
 1

Intensive Computation

16th march 2018

Sparse Matrices – COO, CSR, CSC, MSR, BSR, SKY, DIAG, ELL-IT

Exercise

- Write a function toCompact that produces the compact representation of a given matrix in

the considered format

- Write the function extractRow that takes in input the index h and the compact representation

of the matrix and extracts column h

- Write the function extractCol that takes in input the index k and the compact representation

of the matrix and extracts column k

- Write a script that computes the product C-Comp= A-Comp*B-Comp

- Apply the product to the given set of matrices.

- Calculate and show results on graphs when the size of considered matrices increases (n=10,

20, 30, 40, 50)

o The execution time with commands tic…toc, cputime, etime,

o The memory occupation

- Note that values for execution time and memory occupation need to be computed by averaging

on a set of test

Set of matrices

All matrices are nxn square, randomly generated with integer entries in the interval [1,100] with

sparsity s=nnz/n2 equal to 20% of the total number n2 of elements of the matrix

- Generally sparse – sparse matrix with sparsity s

- Banded sparse – banded with parameter k, where k defines the size b of the band as b=2k+1

(in other words, k is the number of diagonals under, or over, the main diagonal); notice that

all nonzero entries are in included in the band

- Block sparse – blocks are disjoint and positioned wherever; consider blocks of size n/5 that

can include zero entries (the sparsity of matrix is 20%)

- Banded + block sparse – There are blocks along the main diagonal plus blocks “around the

main diagonal (as in the example on the slides); consider blocks of size n/5 that can include

zero entries (the sparsity of matrix is 20%)

 2

Sparse Matrices in Matlab

S=sparse(A) converts a full matrix to sparse form by squeezing out any zero elements. If S is

already sparse, sparse(S) returns S.

S=sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate an m-by-n sparse matrix

with elements vector s with indices in vectors i and j, such that S(i(k),j(k)) =

(k), with space allocated for nzmax nonzeros. Vectors i, j, and s are all the same

length.

A=full(S) converts a sparse matrix S to full storage organization.

Example:
>> x =[5 9 1 7 3]

>> S=sparse ([2 4 1 3 6] ,[1 1 3 3 7],x)

S=

(2,1) 5

(4,1) 9

(1,3) 1

(3,3) 7

(6,7) 3

>> full(S)

ans =

0 0 1 0 0 0 0

5 0 0 0 0 0 0

0 0 7 0 0 0 0

9 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 3

Matlab includes many commands for dealing with a sparse matrix:

nnz(A) returns the number of nonzero matrix elements

nzmax(A) returns the maximum number of nonzero matrix elements allocated

find(A) returns all (i,j) indices of nonzero elements

nonzeros(A) returns all the nonzero elements

spy(S) plots the sparsity pattern of any matrix S

R=spones(S) generates a matrix R with the same sparsity structure as S, but with 1's in the nonzero

positions.

TF = issparse(S) returns logical 1 (true) if the storage class of S is sparse and logical 0

(false) otherwise.

R=sprand(m,n,density) is a random, m-by-n, sparse matrix with approximately

density*m*n uniformly distributed nonzero entries (0≤density≤1)

A=spdiags(b,d,m,n) creates an m-by-n sparse matrix by taking the columns of B and placing

them along the diagonals specified by d.

sprandsym(S) returns a symmetric random matrix whose lower triangle and diagonal have the

same structure as S. Its elements are normally distributed, mean 0 and variance 1.

 3

Example:

>> n=10;

>> e=ones(n,1);

>> b=[e,-e,3*e,-e,2*e];

>> d=[-n/2 -1 0 1 n/2];

>> a=spdiags(b,d,n,n)

a =

(1,1) 3

(2,1) -1

(6,1) 1

(1,2) -1

(2,2) 3

(3,2) -1

………

>> aa=full(a)

aa =

 3 -1 0 0 0 2 0 0 0 0

-1 3 -1 0 0 0 2 0 0 0

 0 -1 3 -1 0 0 0 2 0 0

 0 0 -1 3 -1 0 0 0 2 0

 0 0 0 -1 3 -1 0 0 0 2

 1 0 0 0 -1 3 -1 0 0 0

 0 1 0 0 0 -1 3 -1 0 0

 0 0 1 0 0 0 -1 3 -1 0

 0 0 0 1 0 0 0 -1 3 -1

 0 0 0 0 1 0 0 0 -1 3

Example of tridiagonal matrix:

>> b=ones(4,1);

>> A=spdiags([b 3*b b],-1:1,4,4)

A =

(1,1) 3

(2,1) 1

(1,2) 1

(2,2) 3

(3,2) 1

(2,3) 1

(3,3) 3

(4,3) 1

(3,4) 1

(4,4) 3

>> d=full(A)

d =

3 1 0 0

1 3 1 0

0 1 3 1

0 0 1 3

 4

Example: comparison of memory occupation

>> b=ones(100,1);

>> A=spdiags([b 3*b b],-1:1,100,100)

>> d=full(A);

>> whos

Name Size Bytes Class

A 100x100 3980 double array (sparse)

b 100x1 800 double array

d 100x100 80000 double array

Example: comparison of execution time needed to compute the square of a matrix in the full and in

the sparse representation

>> a=eye(1000);

>> t=cputime;

>> b=a^2;

>> temp=cputime-t

temp =

3.7454

>> a=sparse(1:1000,1:1000,1,1000,1000);

>> t=cputime;

>> c=a^2;

>> temp=cputime-t

temp =

0.4406

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates according to the n-

by-n adjacency matrix A, where n is the number of nodes. Coordinates is an n-by-2

matrix, where n is the number of nodes and each coordinate pair represents one node.

Example

One interesting construction for graph analysis is the Bucky ball. This is composed of 60 points

distributed on the surface of a sphere in such a way that the distance from any point to its nearest

neighbors is the same for all the points. Each point has exactly three neighbors. The Bucky ball

models different physical objects, such as the C60 molecule, a form of pure carbon with 60 atoms in

a nearly spherical configuration and the seams in a soccer ball

[B,v]=bucky; % B= adjacency matrix, v= coordinate matrix

gplot(B,v)

axis square

[B,v]=bucky;

axis('square');hold on

gplot(B(1:30,1:30),v)

for k=1:30

text(v(k,1),v(k,2),num2str(k))

end

