Business Process Management

Paolo Bottoni

Dipartimento di Informatica

Lecture 9: Quantitative Analysis (Queueing and Simulation)

Adapted from the slides for the book : Dumas, La Rosa, Mendling & Reijers: Fundamentals of Business Process Management, Springer 2013

http://courses.cs.ut.ee/2013/bpm/uploads/Main/ITlecture6.ppt

Business Process Analysis

Process Analysis Techniques

Qualitative analysis

- Value-Added Analysis
- Root-Cause Analysis
- Pareto Analysis
- Issue Register

Quantitative Analysis

- Quantitative Flow Analysis
- Queuing Theory
- Process Simulation

Why is flow analysis not enough?

Flow analysis does not consider waiting times due to <u>resource</u> <u>contention</u>

Queuing analysis and simulation address these limitations and have a broader applicability

Why is Queuing Analysis Important?

- Capacity problems are very common in industry and one of the main drivers of process redesign
 - Need to balance the cost of increased capacity against the gains of increased productivity and service
- Queuing and waiting time analysis is particularly important in service systems
 - Large costs of waiting and of lost sales due to waiting

Prototype Example – ER at a Hospital

- Patients arrive by ambulance or by their own accord
- One doctor is always on duty
- More patients seek help \Rightarrow longer waiting times
- Question: Should another MD position be instated?

Delay is Caused by Job Interference

• If arrivals are regular or sufficiently spaced apart, no queuing delay occurs © Dimitri P. Bertsekas

Burstiness Causes Interference

© Dimitri P. Bertsekas

Job Size Variation Causes Interference

• Deterministic arrivals, variable job sizes

© Dimitri P. Bertsekas

Business Process Management

High Utilization Exacerbates Interference

© Dimitri P. Bertsekas

The Poisson Process

- Common arrival assumption in many queuing and simulation models
- The times between arrivals are independent, identically distributed and exponential

 $- P (arrival < t) = 1 - e^{-\lambda t}$

 Key property: The fact that a certain event has not happened tells us nothing about how long it will take before it happens

- e.g., P(X > 40 | X >= 30) = P(X > 10)

© Laguna & Marklund

Negative Exponential Distribution

Lecture9QuantitativeQueue

Queuing theory: basic concepts

Basic characteristics:

- \Box λ (mean arrival rate) = average number of arrivals per time unit
- \square μ (mean service rate) = average number of jobs that can be handled by one server per time unit:
- *c* = number of servers

© Wil van der Aalst

Queuing theory concepts (cont.)

Given λ , μ and c, we can calculate :

- occupation rate: ρ
- Wq = average time spent in queue
- W = average time spent in system (i.e. cycle time)
- Lq = average number of jobs in queue (i.e. length of queue)
- L = average number of jobs in system (i.e. Work-in-Progress)

© Wil van der Aalst

M/M/1 queue

Assumptions:

 time between arrivals and service time follow a negative exponential distribution

• FIFO

$$\rho = \frac{\text{Capacity Demand}}{\text{Available Capacity}} = \frac{\lambda}{\mu}$$

$$\begin{split} L_q &= \rho^2 / (1 - \rho) = L - \rho \\ W_q &= L_q / \lambda = \lambda / (\mu(\mu - \lambda)) \end{split}$$

© Laguna & Marklund

M/M/c queue

 Now there are c servers in parallel, so the expected capacity per time unit is then c^{*}μ

$$\rho = \frac{\text{Capacity Demand}}{\text{Available Capacity}} = \frac{\lambda}{c^* \mu}$$

Little's Formula \Rightarrow W_q=L_q/ λ

W=W_q+(1/
$$\mu$$
)
Little's Formula \Rightarrow L= λ W

© Laguna & Marklund

Business Process Management

Tool Support

For M/M/c systems, the exact computation of L_q is rather complex...

$$L_{q} = \sum_{n=c}^{\infty} (n-c)P_{n} = \dots = \frac{(\lambda/\mu)^{c}\rho}{c!(1-\rho)^{2}}P_{0}$$
$$P_{0} = \left(\sum_{n=0}^{c-1} \frac{(\lambda/\mu)^{n}}{n!} + \frac{(\lambda/\mu)^{c}}{c!} \cdot \frac{1}{1-(\lambda/(c\mu))}\right)^{-1}$$

- Consider using a tool, e.g.
 - <u>http://apps.business.ualberta.ca/aingolfsson/qtp/</u>
 - <u>http://www.stat.auckland.ac.nz/~stats255/qsim/qsim.html</u>

Example – ER at County Hospital

Situation

- Patients arrive according to a Poisson process with intensity λ (\Leftrightarrow the time between arrivals is exp(λ) distributed.
- The service time (the doctor's examination and treatment time of a patient) follows an exponential distribution with mean $1/\mu$ (=exp(μ) distributed)
- ⇒ The ER can be modeled as an M/M/c system where c=the number of doctors
- Data gathering
 - $\Rightarrow \lambda$ = 2 patients per hour
 - $\Rightarrow \mu$ = 3 patients per hour
- ✤ Question
 - Should the capacity be increased from 1 to 2 doctors?

© Laguna & Marklund

Queuing Analysis – Hospital Scenario

- Interpretation
 - To be in the queue = to be in the waiting room
 - To be in the system = to be in the ER (waiting or under treatment)

Characteristic	One doctor (c=1)	Two Doctors (c=2)			
ρ	2/3	1/3			
Lq	4/3 patients	1/12 patients			
L	2 patients	3/4 patients			
Wq	2/3 h = 40 minutes	1/24 h = 2.5 minutes			
W	1 h	3/8 h = 22.5 minutes			

Is it warranted to hire a second doctor ?

