Interconnection networks

Intensive Computation

Annalisa Massini
2017/2018

References

- Computer Architecture: A Quantitative Approach $5^{\text {th }}$ Edition, Appendix F Interconnection Networks Ch. F. 4 Hennessy Patterson
Slides: Timothy Mark Pinkston and José Duato
Advanced Computer Architecture and Parallel Processing H. El-Rewini, M. Abd-El-Barr, John Wiley and Sons, 2005
- Parallel computing for real-rime signal processing and control - Ch. 2 Parallel Architectures
M. O. Tokhi, M. A. Hossain, M. H. Shaheed, Springer, 2003

Criteria for classification

- Multiprocessors interconnection networks (INs) can be classified based on a number of criteria:
- Mode of Operation (Synchronous vs. Asynchronous)
- Control Strategy (Centralized vs. Decentralized)
- Switching Techniques (Packet switching vs. Circuit switching)
- Topology (Static Vs. Dynamic)

Mode of operation

- According to the mode of operation, INs are classified as synchronous versus asynchronous
- In synchronous mode of operation:
- a single global clock is used by all components in the system such that the whole system is operating in a lock-step manner
- Asynchronous mode of operation:
- Does not require a global clock
- Handshaking signals are used instead in order to coordinate the operation of asynchronous systems
- While synchronous systems tend to be slower compared to asynchronous systems, they are race and hazard-free

Control strategy

- According to the control strategy, INs can be classified as centralized versus decentralized
- In centralized control systems:
- a single central control unit is used to oversee and control the operation of the components of the system
- In decentralized control:
- the control function is distributed among different components in the system
- The function and reliability of the central control unit can become the bottleneck in a centralized control system
- For example, while the crossbar is a centralized system, the multistage interconnection networks are decentralized

Switching techniques

- Interconnection networks can be classified according to the switching mechanism as circuit switching versus packet switching networks
- In the circuit switching mechanism:
- A complete path has to be established prior to the start of communication between a source and a destination
- The established path will remain in existence during the whole communication period

Switching techniques

- Interconnection networks can be classified according to the switching mechanism as circuit switching versus packet switching networks
- In a packet switching mechanism:
- Communication between a source and destination takes place via messages that are divided into smaller entities, called packets
- On their way to the destination, packets can be sent from a node to another in a store-and-forward manner until they reach their destination

Topology

- An interconnection network topology is a mapping function from the set of processors and memories onto the same set of processors and memories
- In other words, the topology describes how to connect processors and memories to other processors and memories
- For example:
- A fully connected topology is a mapping in which each processor is connected to all other processors in the computer
- A ring topology is a mapping that connects processor k to its neighbors, processors ($k-1$) and ($k+1$)

Topology

- In general, interconnection networks can be classified as static versus dynamic networks
- In static networks:
- direct fixed links are established among nodes to form a fixed network
- In dynamic networks:
- connections are established as needed
- Switching elements are used to establish connections among inputs and outputs
- Depending on the switch settings, different interconnections can be established

Static Networks

Linear Network

- Every node, except the nodes at the two ends, in this configuration is directly connected to two other nodes
- To connect n nodes in this configuration $n-1$ buses are required and the maximum internodes distance is $n-1$

Static Networks

Ring Interconnection Network

- n buses are required to connect n nodes
- the maximum internodes distance is $n / 2$
- Several commercial machines have been designed using ring networks (e.g. Hewlett-Packard's Exemplar V2600 and Kendal Square Research's KSR-2)

Static Networks

Tree Interconnection Network

- In the tree structure (n-level tree) any intermediate node acts as a medium to establish communication between its parents and children
- Communication can be established between any two nodes in the structure
- The root node can be the bottleneck

Static Networks

Hypercube Interconnection Network

- An n-dimensional hypercube can connect 2^{n} nodes
- The nodes are labelled using binary addresses
- Addresses of the two neighboring nodes differ by one bit
- Many commercial multiprocessors (especially NUMA multiprocessors) have used hypercube interconnections

