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Algorithms for Parallel Memory, 
I: Two-Level Memories 

J. S. Vitter 2 and  E. A. M. Shriver 3 

Abstract. We provide the first optimal algorithms in terms of the number of input/outputs (I/Os) 
required between internal memory and multiple secondary storage devices for the problems of sorting, 
FFT, matrix transposition, standard matrix multiplication, and related problems. Our two-level 
memory model is new and gives a realistic treatment of parallel block transfer, in which during a single 
I/O each of the P secondary storage devices can simultaneously transfer a contiguous block of B 
records. The model pertains to a large-scale uniprocessor system or parallel multiprocessor system 
with P disks. In addition, the sorting, FFT, permutation network, and standard matrix multiplication 
algorithms are typically optimal in terms of the amount of internal processing time. The difficulty in 
developing optimal algorithms is to cope with the partitioning of memory into P separate physical 
devices. Our algorithms' performances can be significantly better than those obtained by the well- 
known but nonoptimal technique of disk striping. Our optimal sorting algorithm is randomized, but 
practical; the probability of using more than I times the optimal number of I/Os is exponentially small 
in/(log/) log(M/B), where M is the internal memory size. 

Key Words. I/O, Input/output, Disk, Secondary memory, Sorting, Distribution sort, FFT, Matrix 
multiplication, Transposition, Permutation. 

1. Introduction. Sorting is the canonical  informat ion-processing application. It 
accounts  for roughly 20-25 % of the comput ing  resources on large-scale computers  
[8], [10]. In  applicat ions where the file of records cannot  fit into internal  memory,  
the records mus t  be stored on (external) secondary storage, usually in the form of 
disks. Sort ing in this framework is called external sorting. The bott leneck in 
external sorting and  m a n y  other applicat ions is the time for the inpu t /ou tpu t  (I/O) 
between internal  memory  and the disks [8], [10]. This bott leneck is accentuated 

as processors get faster and  parallel computers  are used. 
The remedy we explore in this paper  is to use secondary storage systems with 

parallel  capabilities [5], [6], [11], [14], [17]. We restrict our  a t ten t ion  in this paper  
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to two-level storage systems with random access secondary storage. Magnetic 
disks, for example, provide the functionality needed in our model of secondary 
storage, so for simplicity we refer to secondary storage as disk storage, consisting 
of one or more disk drives. Efficient algorithms for multilevel hierarchical memory 
are considered in the companion paper [19]. 

In a previous work Aggarwal and Vitter [1] presented optimal upper and lower 
bounds on the I/O needed for sorting-related problems of size N using a two-level 
memory model where internal memory can store M records and the secondary 
memory size is limitless. In their model an I/O can simultaneously transfer P 
physical blocks, each consisting of B contiguous records. Their results generalized 
the groundbreaking work done by Floyd [4], who gave optimal bounds for sorting, 
realized by standard two-way merge sort, for the special case P - - 1  and 

M = 2B = v/N. The P > 1 model in [1] is somewhat unrealistic, however, because 
secondary storage is usually partitioned into P separate physical devices, each 
capable of transferring only one block per I/O. 

We are interested in optimal algorithms for realistic two-level storage systems 
that allow P simultaneous data transfers. By realistic, we mean that each block 
transfer must be associated with a separate secondary storage device. In the next 
section we define a realistic two-level memory model with parallel block transfer, 
which consists of an internal memory (capable of storing M records) and P disks, 
each disk capable of simultaneously transferring one block of B records, as shown 
in Figure 1. Another version of our model that turns out to be sufficient for our 
purposes is to have the P disks controlled by P' processors, each with internal 
memory capable of storing M/P' records. If P' _ P, each of the P' processors 
can drive about P/P' disks; if P < P'_< M, each disk is associated with about 
P'/P processors. The P' processors are connected by a network, such as a 
hypercube or cube-connected cycles, that allows some basic operations like sorting 
of the M records in the internal memories to be performed quickly in parallel in 
O((M/P') log M) time. The special case in which P = P' is shown in Figure 2. 

Our main measure of performance is the number of parallel I/Os required, but 
we also consider the amount of internal computation. The bottleneck in the 
problems we consider is generally the I/O, at least in the multiprocessor versions 
of the two-level memory model described above. 

In this paper we consider large-scale instances of the following important 
problems, which are defined in Section 3: sorting, permuting, matrix transposition, 
FFT, permutation networks, and standard matrix multiplication. In Section 4 we 
state our main results, namely, tight upper and lower bounds on the number of 
I/Os and amount of internal processing needed to solve these problems, for each 
of the uniprocessor and multiprocessor models mentioned above. The standard 
matrix multiplication algorithm is simultaneously optimal in terms of internal 
processing time. Our sorting, FFT, and permutation network algorithms are also 
simultaneously optimal in terms of the internal processing time when P' -- O(1) 
or log M = O(log(M/B)). For large-scale computer configurations, in which P and 
PB are large; our algorithms for sorting, permuting, FFT, and permutation 
networks can be significantly faster than the algorithms obtained by applying the 
well-known technique of disk striping to good single-disk algorithms. 
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Sections 5-7 are devoted to the algorithms and their analyses. In Section 5 we 
develop optimal algorithms for matrix transposition, FFT, and permutation 
networks, by making use of the shuffle-merge primitive. Even though these 
problems are sorting-related, it is much easier to develop optimal algorithms for 
them than it is for sorting, since their I/O schedules are fixed and nonadaptive. 

