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External Memory Algorithms

The difference in speed between modern CPU and disk technologies is
analogous to the difference in speed in sharpening a pencil using a

sharpener on ones desk or by taking an airplane to the other side of
the world and using a sharpener on someone elses desk.

(D. Comer)

2.1 Disk Storage

2.2 The External Memory Model

2.3 Back of the Envelope Calculations for External Memory

2.4 Standard Matrix Multiplication

Let X, Y , andZ be threen × n matrices. We assume that the matrices are stored on disk in row-major
order, and we want to compute inZ the productX × Y . Recall thatZ[i][j] =

∑n
k=1

X[i][k] · Y [k][j].
The standard code for matrix multiplication can be adapted to the external memory setting as shown in
Figure 2.1.
If we assume that disk accesses requireO(1) time, the running time of this algorithm isΘ(n3). We now
analyze the number of I/Os. The number of write operations isn2, one for each item of the output matrix,
while the number of read operations is2n3. Hence, the total number of I/Os isn2 + 2n3 = Θ(n3).

The number of I/Os can be reduced by exploiting the fact that items can be moved in blocks of size
B between main memory and disk. Consider first matrixX. Items ofX are laid out on disk in the
following order:

x11 x12 x13 x14 | x21 x22 x23 x24 | x31 x32 x33 x34 | x41 x42 x43 x44

and the algorithm accessesX according to the following pattern:

x11 x12 x13 x14 | x11 x12 x13 x14 | x11 x12 x13 x14 | x11 x12 x13 x14 | (i = 1, j ∈ [1, 4])
x21 x22 x23 x24 | x21 x22 x23 x24 | x21 x22 x23 x24 | x21 x22 x23 x24 | (i = 2, j ∈ [1, 4])
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algorithm standardMatMul(matrix X, matrix Y, matrix Z, int n)

1 for i = 1 to n

2 for j = 1 to n

3 z = 0

4 for k = 1 to n

5 load from disk itemX [i][k]

6 load from disk itemY [k][j]

7 z = z +X [i][k]× Y [k][j]

8 write to disk valuez as itemZ[i][j]

Figure 2.1: Standard matrix multiplication algorithm adapted to the external memory setting.

x31 x32 x33 x34 | x31 x32 x33 x34 | x31 x32 x33 x34 | x31 x32 x33 x34 | (i = 3, j ∈ [1, 4])

x41 x42 x43 x44 | x41 x42 x43 x44 | x41 x42 x43 x44 | x41 x42 x43 x44 (i = 4, j ∈ [1, 4])

Items ofX are accessed by row, which is exactly the same order in which they are laid out on disk.
Hence, instead of storing only one item per disk access we could use a buffer of sizeB and storeB
consecutive items. In this way the algorithm would incur in one I/O every B accesses to matrixX,
obtainingn3/B I/Os to loadX throughout the computation. In the example above, ifB = 2 the first I/O
would loadx11 x12, the second I/Ox13 x14, the third I/O againx11 x12, and so on. Moreover, each item
is accessed exactlyn times, and its reuse distance (i.e., the number of steps between two consecutive
accesses to the same item) is exactlyn.

Matrix Z be can treated similarly, resulting inn2/B write operations. Unfortunately, the same
technique cannot be applied to matrixY , which is accessed by column. Items ofY are also laid out on
disk in row-major order:

y11 y12 y13 y14 | y21 y22 y23 y24 | y31 y32 y33 y34 | y41 y42 y43 y44

and the algorithm accessesy according to the following pattern:

y11 y21 y31 y41 | y12 y22 y32 y42 | y13 y23 y33 y43 | y14 y24 y34 y44 |

y11 y21 y31 y41 | y12 y22 y32 y42 | y13 y23 y33 y43 | y14 y24 y34 y44 |

y11 y21 y31 y41 | y12 y22 y32 y42 | y13 y23 y33 y43 | y14 y24 y34 y44 |

y11 y21 y31 y41 | y12 y22 y32 y42 | y13 y23 y33 y43 | y14 y24 y34 y44

In this case the first I/O loadsy11 y12, but y12 goes unused, the second I/O loadsy21 y22, but y22 goes
unused, the third I/O loadsy31 y32, buty32 goes unused, and so on. Hence, the algorithm has poor spatial
locality with respect to matrixY . Moreover, the reuse distance of any item is equal ton2, which means
that the algorithm has also poor temporal locality. In the worst case wheren > B, only one of the
items loaded fromY in a single I/O operation can be immediately used: the next item is indeed in the
successive row, and is not stored in the loaded block whenn > B. Hence, the algorithm still incurs in
n3 I/Os to load matrixY .
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algorithm blockedMatMul(matrix X, matrix Y, matrix Z, int n, int s)

1 for i = 1 to n/s

2 for j = 1 to n/s

3 initializeZij to 0
4 for k = 1 to n/s

5 load from disk quadrantXik

6 load from disk quadrantYkj

7 Zij = Zij ⊞ (Xik ⊠ Ykj)

8 writeZij to disk

Figure 2.2: Blocked matrix multiplication algorithm with blocking parameters. Symbols⊞ and⊠

denote standard addition and multiplication between matrices: any internal memory algorithm can be
used to implement⊞ and⊠.

2.5 Blocked Matrix Multiplication

A well-known technique to improve temporal locality isblocking, in which data is partitioned into chunks
of appropriate size that are completely processed before loading the next chunk. Lets be a blocking
parameter (we assume for simplicity thats divides the matrix siden). For any pair of indexesa andb
such that1 ≤ a, b ≤ n/s, we denote withXab the quadrant of matrixX consisting of elements in rows
(a− 1) · s+1, ..., a · s and in columns(b− 1) · s+1, ..., b · s. The blocked implementation of the matrix
multiplication algorithm can be written as shown in Figure 2.2.

It is worth noticing that loading as× s submatrixXij requires to accesss different rows of matrix
X. For each row, items are stored contiguously on disk and can be loaded in chunks of sizeB with one
I/O. Hence, the total number of I/Os per load operation isΘ(s + s2/B). Write operations are similar.
The entire execution of the blocked matrix multiplication algorithm therefore incurs in
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whenM ≥ B2. This number is asymptotically optimal, since matches a lower bound proved by Hong
and Kung (ACM Symposium on Theory of Computing, 1981).
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