Static Networks

Mesh and Torus Interconnection Network

- Mesh is used to connect large numbers of nodes
- It is an alternative to hypercube in large multiprocessors
- To formulate a mesh structure with n nodes, $2(n-\sqrt{n})$ buses are required
- The maximum internodes distance is $2(\sqrt{n}-1)$
- A torus is obtained by using wraparound connections between the nodes at opposite edges

Dynamic Networks

- Connections in a dynamic network are established on the fly as needed
- Dynamic networks can be classified based on interconnection scheme as bus-based or switch-based
- Bus-based networks can further be classified as single bus or multiple buses
- Switch-based can be classified according to the structure of the interconnection network:
- single-stage
- multistage
- crossbar networks

2×2 Switches

(a) Straight

(c) Upper broadcast

(b) Crossover

(d) Lower broadcast

Single-stage networks

- Single stage ShuffleExchange IN (left)
- Perfect shuffle mapping function (right)
- Perfect shuffle operation: cyclic shift 1 place left, e.g. 101 --> 011
- Exchange operation: invert least significant bit, e.g.

Multistage Interconnection Networks

- The capability of single stage networks is limited
- If we cascade enough of them together, they form a Multistage Interconnection Network (MIN)
- Switches can perform their own routing or can be controlled by a central router

Multistage Interconnection Networks

- Nonblocking
- A network is (strictly) nonblocking if it can connect any idle input to any idle output regardless of what other connections are currently in process
- Rearrangeable nonblocking
- Network able to establish all possible connections between inputs and outputs by rearranging its existing connections

- Blocking

- A network is blocking if it can perform many, but not all, possible connections between terminals
- Example: $\log \mathrm{N}$ stage networks such as Omega, Baseline, Butterfly, ...

Omega networks

- A MIN using 2×2 switches and a perfect shuffle interconnect pattern between the stages
- There is one unique path from each input to each output
- No redundant paths \rightarrow no fault tolerance, blocking

Example

- Connect input 101 to output 001
- Self routing:
- Use the bits of the destination address for dynamically selecting a path
- Routing:
- 0 means use upper output
- 1 means use lower output

Baseline networks

- The baseline network can be generated recursively
- The first stage $N \times N$, the second $(N / 2) \times(N / 2)$ twice, the third...

Omega networks

- $\log _{2} \mathrm{~N}$ stages of 2×2 switches
- N/2 switches per stage
- $S=(N / 2) \log _{2}(N)$ total number of switches
- Number of permutations in an Omega network $2^{\text {S }}$

Network Topology

- Multistage interconnection networks (MINs)

Network Topology

- Multistage interconnection networks (MINs)

4 stage
Baseline network

Network Topology

- Multistage interconnection networks (MINs)

4 stage Reverse Butterfly network

Crossbar Network

- Each junction is a switching component - connecting the row to the column
- Can only have one connection in each column

Crossbar Network

- The major advantage of the crossbar switch is its speed
- In one clock, a connection can be made between source and destination
- Because of its complexity (number of switching components), the cost of the crossbar switch can become the dominant factor for a large multiprocessor system
- Crossbars can be used to implement the $a \times b$ switches used in MIN's, so that each crossbar is small, and costs are kept down
- Blocking only if the destination is in use

COMPARISON OF NETWORK TOPOLOGIES

Comparison of Interconnection Networks

- Intuitively, one network topology is more desirable than another if it is:
- More efficient
- More convenient
- More regular (i.e. easy to implement)
- More expandable (i.e. highly modular)
- Unlikely to experience bottlenecks
- Clearly no one interconnection network maximizes all these criteria
- Some tradeoffs are needed

Comparison of Interconnection Networks

Standard criteria

- Node degree d - the number of edges incident on a node
- In degree/Out degree
- Network Diameter D of a network is the maximum shortest path between any two nodes
- Network bisection width Minimum number of links to be cut for a network to be divided into two halves
- Symmetry The network looks the same from any node
- Scalability The network is scalable if it is expandable with scalable performance when the machine resources are increased

Network Topology

- Crossbar network
- Crosspoint switch complexity increases quadratically with the number of crossbar input/output ports, N, i.e., grows as $\mathrm{O}\left(N^{2}\right)$
- Has the property of being non-blocking

