
DATA MINING & MAPREDUCE

Irene Finocchi

Data mining

What is “data mining”

 Discovery of useful, possibly unexpected,
patterns in data (models)

 Subsidiary issues:
 Data cleaning: detection of bogus data (e.g.,

age=150)
 Visualization: better than MB files of output

 A picture is worth 10 thousand words

Data mining approaches (1)

  Machine-learning: small data used as a training set to
predict different phenomena at large
 E.g., success of a movie (Netflix challenge)
 Good when we have little idea of what we are looking for

in the data

Data mining approaches (2)

  Statistics: inference of statistical models
 Result = parameters of the model

  Databases/algorithms: concentrate on large-scale
data, typically stored in external memory
 Analytic processing: query the data, result = query answer
 E.g., number of papers in a catalog written between 2010

and 2014

(Way too simple) example

  DB/algorithm person: given a billion numbers,
compute their average and standard deviation

  Statistician: fit the points to the best Gaussian
distribution and report the mean and standard
deviation of that distribution

Computational mining (1)

  Summarization: summarizing the data succinctly and
approximately
 Pagerank: a number reflecting the importance of a

page
 Clustering: data viewed as points in a multidimensional

space, points close in this space assigned to the same
cluster

Clustering
cholera cases
on a map of

London

Computational mining (2)

  Feature extraction
 Frequent itemsets: “market-basket” problem

 Given “baskets” of small sets of items, find small sets of items
that appear together in many baskets

 E.g., hamburger and ketchup

 Similar items
 At the base of recommendation systems
 What do you buy on Amazon? Find “similar” customers and

recommend something many of these customers have bought
 Clustering customers does not work here: each of us has

interests in many different things (e.g., popular science books
and historical biographies)

Beware of false positives

Are answers meaningful?

  Big data-mining risk: “discover” meaningless
patterns

  Statisticians call it Bonferroni’s principle:
 (Roughly) if you look for interesting patterns in more

places than your amount of data supports, you are
bound to find crap

 Carlo Emilio Bonferroni: Italian mathematician,
1892-1960

Examples of Bonferroni’s principle

  November 2002, TIA - Total Information Awareness
 As reported by the New York Times, the Defense

Advanced Research Projects Agency (DARPA) was
developing a tracking system called Total Information
Awareness, which was intended to detect terrorists
through analyzing troves of information

  The Rhine Paradox: a great example of how not to
conduct scientific research

The TIA story

  Suppose we believe that certain groups of evil-doers
are meeting occasionally in hotels to plot doing evil

  We want to find (unrelated) people who at least
twice have stayed at the same hotel on the same day

Some details

  109 people being tracked
  1000 days
  Each person stays in a hotel 1% of the time (10

days out of 1000 in a hotel)
  Hotels hold 100 people (so 105 hotels)

  If everyone behaves randomly (i.e., no evil-doers)
will the data mining detect anything suspicious?

Calculations (1)

  Probability that P and Q will be at the same hotel
on given days d1 and d2:
 10-9 × 10-9 = 10-18

  Pairs of days: 5×105

P at some
hotel

Q at some
hotel

Same
hotel

  Probability that given persons P and Q will be at
the same hotel on given day d :
 1/100 × 1/100 × 10-5 = 10-9

Calculations (2)

  Probability that P and Q will be at the same
hotel on some two days:
 5 × 105 × 10-18 = 5×10-13

  Pairs of people:
 5×1017

  Expected number of “suspicious” pairs of
people:
 5 × 1017 × 5 × 10-13 = 250,000.

Conclusion

  Suppose there are (say) 10 pairs of evil-doers who
definitely stayed at the same hotel twice

  Analysts have to sift through 250,000 candidates to
find the 10 real cases
 Not gonna happen

 When looking for a property (e.g., “two people
stayed at the same hotel twice”), make sure that the
property does not allow so many possibilities that
random data will surely produce facts “of interest”

Another story: Rhine paradox

  Joseph Rhine was a parapsychologist in the 1950’s
  He hypothesized that some people had Extra-

Sensory Perception
  He devised (something like) an experiment where

subjects were asked to guess 10 hidden cards – red
or blue.

  He discovered that almost 1 in 1000 had ESP – they
were able to get all 10 right!

The second Rhine test

  He told these people they had ESP and called them
in for another test of the same type.

  Alas, he discovered that almost all of them had lost
their ESP

  What did he conclude?
 Answer on next slide.

Rhine conclusion

  He concluded that you shouldn’t tell people they
have ESP: it causes them to lose it!