The main contribution of this paper is the optimal randomized algorithm for 
sorting (and permuting) and its probabilistic analysis in Section 6. The probability 
that it uses more than l times the optimal number of I/Os is exponentially small 
in/( log/)  log(M/B). 4 The sorting algorithm is a variant of a distribution sort; a 
combination of two randomized techniques is used to do the partitioning so as 
to take full advantage of parallel block transfer. The algorithm requires that the 
disks operate independently in read mode, but in each disk write, the track written 
to is the same among all the disks, which facilitates writing error correction 
information (see [5], for example); in fact, some of the initial disk arrays being 
developed require that parallel writes have this same-track property. In Section 7 
we cover standard matrix multiplication. Conclusions and open problems are 
discussed in Section 8. 

2. The Two-Level Memory Model. First we define the parameters for our 
two-level memory model with parallel block transfer, as shown in Figures 1 and 2: 

DEFINITION 1. The parameters are defined by 

N = number of records in the file, 

M = number of records that can fit in the internal memory, 

B = number of records per block, 

P = number of disk drives, 

P' = number of internal processors, 

where 1 <_ B <_ M/2, M < N, 1 <_ P <_ LM/B], and 1 _< P' _< M. The parameters 
N, M, B, P, and P' are referred to as the file size, memory size, block size, number 
of disks, and number of processors, respectively. We denote the P disks by N1, 
@z, . . . ,@P. Each disk is partitioned into consecutive tracks, each capable of 
storing one block of B records, as shown in Figure 3. (For simplicity in our model, 
we assume that a block, our unit of transfer, is the same size as a track.) If no 
disk is specified when we refer to the "kth track," we mean the kth track of all P 
disks collectively. 

For  purposes of making the problem definitions we give in the next section 
more concrete, the locations on disk are numbered track-by-track in the following 

4 For simplicity of notation, we use log x, where x > 1, to denote the quantity max{l, log 2 X}. 
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P 
A 

Internal 
memory 

Fig. 1. The uniprocessor two-level storage model with parallel block transfer. The measure of 
performance is the number of I/Os. During an I/O, each of the P disks can simultaneously transfer a 
block of B contiguous records to or from the internal memory of size M. 

cyclical fashion. Track  1 contains the first PB m e m o r y  locations:  

t rack 1 of  91  contains m e m o r y  locations 1, 2 . . . . .  B, 
t rack 1 of  9 2  contains  m e m o r y  locations B + 1, B + 2, . . . ,  2B, 

t rack 1 of  9~, contains  m e m o r y  locations (P - 1)B + 1, (P - 1)B + 2 . . . . .  PB. 

P 

Fig. 2. An alternate multiprocessor version of the model, for P' = P. Each of the P disks is controlled 
by a separate processor with its own internal memory of size M/P. The interprocessor communication 
is assumed to be sufficiently fast so that internal sorting can be done rapidly in parallel. 
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Tracks 

Disks [ ]  B records 

~gv 
Fig. 3. The disks are represented by horizontal lines and the tracks by vertical lines. 

Track 2 contains the next P B  memory locations: 

track 2 of @1 contains memory locations PB + 1, PB  + 2, . . . ,  (P + 1)B, 
track 2 of ~2 contains memory locations (P + 1)B + 1, (P + 1)B + 2 . . . .  , (P + 2)B, 

track 2 o f ~ e  contains memory locations (2P - 1)B + 1, (2P - 1)B + 2 . . . . .  2PB. 

The numbering continues in this fashion for tracks 3, 4 , . . . .  
Parallelism appears in our model in two basic ways. First, records are transferred 

concurrently in blocks of B contiguous records. It takes roughly the same amount 
of time to access and transfer one block as it does one record. This reflects the 
fact that the seek time for a record greatly dominates the time to transmit a record. 
The second type of parallelism arises because P blocks can be transferred in a 
single I/O. We make the realistic restriction that the P blocks must be associated 
with tracks from P different disks. That  is, only one track per disk can be accessed, 
but there is no constraint on which track is accessed on each disk. 

The restriction that only one block can be accessed per disk during an I/O is 
what distinguishes our model from the less realistic model of [1]. This distinction 
is akin to the difference in parallel computation between the MPC (module parallel 
computer) model and the less realistic PRAM model. However, general PRAM 
simultation techniques use logarithmic time per step; if they were applied to the 
algorithms in [1], the resulting algorithms would not be optimal in terms of I/O. 
The algorithms we develop on our model use the same number of I/Os as those 
in [1] for the less realistic model. 

3. Problem Definitions. The problems we consider in this paper have been well 
described in the literature. Most of the following definitions are those from [1], 
with suitable modifications. 

SORTING. 
Problem Instance: The internal memory is empty, and the N records are stored in 

the first N locations of secondary storage�9 
Goal: The internal memory is empty, and the N records are stored in sorted 

nondecreasing order in the first N locations of secondary storage�9 
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PERMUTING. 

The problem instance and goal are the same as for the sorting problem, except 
that the key values of the N records are required to form a permutation of 
{1, 2 , . . . ,  N}. 

MATRIX TRANSPOSITION. 
Problem Instance: The internal memory is empty, and a p x q matrix A = (A~,j) 

of N = pq records is stored row by row in the first N locations of secondary 
storage. 