Network Topology

- Multistage interconnection networks (MINs)
- Crossbar split into several stages consisting of smaller crossbars
- Complexity grows as $O(N \times \log N)$, where N is \# of end nodes
- Inter-stage connections represented by a set of permutation functions

Omega topology, perfect-shuffle exchange

Network Topology

- Multistage interconnection networks (MINs)
- MINs interconnect N input/output ports using $k \times k$ switches
- $\log _{k} N$ switch stages, each with N / k switches
- $N / k\left(\log _{k} N\right)$ total number of switches
- Example Compute the switch and link costs of interconnecting 4096 nodes using a crossbar relative to a MIN, assuming that switch cost grows quadratically with the number of input/output ports (k).
Consider the following values of k :
- MIN with 2×2 switches
- MIN with 4×4 switches
- MIN with 16×16 switches

Network Topology

Multistage interconnection networks (MINs)

- Example Compute the switch and link costs N=4096 nodes cost(crossbar) $)_{\text {switches }}=4096^{2}$ $\operatorname{cost}(\text { crossbar })_{\text {links }}=8192$
relative_cost $(2 \times 2)_{\text {switches }}=4096^{2} /\left(2^{2} \times 4096 / 2 \times \log _{2} 4096\right)=170$ relative_cost $(2 \times 2)_{\text {links }}=8192 /\left(4096 \times\left(\log _{2} 4096+1\right)\right)=2 / 13=0.1538$
relative_cost $(4 \times 4)_{\text {switches }}=4096^{2} /\left(4^{2} \times 4096 / 4 \times \log _{4} 4096\right)=170$ relative_cost $(4 \times 4)_{\text {links }}=8192 /\left(4096 \times\left(\log _{4} 4096+1\right)\right)=2 / 7=0.2857$
relative_cost $(16 \times 16)_{\text {switches }}=4096^{2} /\left(16^{2} \times 4096 / 16 \times \log _{16} 4096\right)=85$ relative_cost $(16 \times 16)_{\text {links }}=8192 /\left(4096 \times\left(\log _{16} 4096+1\right)\right)=2 / 4=0.5$

Network Topology

- Cost reduction in MIN switch \rightarrow performance reduction
- The MIN is blocking
- Paths from different sources to different destinations can require to set a switch straight and cross at the same time (or to share the same link)
- Consider th erequests $0 \rightarrow 1$ and $1 \rightarrow 4$

Network Topology

- To reduce blocking in MINs \rightarrow Provide alternative paths
- Use larger switches (can equate to using more switches)
- Clos network: minimally three stages (non-blocking)
- A larger switch in the middle of two other switch stages provides enough alternative paths to avoid all conflicts
- Use more switches
- Add $\log _{k} N-1$ stages, mirroring the original topology
- Rearrangeably non-blocking
- Allows for non-conflicting paths
- Doubles network hop count (distance), d
- Centralized control can rearrange established paths
- Benes topology: $2\left(\log _{2} N\right)-1$ stages (rearrangeable non-blocking)
- Recursively applies the three-stage Clos network concept to the middlestage set of switches to reduce all switches to 2×2

CLOS NETWORK

Clos network

- Clos network is a multistage switching network
- Clos networks have three stages - the ingress stage, middle stage, and the egress stage - made up of crossbars

Clos network

Clos networks are defined by three integers n, m, and r

- n is the number of
- input of each (of the r) ingress stage crossbar switches
- output of each (of the r) egress stage crossbar switches
- r is the number of
- crossbar switches in the ingress stage
- crossbar switches in the egress stage
- input and output of switches in the middle stage crossbar switches
- m is the number of
- middle stage crossbar switches

- output of each (of the r) ingress stage crossbar switches
- input of each (of the r) egress stage crossbar switches

Clos network

Thus:

- The ingress stage has r switches $n \times m$
- The middle stage has m switches $-r \times r$
- The egress stage has r switches $-m \times n$
- Each middle stage switch is connected exactly once to each ingress stage switch and to each egress stage switch

Clos network

- Each call entering an ingress crossbar can be routed through any of the available middle stage crossbar, to the relevant egress crossbar switch
- A middle stage crossbar is available for a new call if both the link connecting the ingress switch to the middle stage switch, and the link connecting the middle stage switch
 to the egress switch, are free

