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Data mining 



What is “data mining” 

 Discovery of useful, possibly unexpected, 
patterns in data (models) 

 Subsidiary issues: 
 Data cleaning: detection of bogus data (e.g., 

age=150) 
 Visualization: better than MB files of output 

 A picture is worth 10 thousand words  



Data mining approaches (1) 

  Machine-learning: small data used as a training set to 
predict different phenomena at large 
 E.g., success of a movie (Netflix challenge) 
 Good when we have little idea of what we are looking for 

in the data 



Data mining approaches (2) 

  Statistics: inference of statistical models 
 Result = parameters of the model 

  Databases/algorithms: concentrate on large-scale 
data, typically stored in external memory 
 Analytic processing: query the data, result = query answer 
 E.g., number of papers in a catalog written between 2010 

and 2014  



(Way too simple) example 

  DB/algorithm person: given a billion numbers, 
compute their average and standard deviation 

  Statistician: fit the points to the best Gaussian 
distribution and report the mean and standard 
deviation of that distribution 



Computational mining (1) 

  Summarization: summarizing the data succinctly and 
approximately 
 Pagerank: a number reflecting the importance of a 

page 
 Clustering: data viewed as points in a multidimensional 

space, points close in this space assigned to the same 
cluster 

Clustering 
cholera cases 
on a map of 

London 



Computational mining (2) 

  Feature extraction 
 Frequent itemsets: “market-basket” problem  

 Given “baskets” of small sets of items, find small sets of items 
that appear together in many baskets 

 E.g., hamburger and ketchup 

 Similar items 
 At the base of recommendation systems 
 What do you buy on Amazon? Find “similar” customers and 

recommend something many of these customers have bought 
 Clustering customers does not work here: each of us has 

interests in many different things (e.g., popular science books 
and historical biographies) 



Beware of false positives 



Are answers meaningful? 

  Big data-mining risk: “discover” meaningless 
patterns 

  Statisticians call it Bonferroni’s principle:  
 (Roughly) if you look for interesting patterns in more 

places than your amount of data supports, you are 
bound to find crap 

 Carlo Emilio Bonferroni: Italian mathematician, 
1892-1960 



Examples of Bonferroni’s principle 

  November 2002, TIA - Total Information Awareness 
   As reported by the New York Times, the Defense 

Advanced Research Projects Agency (DARPA) was 
developing a tracking system called Total Information 
Awareness, which was intended to detect terrorists 
through analyzing troves of information 

  The Rhine Paradox: a great example of how not to 
conduct scientific research 



The TIA story 

  Suppose we believe that certain groups of evil-doers 
are meeting occasionally in hotels to plot doing evil 

  We want to find (unrelated) people who at least 
twice have stayed at the same hotel on the same day 



Some details 

  109 people being tracked 
  1000 days 
  Each person stays in a hotel 1% of the time (10 

days out of 1000 in a hotel) 
  Hotels hold 100 people (so 105 hotels) 

  If everyone behaves randomly (i.e., no evil-doers) 
will the data mining detect anything suspicious? 



Calculations (1) 

  Probability that P and Q will be at the same hotel 
on given days d1 and d2: 
 10-9 × 10-9 = 10-18 

  Pairs of days: 5×105 

P at some 
hotel 

Q at some 
hotel 

Same 
hotel 

  Probability that given persons P and Q will be at 
the same hotel on given day d : 
 1/100 × 1/100 × 10-5 = 10-9 



Calculations (2) 

  Probability that P and Q will be at the same 
hotel on some two days: 
 5 × 105 × 10-18 = 5×10-13 

  Pairs of people: 
 5×1017 

  Expected number of “suspicious” pairs of 
people: 
 5 × 1017 × 5 × 10-13 = 250,000. 



Conclusion 

  Suppose there are (say) 10 pairs of evil-doers who 
definitely stayed at the same hotel twice 

  Analysts have to sift through 250,000 candidates to 
find the 10 real cases 
 Not gonna happen 

 When looking for a property (e.g., “two people 
stayed at the same hotel twice”), make sure that the 
property does not allow so many possibilities that 
random data will surely produce facts “of interest” 



Another story: Rhine paradox 

  Joseph Rhine was a parapsychologist in the 1950’s 
  He hypothesized that some people had Extra-

Sensory Perception 
  He devised (something like) an experiment where 

subjects were asked to guess 10 hidden cards – red 
or blue. 

  He discovered that almost 1 in 1000 had ESP – they 
were able to get all 10 right! 



The second Rhine test 

  He told these people they had ESP and called them 
in for another test of the same type. 

  Alas, he discovered that almost all of them had lost 
their ESP 

  What did he conclude? 
 Answer on next slide. 



Rhine conclusion 

  He concluded that you shouldn’t tell people they 
have ESP: it causes them to lose it! 