Goal: The internal memory is empty, and the transposed matrix A T is stored row 
by row in the first N locations of secondary storage. (The q x p matrix A T is 
called the transpose o fA  i fA T .,,j = Aj,~, for all 1 _< i _< q and 1 _<j <p. )  

The matrix transposition problem above is a special case of permuting in which 
the permutation to be realized corresponds to converting a matrix from row-major 
order to column-major order. 

FAST FOURIER TRANSFORM (FFT). 
Problem Instance: Let N be a power of 2. The internal memory is empty, and the 

N records are stored in the first N locations of secondary storage. 
Goal: The internal memory is empty, the N output nodes of the F F T  digraph are 

"pebbled" (as explained below), and the N records are stored in the first N 
locations of secondary storage. 

The F F T  digraph consists of log N + 1 levels each containing N nodes; level 0 
contains the N input nodes, and level log N contains the N output nodes. Each 
noninput node has indegree 2, and each nonoutput node has outdegree 2. We 
denote the ith node (0 < i < N - 1) in level j (0 < j < log N) in the F F T  digraph 
by ni, j. F o r j  > 1 the two predecessors to node ni, j are nodes ni,j_ 1 and niez-l , j-  1, 
where | denotes the exclusive-or operation on the binary representations. (Note 
that nodes n~,j and ni.2~ , j  each have the same two predecessors.) 

The ith node in each level corresponds to record R~. We are allowed to pebble 
node ni, j if its two predecessors hi , j_  1 and n~.z-, ~_ 1 have already been pebbled 
and if the records R~ and Riez_, corresponding to the two predecessors both reside 
in internal memory. Intuitively, the FFT  problem can be phrased as the problem 
of pumping the records into and out of internal memory in a way that permits 
the computation implied by the F F T  digraph. 

PERMUTATION NETWORKS. The problem instance and goal are the same as for 
the F F T  problem, except that the permutation network digraph (see below) is 
pebbled instead of the F F T  digraph. 

A permutation network is a sorting network [8] consisting of comparator 
modules or switches that can be set by external controls so that any desired 
permutation of the inputs can be realized at the output level of the network. It 
consists of J + 1 levels, for some J _> log N, each containing N nodes. Level 0 
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contains the N input nodes, and level J contains the N output nodes. All edges 
are directed between adjacent levels, in the direction of increasing index. For  
0 _< i _< N -- 1 and 0 _< j _< J we denote the ith node in level j as ni,j. For each 
j _  1 there is an edge from ni, i -1 to nl, i. In addition, ni, j can have one other 
predecessor, call it n~,j_ 1, but in that case there is also an edge from n~,j_ 1 to nv,j; 
that is, nodes n~,j and nv,j have the same two predecessors. We can think of there 
being a "switch" between nodes n~,j and nv,j that can be set either to allow the 
data from the previous level to pass through unaltered (that is, the data in node 
hi, j_ 1 goes to n~,j and the data in nv,j-1 goes to nv,j) or else to swap the data 
(so that the data in n~,j_ 1 goes to n~,j and the data in nv,~_ a goes to hi,j). 

A digraph like this is called a permutation network if, for each of the N! 
permutations (pl ,  Pz . . . . .  PN), we can set the switches in such a way to realize the 
permutation; that is, data at each input node ni, o is routed to output node np~,j. 
The ith node in each level corresponds to the current contents of record R~, and 
we can pebble node n~,j if its predecessors have already been pebbled and if the 
records corresponding to those predecessors reside in internal memory. 

There is an important difference between permutation networks and general 
permuting. In the latter case the I/Os may depend upon the desired permutation, 
whereas with permutation networks all N! permutations can be generated by the 
same sequence of I/Os or memory accesses. 

STANDARD MATRIX MULTIPLICATION. 
Problem Instance: The internal memory is empty. The elements of two k x k 

matrices, A and B, where 2k 2 = N, are each stored in the first N locations of 
secondary storage. 

Goal: The internal memory is empty, and the product C = A x B, formed by the 
standard matrix multiplication algorithm that uses O(k 3) arithmetic operations, 
is stored in the first N locations of secondary storage. 

4. Main Results. In this section we state our main results, Theorems 1-5, which 
report optimal algorithms in terms of the number of I/Os and internal processing 
time, in our two-level model with parallel block transfer, to solve the problems 
defined in the previous section. 

THEOREM 1. The number of I/Os required for sortin9 N records is 

@ N -B log(N/B) ) .  
log(M/B),/' 

the internal processing time is O(N log(N/B)(log M)/P' log(M/B)), which is the 
optimal time O((N log N)/P'), for example, when log M = O(log(M/B)). The upper 
bounds are given by a randomized algorithm; the probability of using more than the 
average number of I/Os or internal processing time falls off exponentially. The lower 
bounds apply to both the average case and the worst case. The lower bound on 
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internal processing time is the well-known O((N log N)/P') bound from the comparison 
model of computation. The I/O lower bound does not require the use of the comparison 
model of computation, except for the case when M and B are extremely small with 
respect to N, namely, when B log(M/B) = o(log(N/B)). 