Clos network

- The advantage of Clos network is that connection between a large number of input and output ports can be made by using only small-sized switches

Strict-sense nonblocking Clos networks

- If $m \geq 2 n-1$, the Clos network is strict-sense nonblocking (Clos paper 1953)
- This means that an unused input on an ingress switch can always be connected to an unused output on an egress switch, without having to re-arrange existing calls

Strict-sense nonblocking Clos networks

- Assume that:
- there is a free terminal on the input of an ingress switch, and
- this has to be connected to a free terminal on a particular egress switch
- In the worst case:
- $n-1$ other calls are active on the ingress switch in question, and
- $n-1$ other calls are active on the egress switch in question
- Assume, also in the worst case, that:
- each of these calls passes through a different middle-stage switch
- Hence, in the worst case:
- 2n-2 of the middle stage switches are unable to carry the new call
- Therefore, to ensure strict-sense nonblocking operation, another middle stage switch is required, making a total of $2 n-1$

Rearrangeably nonblocking Clos networks

- If $m \geq n$, the Clos network is rearrangeably nonblocking
- This means that an unused input on an ingress switch can always be connected to an unused output on an egress switch, but for this to take place, existing calls may have to be rearranged by assigning them to different middle stage switches in the Clos network
- To prove this, it is sufficient to consider $m=n$, with the Clos network fully utilised; that is, $r \times n$ calls in progress

Rearrangeably nonblocking Clos networks

- The proof shows how any permutation of these $r \times n$ input terminals onto $r \times n$ output terminals may be broken down into smaller permutations which may each be implemented by the individual crossbar switches in a Clos network with $m=n$
- The proof uses Hall's marriage theorem
- Suppose there are r boys and r girls
- The theorem states that if every subset of k boys (for each k such that $0 \leq k \leq r$) between them know k or more girls, then each boy can be paired off with a girl that he knows
- This is a (obvious) necessary condition for pairing to take place; and it is also sufficient

Rearrangeably nonblocking Clos networks

- In the context of a Clos network, each boy represents an ingress switch, and each girl represents an egress switch
- A boy is said to know a girl if the corresponding ingress and egress switches carry the same call
- Each set of k boys must know at least k girls because k ingress switches are carrying $k \times n$ calls and these cannot be carried by less than k egress switches

Rearrangeably nonblocking Clos networks

- Hence each ingress switch can be paired off with an egress switch that carries the same call, via a one-to-one mapping
- These r calls can be carried by one middle-stage switch
- If this middle-stage switch is now removed from the Clos network, m is reduced by 1 , and we are left with a smaller Clos network
- The process then repeats itself until $m=1$, and every call is assigned to a middle-stage switch

Network Topology

- Myrinet-2000 Clos Network for 128 hosts
http://myri.com

BENES NETWORK

Benes Network

16 port Crossbar network

Benes Network

16 port, 3 stage Clos network

Benes Network

16 port, 5 stage Clos network

Benes Network

16 port, 7 stage Clos network $=$ Benes topology

Benes Network

Alternative paths from 0 to 1 in a 16 port Benes topology

Benes Network

Alternative paths from 4 to 0 in a 16 port Benes topology

Benes Network

Contention free, paths 0 to 1 and 4 to 1 in a 16 port Benes topology

Looping algorithm

Realizing permutations on a Benes network

- Start from arbitrarily chosen input by arbitrarily setting the corresponding switch
- Connect the input to the requested output
- Connect back the other output of the switch in the last stage to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

Looping algorithm

- Example on a Benes network of size $\mathrm{N}=8$
- The algorithm starts from an arbitrarily chosen
- The input is connected to the requested output
- The other output of the switch in the last stage is connected to the corresponding input
- The algorithm follows this procedure, looping back and forth between inputs and outputs, until the original switch is reached
- If there are inputs not connected, the algorithm starts again from a free input