© Laguna & Marklund

Process Simulation

- Drawbacks of queuing theory:
 - Generally not applicable when system includes parallel activities
 - Requires case-by-case mathematical analysis
 - Assumes "steady-state" (valid only for "long-term" analysis)
- Process simulation is more versatile (also more popular)
- Process simulation = run a large number of process instances, gather data (cost, duration, resource usage) and calculate statistics from the output

Process Simulation

Steps in evaluating a process with simulation

- 1. Model the process (e.g. BPMN)
- Enhance the process model with simulation info → simulation model
 - Based on assumptions or better based on data (logs)
- 3. Run the simulation
- 4. Analyze the simulation outputs
 - 1. Process duration and cost stats and histograms
 - 2. Waiting times (per activity)
 - 3. Resource utilization (per resource)
- 5. Repeat for alternative scenarios

Elements of a simulation model

- The process model including:
 - Events, activities, control-flow relations (flows, gateways)
 - Resource classes (i.e. lanes)
- Resource assignment
 - Mapping from activities to resource classes
- Processing times
 - Per activity or per activity-resource pair
- Costs
 - Per activity and/or per activity-resource pair
- Arrival rate of process instances
- Conditional branching probabilities (XOR gateways)

Simulation Example – BPMN model

Resource Pools (Roles)

- Two options to define resource pools
 - Define individual resources of type clerk
 - Or assign a number of "anonymous" resources all with the same cost
- E.g.
 - 3 anonymous clerks with cost of € 10 per hour, 8 hours per day
 - 2 individually named clerks
 - Jim: € 12.4 per hour
 - Mike: € 14.8 per hour
 - 1 manager John at € 20 per hour, 8 hours per day

Resource pools and execution times

Task	Role	Execution Time Normal distribution: mean and std deviation		
Receive application	system	0	0	
Check completeness	Clerk	30 mins	10 mins	
Perform checks	Clerk	2 hours	1 hour	
Request info	system	1 min	0	
Receive info (Event)	system	48 hours	24 hours	
Make decision	Manager	1 hour	30 mins	
Notify rejection	system	1 min	0	
Time out (Time)	system	72 hours	0	
Receive review request (Event)	system	48 hours	12 hours	
Notify acceptance	system	1 min	0	
Deliver Credit card	system	1 hour	0	

Alternative: assign execution times to the tasks only (like in cycle time analysis)

Business Process Management Leo

Reminder: Normal Distribution

Lecture9QuantitativeQueue

Arrival rate and branching probabilities

10 applications per hour (one at a time) Poisson arrival process (negative exponential)

Alternative: instead of branching probabilities one can assign "conditional expressions" to the branches based on input data

Simulation output: KPIs

Simulation output: detailed logs

Pr	ocess Instance	# Activities	Start	:	End	Cycle	Time	Cycle Time (s)	Total Ti	me	
		6	5	4/06/2007 13:00	4/06/2007 16	:26	03:26:44	1240)3.586	03:26:44	
	Process Instance	Activity ID			Activity Name	Activi	ty Type	Resource	Start	End	
		11	5	4/06/2007 18:00	5/06/2007 12	:14	18:14:56	6569	95.612	18:14:56	
		6aed54717-f044-4da1-b5	43-82a660	309ecb	Check for completeness	Task		Manager	4/06/2007	13:00	4/06/2007 13:53
		13	5	4/06/2007 20:00	5/06/2007 13	:14	17:14:56	6209	95.612	17:14:56	
		6a270f5c6-7e16-42c1-bfc 16	24-dd10ce8 5	dc835 4/06/2007 23:00	Perform checks 5/06/2007 15	Task :06	16:06:29	Clerk 579	4/06/2007 989.23	^{13:53} 16:06:29	4/06/2007 15:25
		677511d7c-1eda-40ea-ad 22	55 55 55 55 55 55 55 55 55 55 55 55 55	^{3de15b} 5/06/2007 5:00	Make decision 6/06/2007 10	Task :01	29:01:39	Manager 10449	^{4/06/2007}	^{15:25} 29:01:39	4/06/2007 15:26
		60 99 64eb-1865-4888-86	Sefee7de36	^{id} 3/06 /2007 10:00	Notify accepter 2007 12	:33 ^{Interm}	^{nedia} te573.21	^(none) 9560	0.649 4/06/2007	26 :3 3:21	4/06/2007 15:26
		60a72cf69-5425-4f31-8c7	7e-6d09342	9ab04	Deliver card	Task		System	4/06/2007	15:26	4/06/2007 16:26
		7aed54717-f044-4da1-b5	43-82a660	309ecb	Check for completeness	Task		Manager	4/06/2007	14:00	4/06/2007 14:31
		7a270f5c6-7e16-42c1-bfc	:4-dd10ce8	dc835	Perform checks	Task		Clerk	4/06/2007	14:31	5/06/2007 8:30
		Business Proce	ess Ma	inagement	Lecture9C	uantitati	iveQueue	9			28

Tools for Process Simulation

Listed in no specific order:

- ITP Commerce Process Modeler for Visio
 - Models presented earlier are made with ITP Commerce
- Progress Savvion Process Modeler
- IBM Websphere Business Modeler
- Oracle BPA
- ARIS
- ProSim

Simple Online Simulator

- BIMP: <u>http://bimp.cs.ut.ee/</u>
- Accepts standard BPMN 2.0 as input
- Link from Signavio Academic Edition to BIMP
 - Open a model in Signavio and push it to BIMP using the flask icon