THEOREM 2. The number of I/Os required for computing the N-input FFT digraph 
is 

| N -B log(N/B) ~. 
log(M/B),]' 

the internal processing time is O(N log(N/B)(log M)/P' log(M/B)), which is the 
optimal time O((N log N)/P'), for example, when log M = O(log(M/B)). The lower 
bound on internal processing time is O((N log N)/P'). The average-case and worst- 
case number of I/Os required for computing any N-input permutation network is 

f~ N (PB Iog(N/B) ). 
log(M/B)]' 

furthermore, there are permutation networks such that the number of I/Os needed to 
compute them is 

0 N -B log(N/B) ~ 
log(M/B)]' 

and the internal processing time is O(N log(N/B)log M)/P' log(M/B)), which is 
optimal when log M = O(log(M/B)). All lower bounds apply to both the average case 
and the worst case. 

THEOREM 3. The number of I/Os required to permute N records is 

O ( m i n { N  N log(N/B)~ 
' PS log(M/B).},]' 

and the internal processing time is 

O(min{N(log P')/P', N log(N/B)(log M)/P' log(M/B)}). 

The I /0  lower bound applies to both the average case and the worst case. The 
second term in the I /0 upper bound corresponds to the randomized algorithm of 
Theorem 1, and the first term in the I /0 upper bound makes use of a modification 
of Phase 1 of the randomized algorithm. 
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THEOREM 4. The number of I/Os required to transpose a p x q matrix of N = pq 
elements is 

| N ( p ~ ( l + l ~  

and the internal processing time is greater by a multiplicative factor of 
O((PB log P')/P'). 

THEOREM 5. The number of I/Os required to multiply two k x k matrices using the 
standard matrix multiplication algorithm is 

k 3 

�9 _ _  , 

and the internal processing time required is O(k3/p'). 

The I/O bounds in the theorems can be regarded in terms of the number of 
"passes" through the file. One "pass" corresponds to the number of I/Os needed 
to read and write the file once, which is 2N/PB. A "linear-time" algorithm (defined 
to be one that requires a constant number of passes through the file) would use 
O(N/PB) I/Os. The logarithmic factors that multiply the N/PB term in the above 
expressions indicate the degree of nonlinearity. 

The I/O lower bounds for Theorems 1-4 follow from the lower bounds proved 
in [1] for the less realistic model in which P tracks can be accessed on the same 
disk in a single I/O. Since any algorithm in our model automatically applies to 
the model in [1], the same lower bounds apply. The I/O lower bounds proved in 
[-1] are based only on routing concerns and thus hold for an arbitrarily power- 
ful adversary, except in the case of sorting for the extreme case mentioned in 
Theorem 1 when M and B are extremely small, in which case the comparison 
model is used. Thus the hard part of sorting in the nonextreme case is the routing 
of the records, not the determination of the records' order. The well-known technique 
of key sorting [-8], which attempts to reduce sorting to permutation routing by 
using a special-purpose method of determining the order of the records, is therefore 
not going to use significantly fewer I/Os than will general sorting algorithms. 

The lower bound in Theorem 5 for standard matrix multiplication follows by 
taking the bound for the case P = 1 in [15] and dividing by P. The algorithms 
that meet the lower bounds of Theorems 1-5 are described and analyzed in the 
following sections. 

The previously best way to sort with multiple disks when P ' =  1 was the 
following combination of the well-known techniques of disk striping and two-way 
merge sort: The read/write heads of the P disks are synchronized, so that during 
each I/O all the disk drives access the same track number on their respective disks. 
This "striping" of the data on the disks effectively reduces the multiple disks to 
only one logical disk, but with a larger block size B' = PB. The number of I/Os 
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needed for two-way merge sort with the one logical disk is 

O((N/B') log(N/B')/log(M/B')) = O((N/PB) log(N/PB)/log(M/PB)). 

This bound can be larger than the one in Theorem 1 by a multiplicative log(M/B) 
factor, which can be significant when P and PB are relatively large. For  small 
values of P, striping is efficient in terms of I/O, within a constant factor of optimal. 

5. Shuffle-Merge and Its Applications. In this section we exploit a simple but 
useful merging operation called shuffle-merge that can be used to achieve the 
optimal I/O bounds mentioned in Theorems 2 and 4 for the problems of FFT, 
permutation networks, and matrix transposition. The algorithms, which consist 
of a series of shuffle-merges, are the ones described in [1], except that the disk 
placement of the blocks of the merged runs must be done in a staggered way so 
that the merging in the next pass can be done using full parallelism. 

Without loss of generality, we assume for simplicity of exposition that N, M, 
P, and B are powers of 2. The operation of shuffle-merge consists of performing 
a perfect shuffle [16] on the elements of M / B  runs of r records each, and the result 
is a single shuffled run of r M / B  elements. Pictorially, suppose the sorted runs 
initially look like this: 

Run 1: al a~ 

Run 2: a~ a 2 

M R u n - - :  aM/~ a~/B 
B 

1 o 'o  a r  

2 
�9 : " t ~ r  

� 9  arM/B 

After the perfect shuffle, a single shuffled run remains: 

1 2 arM/B. a~ a~ "" a~/B a~ a 2 "" a~/B "'" ar ar ""  

It is easy to do shuffle-merges and take full advantage of parallel block transfer, 
if the input runs are blocked and the blocks are staggered with respect to one 
another on the disk, so that in a single I/O we can read the next track from each 
o f  the next P runs. For  example, it suffices if the kth block of records from the ith 
run (consisting of records i a(k-Xm+l . . . . .  a~B) is stored on track ( i - 1 ) [ r / P B 7  + 
Fk/P7 of disk @1 +((k+i-Z)mode). (If r < PB/2,  then this placement can be modified 
so that more than one run is packed per track.) The algorithm consists of a series 
of parallel block transfers. On reads (k - 1 )M/PB + 1 . . . . .  k M / P B ,  we bring into 
internal memory the kth block from each of the M / B  runs. The records are shuffled 
appropriately in internal memory and then written to the disks. The total number 
of I/Os for the entire shuffie-merge is O(rM/PB),  which is best possible, since each 
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record is read once from disk and written once to disk, making full use of 
parallelism and blocking. 