LOG N STAGE MIN EQUIVALENCE

T. Calamoneri, A. Massini - Efficient Algorithms for Checking the Equivalence of Multistage Interconnection Networks

Journal of Parallel and Distributed Computing, 64, 135-150, 2004

Topological and functional equivalence

- There are two different concepts of equivalence:
- Topological equivalence: isomorphism
- Functional equivalence: capability of always performing the same set of assignments
- Topological equivalence and functional equivalence are different:
- All rearrangeable MINs are functionally equivalent (because the can realize all the permutations) though not necessarily topologically equivalent
- Not rearrangeable MINs can be topologically equivalent but not functionally equivalent, as in the case of log N stage MINs

Topological equivalence

- Networks are topologically equivalent if one network can be easily reproduced from the other networks by simply rearranging nodes at each stage \rightarrow isomorphism

Omega

Baseline

Reverse Baseline

Butterfly

Topological equivalence

Bermond, Fourneau and Jean-Marie (1987) give the characterization of MINs topologically equivalent to the Reverse Baseline network. It is based on:

- the Banyan property
- A MIN has the Banyan property if and only if for any input and any output there exists a unique path connecting them, passing through each stage once

Omega

Baseline

Reverse Baseline

Butterfly

Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the characterization of MINs topologically equivalent to the Reverse Baseline network

It is based on:

- the P(*, *) property
- Property P(i,j) An N-MIN has property $P(i, j)$ for $1 \leq i \leq j \leq \log N$ if the subgraph Gi, j induced by the nodes of the stage from i to j has exactly $2 \log \mathrm{~N}-1-\mathrm{j}+\mathrm{i}$ connected components
- Property $\left.\mathbf{P} \mathbf{(}^{*},{ }^{*}\right)$ An N-MIN has property $\mathrm{P}(*, *)$ if and only if it satisfies $P(i, j)$ for every ordered pair i, j such that $1 \leq i \leq j \leq \log N$

Topological equivalence

Bermond, Fourneau and Jean-Marie (1982) give the characterization of MINs topologically equivalent to the Reverse Baseline network

Theorem All the MINs satisfying the Banyan Property and $\mathrm{P}(*, *)$ are topologically equivalent to the Reverse Baseline

Omega

Baseline

Reverse Baseline

Butterfly

Topological equivalence

- Another way to prove the equivalence of $\log \mathrm{N}$ stage MINs Calamoneri and Massini (2004)
- It is based on the Layered Cross Product Even and Litman (1992)
- An I-layered graph, $\mathrm{G}=\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{1}, \mathrm{E}\right)$ consists of I layers of nodes, V_{i} is the set of nodes in layer i , where $1 \leq \mathrm{i} \leq \mathrm{I}$; E is a set of edges connecting nodes of two adjacent layers
- The Layered Cross Product, $\mathrm{G}=\mathrm{G}^{\prime} \otimes \mathrm{G}^{\prime \prime}$, of two I-layered graphs $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}{ }_{1}\right.$, $\left.\mathrm{V}^{\prime}{ }_{2}, \ldots, \mathrm{~V}^{\prime}, \mathrm{E}^{\prime}\right)$ and $\mathrm{G}^{\prime \prime}=\left(\mathrm{V}^{\prime \prime}{ }_{1}, \mathrm{~V}^{\prime \prime}{ }_{2}, \ldots, \mathrm{~V}^{\prime \prime}{ }_{1}, \mathrm{E}^{\prime \prime}\right)$ is an I-layered graph $\mathrm{G}=$ $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{1}, \mathrm{E}\right)$ where V_{i} is the cartesian product of V^{\prime} and $\mathrm{V}^{\prime \prime}{ }_{i}, 1 \leq \mathrm{i} \leq$ I , and an edge $<\left(u^{\prime}, u^{\prime \prime}\right),\left(v^{\prime}, v^{\prime \prime}\right)>$ belongs to E if and only if $\left\langle u^{\prime}, v^{\prime}\right\rangle \in E^{\prime}$ and $\left\langle u^{\prime \prime}, v^{\prime \prime}>\in E^{\prime \prime} . G^{\prime}\right.$ and $G^{\prime \prime}$ are called the first and second factor of G, respectively

