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Intensive  Computation 
 

16th march 2018 

 

Sparse Matrices – COO, CSR, CSC, MSR, BSR, SKY, DIAG, ELL-IT 

 

Exercise  

 

- Write a function toCompact that produces the compact representation of a given matrix in 

the considered format 

- Write the function extractRow that takes in input the index h and the compact representation 

of the matrix and extracts column h  

- Write the function extractCol that takes in input the index k and the compact representation 

of the matrix and extracts column k  

- Write a script that computes the product C-Comp= A-Comp*B-Comp 

 

- Apply the product to the given set of matrices. 

 

- Calculate and show results on graphs when the size of considered matrices increases (n=10, 

20, 30, 40, 50) 

o The execution time with commands tic…toc, cputime, etime,  

o The memory occupation  

- Note that values for execution time and memory occupation need to be computed by averaging 

on a set of test 

 

 

Set of matrices 

 

All matrices are nxn square, randomly generated with integer entries in the interval [1,100] with 

sparsity s=nnz/n2 equal to 20% of the total number n2 of elements of the matrix 

 

- Generally sparse – sparse matrix with sparsity s 

- Banded sparse – banded with parameter k, where k defines the size b of the band as b=2k+1 

(in other words, k is the number of diagonals under, or over, the main diagonal); notice that 

all nonzero entries are in included in the band 

- Block sparse – blocks are disjoint and positioned wherever; consider blocks of size n/5 that 

can include zero entries (the sparsity of matrix is 20%) 

- Banded + block sparse – There are blocks along the main diagonal plus blocks “around the 

main diagonal (as in the example on the slides); consider blocks of size n/5 that can include 

zero entries (the sparsity of matrix is 20%) 
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Sparse Matrices in Matlab  

S=sparse(A) converts a full matrix to sparse form by squeezing out any zero elements. If S is 

already sparse, sparse(S) returns S. 

S=sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate an m-by-n sparse matrix 

with elements vector s with indices in vectors i and j, such that S(i(k),j(k)) = 

(k), with space allocated for nzmax nonzeros. Vectors i, j, and s are all the same 

length.  

A=full(S) converts a sparse matrix S to full storage organization.  

 

Example: 
>> x =[5 9 1 7 3] 

>> S=sparse ([2 4 1 3 6] ,[1 1 3 3 7],x) 

S= 

(2,1) 5 

(4,1) 9 

(1,3) 1 

(3,3) 7 

(6,7) 3 

 

>> full(S) 

ans = 

0 0 1 0 0 0 0 

5 0 0 0 0 0 0 

0 0 7 0 0 0 0 

9 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 3 

Matlab includes many commands for dealing with a sparse matrix:  

nnz(A)  returns the number of nonzero matrix elements 

nzmax(A)  returns the maximum number of nonzero matrix elements allocated 

find(A)  returns all (i,j) indices of nonzero elements 

nonzeros(A) returns all the nonzero elements 

spy(S)  plots the sparsity pattern of any matrix S 
 

R=spones(S) generates a matrix R with the same sparsity structure as S, but with 1's in the nonzero 

positions. 
 

TF = issparse(S) returns logical 1 (true) if the storage class of S is sparse and logical 0 

(false) otherwise. 

 

R=sprand(m,n,density) is a random, m-by-n, sparse matrix with approximately 

density*m*n uniformly distributed nonzero entries (0≤density≤1)  
 

A=spdiags(b,d,m,n) creates an m-by-n sparse matrix by taking the columns of B and placing 

them along the diagonals specified by d.  

 

sprandsym(S) returns a symmetric random matrix whose lower triangle and diagonal have the 

same structure as S. Its elements are normally distributed, mean 0 and variance 1. 
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Example: 
 

>> n=10; 

>> e=ones(n,1); 

>> b=[e,-e,3*e,-e,2*e]; 

>> d=[-n/2 -1 0 1 n/2]; 

>> a=spdiags(b,d,n,n) 

a = 

(1,1) 3 

(2,1) -1 

(6,1) 1 

(1,2) -1 

(2,2) 3 

(3,2) -1 

……… 

 

>> aa=full(a) 

aa = 

 3 -1  0  0  0  2  0  0  0  0 

-1  3 -1  0  0  0  2  0  0  0 

 0 -1  3 -1  0  0  0  2  0  0 

 0  0 -1  3 -1  0  0  0  2  0 

 0  0  0 -1  3 -1  0  0  0  2 

 1  0  0  0 -1  3 -1  0  0  0 

 0  1  0  0  0 -1  3 -1  0  0 

 0  0  1  0  0  0 -1  3 -1  0 

 0  0  0  1  0  0  0 -1  3 -1 

 0  0  0  0  1  0  0  0 -1  3 

 

Example of tridiagonal matrix:  

 
>> b=ones(4,1); 

>> A=spdiags([b 3*b b],-1:1,4,4) 

A = 

(1,1) 3 

(2,1) 1 

(1,2) 1 

(2,2) 3 

(3,2) 1 

(2,3) 1 

(3,3) 3 

(4,3) 1 

(3,4) 1 

(4,4) 3 

 

>> d=full(A) 

d = 

3 1 0 0 

1 3 1 0 

0 1 3 1 

0 0 1 3 
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Example: comparison of memory occupation  

 
>> b=ones(100,1); 

>> A=spdiags([b 3*b b],-1:1,100,100) 

>> d=full(A); 

 

>> whos 

Name  Size   Bytes  Class 

A   100x100   3980  double array (sparse) 

b   100x1   800   double array 

d   100x100   80000  double array 

 

Example: comparison of execution time needed to compute the square of a matrix in the full and in 

the sparse representation 
 

>> a=eye(1000); 

>> t=cputime; 

>> b=a^2; 

>> temp=cputime-t 

temp = 

3.7454 

 

>> a=sparse(1:1000,1:1000,1,1000,1000); 

>> t=cputime; 

>> c=a^2; 

>> temp=cputime-t 

temp = 

0.4406 

 

--------- 

 

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates according to the n-

by-n adjacency matrix A, where n is the number of nodes. Coordinates is an n-by-2 

matrix, where n is the number of nodes and each coordinate pair represents one node.  

 

Example 

One interesting construction for graph analysis is the Bucky ball. This is composed of 60 points 

distributed on the surface of a sphere in such a way that the distance from any point to its nearest 

neighbors is the same for all the points. Each point has exactly three neighbors. The Bucky ball 

models different physical objects, such as the C60 molecule, a form of pure carbon with 60 atoms in 

a nearly spherical configuration and the seams in a soccer ball 

[B,v]=bucky; % B= adjacency matrix, v= coordinate matrix 

gplot(B,v) 

axis square 

------ 
[B,v]=bucky; 

axis('square');hold on 

gplot(B(1:30,1:30),v) 

for k=1:30 

text(v(k,1),v(k,2),num2str(k)) 

end 