 Understanding Bonferroni’s Principle will 
help you look a little less stupid than a 

parapsychologist   



Mining big data with MapReduce 



Single-node architecture 

Memory 

CPU 

Disk 

Machine learning, statistics 

“Classical” data mining 



Commodity clusters 

  Cannot mine tens to hundreds of Terabytes of data on a 
single server 

  Standard architecture emerging: 
 Cluster of commodity Linux nodes 
 Gigabit ethernet interconnections 

  How to organize computations on these architectures? 
  How to program these architectures? 
  How to mask issues such as hardware failures in these 

architectures? 



Real cluster architecture 



Cluster architecture 

  Each rack contains 10/64 nodes 
  Sample node configuration: 8 x 2GHz cores, 8 GB RAM, 4     
   disks (4 TB) 



Stable storage 

  First order problem: if nodes can fail, how can we 
store data persistently?  

  Answer: Distributed File System 
 Provides global file namespace 
 Google GFS; Hadoop HDFS; Kosmix KFS 

  Typical usage pattern 
 Huge files (100s of GB to TB) 
 Data is rarely updated in place 
 Reads and appends are common 



Distributed file system 

  Chunk servers 
  File is split into contiguous chunks 
  Typically each chunk is 16-64MB 
  Each chunk replicated (usually 2x or 3x) 
  Try to keep replicas in different racks 

  Master node 
  Stores metadata 
 Might be replicated 
  (a.k.a. Name Node in HDFS) 

  Client library for file access 
  Talk to master to find chunk servers  
 Connect directly to chunk servers to access data 



Warm up: word count 

  We have a large file of words, one word per line 
  Count the number of times each distinct word 

appears in the file 

  Sample application: analyze web server logs to 
find popular URLs 



Different scenarios 

  Case 1: Entire file fits in memory 
 Load file into main memory 
 Keep also a hash table with <word, count> pairs  

  Case 2: File too large for mem, but all <word, count> 
pairs fit in mem 
 Scan file on disk 
 Keep <word, count> hash table in main memory 

  Case 3: Too many distinct words to fit in memory 
 External sort, then scan file (all occurrences of the same 

word are consecutive: one running counter suffices) 
 sort datafile | uniq –c 



Making things a little bit harder 

  Now suppose we have a large corpus of documents 
  Count the number of times each distinct word occurs 

in the corpus 
 words(docs/*) | sort | uniq -c 
 where words takes a file and outputs the words in it, 

one to a line 

  The above captures the essence of MapReduce 
 Great thing is it is naturally parallelizable 



MapReduce 

  A novel programming model 
  Everything built on top of <key,value> pairs 

 Keys and values are user-defined: can be anything 
   Only two user-defined functions: 

 Map 
 map(k1,v1)            list(k2,v2) 
 given input data <k1,v1>, produce intermediate data v2 

labeled with key k2 

 Reduce 
 reduce(k2, list(v2))             list(v3)            preserves key 
 given a list of values list(v2) associated with a key k2, return a 

list of values list(v3) associated with the same key 



The origins (2004) 

   “Our abstraction is inspired by the map and reduce 
primitives present in Lisp and many other functional 
languages. We realized that most of our computations 
involved applying a map operation to each logical 
“record” in our input in order to compute a set of 
intermediate key/value pairs, and then applying a 
reduce operation to all the values that shared the 
same key, in order to combine the derived data 
appropriately.” 

Jeffrey Dean & Sanjay Ghemawat [OSDI 2004]  



Map in Lisp 



Reduce in Lisp 



MapReduce in Lisp 



Parallelism in MapReduce 

  All mappers in parallel 
  All reducers in parallel 
  Different pairs transparently distributed across 

available machines 

Shuffle: group values with the same key  
to be passed to a single reducer 

reduce(k2, list(v2))             list(v3)  

map(k1,v1)            list(k2,v2) 



THE MapReduce example: WordCount 

map(key, value): 
// key: document name; value: text of document 
 for each word w in value: 
  emit(w, 1) 

reduce(key, values): 
// key: a word; value: an iterator over counts 
 result = 0 
 for each count v in values: 
  result += v 
 emit(result) 



A programmer’s perspective 

   The beauty of MapReduce is that any programmer 
can understand it, and its power comes from being 
able to harness thousands of computers behind that 

simple interface. 

David Patterson 



WordCount data flow 



Readings 

  J. Leskovec, A. Rajaraman & J. Ullman 
 Mining of massive data sets  
 Chapters 1 and 2 (Sections 2.1 & 2.2) 

 http://i.stanford.edu/~ullman/mmds.html 

  Jeffrey Dean and Sanjay Ghemawat, 
   MapReduce: Simplified Data Processing on Large 

Clusters 
 http://labs.google.com/papers/mapreduce.html 
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