Permutation Networks and FFT. Every permutation of N elements can be 
realized by three passes through an FFT network, by an appropriate setting of 
the switches in the FFT network that depends on the permutation [20]. So we 
can get optimal I/O strategies for an FFT-based permutation network by getting 
optimal I/O strategies for FFT digraphs. 

The FFT diagraph is defined in Section 3. For simplicity, we assume that log M 
divides log N evenly. We divide the N records into N/M groups of M contiguous 
records. Each group corresponds to a set of rows of the FFT digraph whose nodes 
have links to only each other in the next log M levels of the FFT digraph. For 
each of N/M I/Os, we input the M records in a group, pebble forward in the FFT 
digraph log M levels, and then write the group back to the disks, in a staggered 
way. Afterwards, a series of shuffle-merges are done to realign the records into 
new groups of size M so that pebbling of each group can proceed for the next 
log M levels, as shown in Figure 4. This continues until the entire FFT digraph 
is pebbled. The above algorithm stops and performs a series of shuffle-merges 
log N/log M times. Each series consists of max{l, 1OgM/B min{M, N/M}} shuffle- 
merges, each requiring O(N/PB) I/Os. Thus the total number of I/Os used is 

N N //1 1ogM/B N 
(PB l~ M ~, + man{M, ~ } ) ) ,  O 

which can be shown by some algebraic manipulation to equal the bound given in 
Theorem 2. 

The bound on internal processing time in Theorem 2 follows from the fact that 
the processing is done one memoryload at a time. Each memoryload accounts for 
O(M/PB) I/Os, and O((M log M)/P') time is used to do the internal processing of 
each memoryload. 

J 

\ 
/ 

• 

J 

x/ 
• 

I 

V 
A 

Fig. 4. Decomposit ion used for optimal pebbling of the F F T  digraph, for N = 16, M = 4. The M 
pebbles can be slid forward log M levels before the pebbles have to be regrouped. 
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Matrix Transposition. Let us denote the B records that end up in the same block 
in the transposed matrix as a "target group." Initially, in the original untransposed 
matrix, several members of a given target group may be in the same block. We 
call these members a "target subgroup." Each target subgroup initially has size 

(1) I 
1 B if B < min{p, q}, 

x = min~,  q} if min{p, q) < B < max{p, q}, 

(B~ if max{p,q}<B. 

The transposition algorithm consists of a series of shuffle-merges. Records in the 
same target subgroup remain together throughout the course of the algorithm. In 
each pass we merge together sets of M/B target subgroups, thus increasing the 
size of the resulting target subgroups by a factor of M/B. The number of passes is 

(2) [logMm B], 

each requiring O(N/PB) I/Os. The upper bound for I/O in Theorem 4 follows by 
substituting the three cases of (1) into (2). 

Each memoryload accounts for | I/Os, and O((M log P')/P') time is used 
to do the internal processing of each memoryload, thus yielding the bound on 
internal processing time in Theorem 4. 

6. External Sorting and Permuting. In this section we present and analyze the 
optimal algorithms for sorting and permuting on the two-level memory model, 
which achieve the bound listed in Theorems 1 and 3. We assume for simplicity of 
exposition that N, M, P, and B are powers of 2; we show below that this 
assumption does not result in any loss of generality. For sorting we also make 
the simplifying assumption that all key values are distinct. This assumption is 
satisfied, for example, if we append to the key field of each record the original 
memory location of the record. 

Permuting records is a special case of sorting. The bounds for sorting and 
permuting given in Theorems 1 and 3 are the same, except when the internal 
memory size M and block size B are extremely small with respect to the file 
size N. In the latter case, permuting can be done using O(N/P) I/Os by a 
modification of the sorting technique we discuss below, so we restrict our attention 
to the sorting problem. The application of the sorting method to the special case 
of permuting is discussed in Section 6.5. 

The FFT and matrix transposition algorithms described in the previous section 
were easy to implement using an optimal number of I/Os, because the merging 
pattern in each pass was predetermined; it consisted of a series of shuffle-merges. 
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This made it easy to distribute the records onto the disks so that the merges in 
the next pass accessed the records in a balanced fashion among all the disks. 
However, this does not seem applicable to sorting. When merge sort is used for 
external sorting, the merges in each pass are not in general perfect shuffles. When 
the merges are not perfect shuffles, it is difficult to know how to distribute the 
records onto the disks so as to guarantee balanced access to the disks in the next 
merge pass. An interesting question of whether merge sort can be implemented 
using the optimal number of I/Os is discussed in Section 8. 

