2

External Memory Algorithms

The difference in speed between modern CPU and disk technologiesis
analogousto the differencein speed in sharpening a pencil using a
sharpener on ones desk or by taking an airplane to the other side of
the world and using a sharpener on someone elses desk.

(D. Comer)

2.1 Disk Storage
2.2 The External Memory Model
2.3 Back of the Envelope Calculations for External Memory

2.4 Standard Matrix Multiplication

Let X, Y, andZ be threen x n matrices. We assume that the matrices are stored on diskwimajor
order, and we want to compute Fithe productX x Y. Recall thatZ[i|[j] = >_,_; X[¢][k] - Y[k][j].
The standard code for matrix multiplication can be adapbethé external memory setting as shown in
Figure 2.1.
If we assume that disk accesses reqal(é) time, the running time of this algorithm &(n?). We now
analyze the number of I/Os. The number of write operationg ijne for each item of the output matrix,
while the number of read operations2is®. Hence, the total number of 1/0sig + 2n? = ©(n?).

The number of I1/Os can be reduced by exploiting the fact tkat$ can be moved in blocks of size
B between main memory and disk. Consider first mafix Iltems of X are laid out on disk in the
following order:

T11 T12 13 T14 | T21 Tao Tog Toa | T31 T3z T33 Taa | Ta1 Tao Taz Taa

and the algorithm access@saccording to the following pattern:

T11 12 13 T14 | T11 12 13 T14 | T11 12 13 T14 | T11 12 13 T14 | (Z
Tol T2 T3 Tag | Ta1 Ta Tog Toa | To1 Too Toz Tog | Ty T oz x2a | (i

22 Chapter 2

algorithm st andar dvat Mul (matrix X, matrix Y, nmatrix Z, int n)
fori=1ton
forj=1ton

z=0

fork=1ton
load from disk itemX [¢][k]
load from disk itemY"[k][4]
2=z + X[i|[K] x Y[k][j]

write to disk valuez as itemZ[i][J]

Figure 2.1: Standard matrix multiplication algorithm attapto the external memory setting.

T31 T32 T33 T34 | T31 32 T3z T34 | T31 Ta2 T33 T34 | T31 w32 T3z k34 | (i = 3,7 € [1,4])

T4l T42 T43 Tad | T4l T4 Ta3 Taa | Ta1 Tag Ta3 Tag | Ty Tao Ta3 xa4 (P =4,7 € [1,4])

Iltems of X are accessed by row, which is exactly the same order in whiep @re laid out on disk.
Hence, instead of storing only one item per disk access whkilame a buffer of sizeB and storeB
consecutive items. In this way the algorithm would incur imed/O every B accesses to matik,
obtainingn?/ B 1/Os to loadX throughout the computation. In the example abové, i 2 the first I/O
would loadx1; x12, the second I/Q:13 z14, the third I/O againe; x12, and so on. Moreover, each item
is accessed exactly times, and its reuse distance (i.e., the number of stepselkettwo consecutive
accesses to the same item) is exantly

Matrix Z be can treated similarly, resulting i’ /B write operations. Unfortunately, the same
technique cannot be applied to matkix which is accessed by column. Iltems)ofare also laid out on
disk in row-major order:

Y11 Y12 Y13 Y14 | Y21 Y22 Y23 Y24 | Y31 Y32 Y33 Y34 | Y41 Y42 Y43 Y44

and the algorithm accessgsccording to the following pattern:

Y11 Y21 Y31 Y41 | Y12 Y22 Y32 Y42 | Y13 Y23 Y33 Y43 | Y14 Y24 Y34 Ya4 |
Y11 Y21 Y31 Y41 | Y12 Y22 Y32 Y42 | Y13 Y23 Y33 Y43 | Y14 Y24 Y34 Y44 |
Y11 Y21 Y31 Y41 \ Y12 Y22 Y32 Y42 \ Y13 Y23 Y33 Y43 \ Y14 Y24 Y34 Y44 \

Y11 Y21 Y31 Y41 | Y12 Y22 Y32 Y42 | Y13 Y23 Y33 Y43 | Y14 Y24 Y34 Y44

In this case the first I/O loadg; y12, buty> goes unused, the second I/O loads 122, but 25 goes
unused, the third I/O loadg; 32, butyss goes unused, and so on. Hence, the algorithm has poor spatial
locality with respect to matri”. Moreover, the reuse distance of any item is equal’owhich means

that the algorithm has also poor temporal locality. In thesv@ease wheree > B, only one of the
items loaded from¥” in a single I/O operation can be immediately used: the next iis indeed in the
successive row, and is not stored in the loaded block when B. Hence, the algorithm still incurs in

n3 1/Os to load matrixy”.

External Memory Algorithms 23

algorithm bl ockedMat Mul (matrix X, nmatrix Y, matrix Z, int n, int s)
fori=1ton/s
forj=1ton/s

initialize Z;; to 0

for k=1ton/s
load from disk quadrank’;
load from disk quadrarity, ;

write Z;; to disk

Figure 2.2: Blocked matrix multiplication algorithm witHdeking parametes. SymbolsH and X
denote standard addition and multiplication between wedri any internal memory algorithm can be
used to implemertd and(X.

2.5 Blocked Matrix Multiplication

A well-known technique to improve temporal localitybkocking, in which data is partitioned into chunks
of appropriate size that are completely processed befadirig the next chunk. Let be a blocking
parameter (we assume for simplicity thatlivides the matrix sidex). For any pair of indexes andb
such thatl < a,b < n/s, we denote withX,, the quadrant of matriX" consisting of elements in rows
(a—1)-s+1,...,a-sandincolumngb—1)-s+1,...,b-s. The blocked implementation of the matrix
multiplication algorithm can be written as shown in Figur2.2

It is worth noticing that loading a x s submatrixX;; requires to accessdifferent rows of matrix
X. For each row, items are stored contiguously on disk and edadaled in chunks of sizB with one
1/0. Hence, the total number of 1/Os per load operatio®{s + s2/B). Write operations are similar.
The entire execution of the blocked matrix multiplicatidgaithm therefore incurs in

n/s n/s 9 n/s 9 3 9 3 3
S S n S n n
Sy (o(s+g)+Xe(s+y)) - (% (s+5))—e(+25)
=1 j=1 k=1
Choosings = v/ M /3, three entire submatrices fit in main memory and the numbB©Osfis
3 3 3
o (n_ n n_> _6 <”_>
M BVM BVM

whenM > B2. This number is asymptotically optimal, since matches aelowound proved by Hong
and Kung (ACM Symposium on Theory of Computing, 1981).

24