Topological equivalence

- The operation of decomposition in factors is the inverse operation of the LCP
- Theorem Let G^{\prime} and $\mathrm{G}^{\prime \prime}$ be two s stage MINs, and let G^{\prime} decomposable as $\mathrm{G}^{\prime}{ }_{1} \otimes \mathrm{G}_{2}$. Then $\mathrm{G}^{\prime \prime}$ is topologically equivalent to G^{\prime} if and only if $\mathrm{G}^{\prime \prime}$ can be decomposed as $\mathrm{G}^{\prime}{ }_{1} \otimes$ $\mathrm{G}^{\prime}{ }_{2}$
- Corollary Given two $\mathrm{N}-\mathrm{MINs} \mathrm{G}^{\prime}=\mathrm{G}^{\prime} \otimes \mathrm{G}^{\prime}{ }_{2}$ and $\mathrm{G}^{\prime \prime}=\mathrm{G}^{\prime \prime}{ }_{1} \otimes \mathrm{G}^{\prime \prime}{ }_{2}$, they are topologically equivalent if their factors are topologically equivalent

Topological equivalence

- Lemma A MIN G satisfies the Banyan and $P(*, *)$ properties if and only if it can be decomposed as $\Delta \otimes \nabla$, where Δ and ∇ denote binary trees with the root on the top and in the bottom, respectively
- Theorem A MIN G is decomposable as $\Delta \otimes \nabla$ if and only if G is topologically equivalent to the Reverse Baseline

Topological equivalence

Topological equivalence

- MINs consisting of log N stages such as Omega, Flip (Reverse Omega), Baseline and Reverse Baseline, Butterfly and Reverse Butterfly are all equivalent networks
- They have attractive features, but they are not rearrangeable

Omega

Baseline

Reverse Baseline

Butterfly

Topological equivalence

- For this reason, MINs obtained by concatenating two logN stage MINs with the center stage overlapped, have been intensively studied
- Indeed, $2 \log N-1$ is the theoretically minimum number of stages required for obtaining rearrangeable multistage interconnection networks

Omega

Baseline

Reverse Baseline

Butterfly

2 LOGN-1 STAGE MIN EQUIVALENCE

T. Calamoneri, A. Massini - Efficient Algorithms for Checking the Equivalence of Multistage Interconnection Networks

Journal of Parallel and Distributed Computing, 64, 135-150, 2004

$2 \log \mathrm{~N}$-1 stage MIN equivalence

- The popular ($2 \log N-1$) stage Benes network is rearrangeable and the Looping algorithm provides a method and a proof for its rearrangeability
- Unfortunately the Looping algorithm can be used only on (2 $\log N-1$) stage symmetric MINs with recursive structure such as Baseline-Reverse Baseline and Butterfly-Reverse Butterfly networks
- Looping algorithm does not work on the Omega-Omega ${ }^{-1}$ or Double Baseline even if they are equivalent to the Benes network

$2 \operatorname{logN}$-1 stage MIN equivalence

- It is typical to concatenate all the combinations of pairs of networks among Butterfly, Omega, Flip, Baseline, their reverses, etc. to obtain a new N-MIN
- Both the two $\log \mathrm{N}$ stage MINs constituting a ($2 \log \mathrm{~N}-1$) stage MIN can be decomposed as LCP of $\Delta \otimes \nabla$
- As a consequence, we obtain that the factors of (2log N-1) stage MIN are the concatenation of a Δ and a ∇ (roots merging) and of a ∇ and a Δ (leaves merging), r

$2 \operatorname{logN}$-1 stage MIN equivalence

- It is obvious how to merge the last layer of a ∇ with the first layer of a Δ
- But there are many ways of merging the last layer of a Δ and the first layer of a ∇ respectively

$2 \log \mathrm{~N}$ - 1 stage MIN equivalence

A reverse Butterfly and a Butterfly

A Flip and a Omega

Two reverse Butterflies

Two Omega

$2 \operatorname{logN}$-1 stage MIN equivalence

- Theorem The number of distinct equivalence classes of $(2 \log N$ -1) MINs is $(\log N-1)$!
- We can represent these classes representing the MINs using butterfly stages
- In particular we can represent the first half of the MIN as a butterfly and the second half by a permutation of butterfly stages (that are: $\log \mathrm{N}-1$)

Classes for $\mathrm{N}=16$