In order to get an optimal sorting algorithm we use the following practical 
randomized approach, which is a recursive distribution sort: 

1. If N < M, we sort the file internally. Otherwise we do the following steps: 
2. [Find partitioning elements.] We deterministically find S -  1 partitioning 

elements bl, b2 . . . . .  bs-1 that break the file into S roughly equal-sized buckets. 
The parameter S will be defined shortly; it is always small enough so that the 
partitioning elements can be stored easily in internal memory. For  convenience, 
we define the dummy partitioning elements bo = - ~ and bs = + ~ .  The jth 
bucket consists of all the records R in the file whose key values are in the range 

b j_ 1 <- key(R) < bj. 

. 

. 

[-Partition into buckets.] We partition the file into buckets based upon the 
partitioning elements and distribute the records in each bucket evenly among 
the P disks. 
[,Recurse.] We sort each bucket by applying the sorting algorithm recursively. 
(With high probability, the records in each bucket are distributed evenly among 
the P disks, and thus they can be read into internal memory with O(N/SPB) 
I/Os.) The output of the sorting algorithm is the concatenation of the sorted 
buckets. 

The partitioning in Step 3 is done in one of two ways, which we call Phase 1 
and Phase 2. Phase 1, which is described in detail in Section 6.1, is used for the 

partitioning when N > x / - ~ P / l n ( M / B ) .  It can be thought of intuitively as a 
hashing approach to distribute the blocks of each bucket among the disks. It 
works effectively when the "hash function" distributes the records evenly, and by 
analogy to the maximum bucket occupancy problem in hashing [-18], the distribu- 
tion is even when the expected number of blocks per disk for each bucket is at 
least a logarithmic amount. However, if N is not much larger than M, the 
distribution using the hashing approach can be quite uneven, resulting in non- 

optimal performance. In the latter case, when M < N < x / ~ P / l n ( M / B ) ,  the 
partitioning is done by Phase 2, which is described in Section 6.2. Phase 2 uses a 
partitioning technique motivated by a different instance of the hashing problem 
and works with overwhelming probability. After the Phase 2 partitioning, each 
bucket will have at most M records and can be sorted internally, as described in 
Section 6.3. 

An alternative to the Phase 2 technique for small N is the deterministic approach 
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based on Leighton's Columnsort  algorithm [9], as mentioned in [1] and described 
in detail in Theorem 6 of [12]. However, we use Phase 2 here because it 
complements Phase 1 nicely in approach and has fairly small constant factors. 

As noted above, we assume for simplicity that N, M, P, and B are powers of 2. 
We also choose S - 1 to be a power of 2. The assumption on M, P, and B, whose 
values do not change during the course of the algorithm, clearly does not affect 
the generality of the algorithm. We can make N a power of 2 at each level of 
recursion by appending to the file hypothetical dummy records with key value 
+ oe. These dummy records do not need to be written to the buckets, so the 
cumulative sizes of the buckets is not affected. The running time increases as a 
result by at most  a small constant factor. 

DEFINITION 2. We denote the S buckets by 6el, 6a~ . . . .  ,6es . The number of records 
in the file that belong to bucket 6P~ is denoted Nj. In our two-level model with 
parallel block transfer, we can look at only M records at a time, so partitioning 
will be done one memoryload at a time. We denote the ith memoryload by ~//~. 
A write cycle is defined as the collection of P blocks that we write to the disks 
concurrently in a single I/O. We denote write cycles by ~/r ~ r  z . . . . .  Read cycles 
are defined analogously. 

For  the time being, let us assume that we can deterministically compute in 
Step 2 the approximate partitioning elements ba, b2 . . . . .  bs- 1, using O(N/PB) I/Os. 
(The algorithm and the analysis for computing the partitioning elements are 

given in Section 6.4.) For  Phase 1 we set S ~ v/M/B/lna(M/B); in particular, we set 

S -- 1 to be a maximum of 1 and the largest power of 2 that is _< v /~ / lna(M/B) .  
We show later in Lemma 3 that 

N 3N 
(3) - -  < Nj < 

2(S - 1) 2 ( S -  1) 

For  Phase 2 we set S = 2N/M + 1; we show later in Lemma 4 that 

(4) ~-M < N i < ~-M. 

The upper bound for sorting in Theorem 1 follows from the following bound, 
which is the main result of this paper: 

THEOREM 6. The number of I/Os used by the above distribution sort algorithm to 
sort N records is 

0 N ( ~  log(N/B) ~ 

log(M/B) f 

and the internal processing time is O(N log(N/B)(log M)/P' log(M/B)), with over- 
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whelming probability. In particular, the probability that the number of I/Os or the 
internal processing time is more than 1 times the average is exponentially small in 
/(log/) log(M/B). 