 Understanding Bonferroni’s Principle will
help you look a little less stupid than a

parapsychologist

Mining big data with MapReduce

Single-node architecture

Memory

CPU

Disk

Machine learning, statistics

“Classical” data mining

Commodity clusters

  Cannot mine tens to hundreds of Terabytes of data on a
single server

  Standard architecture emerging:
 Cluster of commodity Linux nodes
 Gigabit ethernet interconnections

  How to organize computations on these architectures?
  How to program these architectures?
  How to mask issues such as hardware failures in these

architectures?

Real cluster architecture

Cluster architecture

  Each rack contains 10/64 nodes
  Sample node configuration: 8 x 2GHz cores, 8 GB RAM, 4
 disks (4 TB)

Stable storage

  First order problem: if nodes can fail, how can we
store data persistently?

  Answer: Distributed File System
 Provides global file namespace
 Google GFS; Hadoop HDFS; Kosmix KFS

  Typical usage pattern
 Huge files (100s of GB to TB)
 Data is rarely updated in place
 Reads and appends are common

Distributed file system

  Chunk servers
  File is split into contiguous chunks
  Typically each chunk is 16-64MB
  Each chunk replicated (usually 2x or 3x)
  Try to keep replicas in different racks

  Master node
  Stores metadata
 Might be replicated
  (a.k.a. Name Node in HDFS)

  Client library for file access
  Talk to master to find chunk servers
 Connect directly to chunk servers to access data

Warm up: word count

  We have a large file of words, one word per line
  Count the number of times each distinct word

appears in the file

  Sample application: analyze web server logs to
find popular URLs

Different scenarios

  Case 1: Entire file fits in memory
 Load file into main memory
 Keep also a hash table with <word, count> pairs

  Case 2: File too large for mem, but all <word, count>
pairs fit in mem
 Scan file on disk
 Keep <word, count> hash table in main memory

  Case 3: Too many distinct words to fit in memory
 External sort, then scan file (all occurrences of the same

word are consecutive: one running counter suffices)
 sort datafile | uniq –c

Making things a little bit harder

  Now suppose we have a large corpus of documents
  Count the number of times each distinct word occurs

in the corpus
 words(docs/*) | sort | uniq -c
 where words takes a file and outputs the words in it,

one to a line

  The above captures the essence of MapReduce
 Great thing is it is naturally parallelizable

MapReduce

  A novel programming model
  Everything built on top of <key,value> pairs

 Keys and values are user-defined: can be anything
  Only two user-defined functions:

 Map
 map(k1,v1) list(k2,v2)
 given input data <k1,v1>, produce intermediate data v2

labeled with key k2

 Reduce
 reduce(k2, list(v2)) list(v3) preserves key
 given a list of values list(v2) associated with a key k2, return a

list of values list(v3) associated with the same key

The origins (2004)

 “Our abstraction is inspired by the map and reduce
primitives present in Lisp and many other functional
languages. We realized that most of our computations
involved applying a map operation to each logical
“record” in our input in order to compute a set of
intermediate key/value pairs, and then applying a
reduce operation to all the values that shared the
same key, in order to combine the derived data
appropriately.”

Jeffrey Dean & Sanjay Ghemawat [OSDI 2004]

Map in Lisp

Reduce in Lisp

MapReduce in Lisp

Parallelism in MapReduce

  All mappers in parallel
  All reducers in parallel
  Different pairs transparently distributed across

available machines

Shuffle: group values with the same key
to be passed to a single reducer

reduce(k2, list(v2)) list(v3)

map(k1,v1) list(k2,v2)

THE MapReduce example: WordCount

map(key, value):
// key: document name; value: text of document
 for each word w in value:
 emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(result)

A programmer’s perspective

 The beauty of MapReduce is that any programmer
can understand it, and its power comes from being
able to harness thousands of computers behind that

simple interface.

David Patterson

WordCount data flow

Readings

  J. Leskovec, A. Rajaraman & J. Ullman
 Mining of massive data sets
 Chapters 1 and 2 (Sections 2.1 & 2.2)

 http://i.stanford.edu/~ullman/mmds.html

  Jeffrey Dean and Sanjay Ghemawat,
 MapReduce: Simplified Data Processing on Large

Clusters
 http://labs.google.com/papers/mapreduce.html

Acknowledgments

 Part of these slides are based on material from the
“Data Mining” Stanford course CS345A by
Rajaraman &Ullman and from the book “Mining of
Massive Data Sets” by Leskovec, Rajaraman &
Ullman

