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Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the  
characterization of MINs topologically equivalent to the 
Reverse Baseline network

It is based on:

• the P(∗, ∗) property 
• Property P(i,j) An N-MIN has property P(i, j) for 1 ≤ i ≤ j ≤ log N if the 

subgraph Gi,j induced by the nodes of the stage from i to j has exactly 
2log N−1−j+i connected components

• Property P(*,*) An N-MIN has property P(∗, ∗) if and only if it satisfies 
P(i, j) for every ordered pair i, j such that 1 ≤ i ≤ j ≤ log N
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Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the  
characterization of MINs topologically equivalent to the Reverse 
Baseline network

Theorem All the MINs satisfying the Banyan Property and P(∗, ∗) 
are topologically equivalent to the Reverse Baseline
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Topological equivalence

• Another way to prove the equivalence of log N stage MINs 
Calamoneri and  Massini (2004) 

• It is based on the Layered Cross Product Even and Litman
(1992)
• An l-layered graph, G = (V1, V2, . . . , Vl , E) consists of l layers of nodes, Vi

is the set of nodes in layer i, where 1 ≤ i ≤ l; E is a set of edges connecting 
nodes of two adjacent layers

• The Layered Cross Product, G = G’⊗G’’, of two l-layered graphs G’ = (V’1, 
V’2, . . . , V’l, E’ ) and G’’ = (V’’1, V’’2, . . . , V’’l, E’’) is an l-layered graph G = 
(V1, V2, . . . , Vl , E) where Vi is the cartesian product of V’i and V’’i , 1 ≤ i ≤ 
l, and an edge <(u’, u’’),(v’, v’’)> belongs to E if and only if <u’ , v’> ∈ E’ 
and <u’’ , v’’> ∈ E’’. G’ and G’’ are called the first and second factor of G, 
respectively
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Topological equivalence

• The operation of decomposition in factors is the inverse 
operation of the LCP 

• Theorem Let G′ and G′′ be two s stage MINs, and let G′ 
decomposable as G′1 ⊗ G′2 . Then G′′ is topologically 
equivalent to G′ if and only if G′′ can be decomposed as G′1 ⊗
G′2

• Corollary Given two N-MINs G′ = G′1⊗G′2 and G′′ = G′′1⊗G′′2 , 
they are topologically equivalent if their factors are 
topologically equivalent
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Topological equivalence

• Lemma A MIN G satisfies the Banyan and P(∗, ∗) properties if 
and only if it can be decomposed as ∆ ⊗∇, where ∆ and ∇
denote binary trees with the root on the top and in the bottom, 
respectively

• Theorem A MIN G is decomposable as ∆ ⊗∇ if and only if G is 
topologically equivalent to the Reverse Baseline
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Topological equivalence
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Topological equivalence

• MINs consisting of log N stages such as Omega, Flip (Reverse 
Omega), Baseline and Reverse Baseline, Butterfly and Reverse 
Butterfly are all equivalent networks

• They have attractive features, but they are not rearrangeable
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Topological equivalence

• For this reason, MINs obtained by concatenating two logN
stage MINs with the center stage overlapped, have been 
intensively studied

• Indeed, 2 log N − 1 is the theoretically minimum number of 
stages required for obtaining rearrangeable multistage 
interconnection networks
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2 LOGN-1 STAGE MIN 

EQUIVALENCE

T. Calamoneri, A. Massini - Efficient Algorithms for Checking the Equivalence of 
Multistage Interconnection Networks

Journal of Parallel and Distributed Computing, 64, 135 - 150, 2004 
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2logN-1 stage MIN equivalence

• The popular (2 log N − 1) stage Benes network is rearrangeable
and the Looping algorithm provides a method and a proof for 
its rearrangeability

• Unfortunately the Looping algorithm can be used only on       
(2 log N − 1) stage symmetric MINs with recursive structure
such as Baseline-Reverse Baseline and Butterfly-Reverse 
Butterfly networks 

• Looping algorithm does not work on the Omega-Omega−1 or 
Double Baseline even if they are equivalent to the Benes 
network
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2logN-1 stage MIN equivalence

• It is typical to concatenate all the combinations of pairs of 
networks among Butterfly, Omega, Flip, Baseline, their 
reverses, etc. to obtain a new N-MIN

• Both the two log N stage MINs constituting a (2log N- 1) stage 
MIN can be decomposed as LCP of ∆ ⊗∇

• As a consequence, we obtain that the factors of (2log N- 1) 
stage MIN are the concatenation of a ∆ and a ∇ (roots merging) 
and of a ∇ and a ∆ (leaves merging), r
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2logN-1 stage MIN equivalence

• It is obvious how to merge the last layer of a ∇ with the first 
layer of a ∆

• But there are many ways of merging the last layer of a ∆ and 
the first layer of a ∇ respectively
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2logN-1 stage MIN equivalence
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2logN-1 stage MIN equivalence

• Theorem The number of distinct equivalence classes of  (2 logN
- 1) MINs is (log N − 1)!

• We can represent these classes representing the MINs using 
butterfly stages

• In particular we can represent the first half of the MIN as a 
butterfly and the second half by a permutation of butterfly 
stages (that are: log N -1)

Intensive Computation - 2017/2018 86



Classes for N=16
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