PROOF. We define T(N) to be the number of I/Os used to sort N records and 
TI(N ) to be the number of I/Os used for all the calls to Phase 1. We see from 
Theorem 7 that with high probability Phase 1 uses O(N/PB) I/Os to partition N 
records and to store each bucket evenly across the disks, so that the buckets can 
be retrived one-by-one in the next level of recursion with a total of O(N/PB) I/Os. 
The above construction gives us 

o(N) (5) TI(N) = ~ TI(Nj) + 
l <_j<_S 

with high probability. In particular, from Theorem 7, the probability that the 
quantity represented by the big-oh term in (5) is more than IN/PB is exponentially 

small in/(log/) log(M/B). In Phase 1 we set S ~ x/M/B/ln2(M/B); by (3) we have 
Nj < 3N/2(S - 1). Substituting this bound into (5) and iterating the recurrence 
until N < M, by which time Phase 1 certainly ends, we get 

(6) =O N TI(N) (p~  log(N/B) ~ 
log(M/B)'] 

with high probability. In all the instances of partitioning during the recursive levels 
of Phase 1, imbalance by more than a factor of l occurs independently with 
exponentially small probability. By convexity arguments, we can combine 
these probability bounds and bound the probability that TI(N) is more than 
I times the expression in the big-oh term in (6) by a quantity exponentially small 
in/(log/) log(M/B). 

In Theorem 8 we show that with high probability Phase 2 uses O(N/PB) I/Os 
in order to perform the last level of partitioning. The remaining buckets each 
contain at most M records and can be sorted internally. This gives us 

(7) =O N T(N) (fiB log(N/B) ~ 
log(M/B),] 

with high probability. Since the partitioning in Phase 2 is independent of 
those in Phase 1, we can bound the probability that T(N) is more than l times 
the expression in the big-oh term in (7) by a quantity exponentially small in 
/(log/) log(M/B). 

The bound on internal processing time follows because the internal processing 
is done one memoryload at a time. Each memoryload accounts for | I/Os, 
and O((M log M)/P') time is used for the internal sorting, partitioning, and 
overhead of each memoryload. [] 
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6.1. Phase 1. We use Phase 1 to partition the records of a file of N records 

when N > x / - ~ P / l n ( M / B ) .  The number S of partitions is approximately 

x/-M~/ln2(M/B); in particular, we set S -  1 to be the maximum of 1 and the 

largest power of 2 that is < ~ / l n 2 ( M / B ) .  In order to read a file into internal 
memory using full parallelism, the records of the file must be evenly distributed over 
the disks, as a result of the previous pass of Phase 1. This is the crux of the prob- 
lem. We show in Theorem 7 that Phase 1 does the partitioning using O(N/PB) I/Os. 

We read the records of the file into internal memory, one memoryload at 
a time. We assign the records to buckets based upon the partitioning elements 
and organize the records so that records in the each bucket are continguous 
in internal memory. We then write the records in each bucket of the memoryload 
to the disks, using full parallelism. We use a randomized approach to distribute 
the records. The main result of this subsection is showing that the requirement 

N > x / - ~ P / l n ( M / B )  assures with high probability that the records of a bucket 
(among all the memoryloads) will be spread out evenly among the disks. 

In order to link together the records in each bucket (to allow fast retrieval of 
the bucket in the next level of recursion), we need to remember the last track on 
each disk where a block belonging to that bucket was written; we store these 
pointers in internal memory. In order to reduce the number of pointers so that they 
can be kept in internal memory, we "cluster" the disks into C logical clusters, as 
shown in Figure 5. We set C to be min{P, S}. 

DEFINITION 3. A cluster is a logical grouping of consecutive disks. The C clusters 
are denoted c~1, ~2 . . . .  , cg c. The P/C disks in the kth cluster c~ k are denoted ~k, a, 
~k, 2 . . . . .  ~k,V/C" The ith track of a cluster refers collectively to the ith tracks of 
all the disks that comprise the cluster. Records are written to the disks in 
cluster-size units of P/C blocks, which we call a group. 

Algorithm--Phase 1. Let last_diskj, k and last_track~,k represent the last disk and 
the last track, respectively, written to in cluster cg k by bucket ~ .  Let next_track k 
represent the first track on cg k that has not been assigned to a bucket. We initialize 
last_diskj, k := last_track j. k := 0 and next_track k := 1. 

The file is processed memoryload by memoryload. For  each 1 < i < N/M,  the 
ith memoryload is brought into internal memory. The records are partitioned into 
buckets, based upon the partitioning elements. The records in each bucket are 
formed into blocks, and the blocks within a bucket are formed into groups of size 
P/C, except possibly the last group which might be only partially filled. We choose 

CL { DII 
~ .r'IC 

~ ,~.,"lC 

Fig. 5. Decomposition of the P disks into C clusters. 
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C groups to be written during this write cycle, and we assign these groups to 
clusters by choosing a random permutation of {1, 2 . . . . .  C}. This is repeated C 
groups at a time until the memoryload is written. (This is the only place where 
randomness is used in Phase 1.) 

What  remains is to assign the blocks in a group to the disks in a cluster. In 
each group we have a maximum of P/C blocks. We do not want to have empty 
tracks on the disks, so we cycle through the disks in the cluster. Let us assume 
that a group belonging to bucket ~ is assigned to cluster cg k. We assign the first 
P/C - last diskj, k blocks to disks last diskj, k + 1 . . . . .  P /C on track last_trackk; 
we assign the remaining blocks, if any, to disks 1, 2 . . . .  on track next_track k. We 
then update the value of last_disk j, k, and when the current track gets filled, we set 
last_trackj, k to next_trackk and increment next_trackk. 

For  each memoryload we retain partially filled blocks in internal memory  until 
they are completely filled, but groups are written to the disks even if they contain 
fewer than P/C blocks. Each time a group from bucket 5 j  is written to cluster C6k, 
we fill up the last track written on that cluster for 5 i before we start a new track; 
that is, once a bucket writes to a particular track of a given cluster, it will not 
write to another track of that cluster until the current track is completely filled. 
This has the effect of making each track of each cluster completely filled, except 
possibly for the last track of the cluster for each bucket. 

In order for the recursion to work, we must link together the records of each 
bucket. This will be done with pointers being made part  of the blocks when they 
are written to disk. Since records from a bucket are written as a group, we only 
have to save pointers for the groups. Also, since an entire track in a cluster is 
written to by only one bucket, the linking can be done by pointers in the block 
on the first disk of each track in the cluster. To do this, we have one "previous 
group"  pointer for each track of each cluster, which we call pg. Each pg pointer 
links together the groups of a given bucket that are on a given cluster, in reverse 
order. If a block in a group from 5j  is written to the first disk of a cluster Cgk, the 
pg pointer of that block is set to last_trackj, k. 

Once the assigning is done, we can write the chosen C groups to their assigned 
disk locations. When we finish processing the file, we save on the disks the pointers 
last_diskj, k and last trackj, k, so that we can locate the records for each bucket 
during the next level of recursion. 

last_diskj, k .'= 0 for all j, k; 
next_tracke:= 1 for all k; 
last_trackj, k-'= 0 for all j, k; 
for each memoryload of records Jgl (1 <_ i <_ N / M )  do 

begin 
read Mi into internal memory;  
partition the records into buckets based upon the partitioning elements; 
for each bucket Sfj (1 _< j _ S) do 

begin 
form the records into blocks of size B; 
form the blocks to groups of blocks of size P/C 
end; 
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for each write cycle ~ do 
begin 
choose C groups of blocks to be written in ~/~t; 
assign the groups to clusters via a random permutation of {1, 2 . . . . .  C}; 
{ assign the blocks in each group to the disks in a cluster } 
for each cluster (~k (1 ~ k < C) do 

begin 
let ~ be the bucket whose group is assigned to ~k; 
for each disk ~k, d such that P/C - last_disk j, k < d < P/C do 

schedule the next block to be assigned to last_trackj, k on ~k,a; 
if still more blocks to be assigned then 

begin 
temp_pg := iast trackj, k; 
last_track~, k := next_trackk; 
next_trackk := nexktrackk + 1; 
for each disk ~k,d such that 1 < d < P/C - last_diskj, k do 

begin 
schedule the next block to be assigned to last_trackj, k on ~k,d; 
if d = 1 then set the pg pointer of block to temp_pg 
end 

end; 
update last_diskj, k 
end; 

write the blocks in ~ to the desired disks 
end 

end; 
write pointers last_diskj, k and last trackj, k, for all j, k 

Analysis of  Phase 1 

THEOREM 7. With overwhelming probability, each pass of Phase 1 uses O(N/PB) 
I/Os to partiton a file of N records. In particular, the probability that the 
number of I/Os used is more than l times the average is exponentially small in 
/(log 1).max{log(M/B), N/PDS}. 

PROOF. The file is read into internal memory one memoryload at a time. The 
actual number of records read in each time might be less than a memoryload since 
the pointers (last_disk, last_track, and next_track) and the partially filled blocks are 
retained in memory during the partitioning process. There are C(2S + 1) pointers 
needed; assuming each pointer does not exceed a record, the pointers take up 
C(2S + 1) records. Since each of the S buckets might have a partially filled block 
of B -  1 records, the partially filled blocks can take up at most S ( B -  1) 
records, and we need space for the S - 1 partitioning elements. Therefore, at least 
M - C(2S + 1) - SB + 1 records can be read in. For  convenience, we redefine M 
to be M - C(2S + 1) - SB + 1, so that a full memoryload can be read into or 
written from internal memory. This changes the value of M by at most a small 
constant factor. 
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Let Z be the number of I/Os required during the next pass of Phase 1 or 
Phase 2 to read in all the subfiles corresponding to the buckets formed from the 
current file by Phase 1. We want to show that 

o(N) Z - -  

with high probability. We do that by showing that 

Pr Z>_I 

is exponentially small in/(log l)'max{log(M/B), N/PBS}. 
The number of inputs needed in the next pass of Phase 1 or Phase 2 in order 

to read into internal memory the subtile corresponding to some bucket formed 
by the current pass of Phase 1 is the maximum number of tracks devoted to 
that bucket among all the clusters. Let Xj, k represent the number of tracks of 
cluster c~ k that have been assigned to bucket 6ej. We have 

Z = Z m a x  {Xj, k}. 
1 <_j<S 1 <_k<_C 

This gives us 

(8) P r { Z > / ~ B } = P r t  ~ max{Xj, k}>>_l~t-  
k l  <_j<S 1.<k.<C 

The max term in (8) is the difficult expression to analyze. We use the fact that 
N > x//-~P/ln(M/B) in Phase 1 to show that the X j, k are very evenly distributed 
with respect to k. We have 

max{Xj, k } > l ~ t  { N-p~B) _ _< Pr 3j, max {Xj, k} > l 
l<_k<C l < k < C  

< S  Pr tl.l<k<cmax (Xj,,k}~l NJ~BB} 

where N~ is the number of records in bucket ~ ,  and j' is any value of j that 
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a priori (before the partitioning elements are chosen) maximizes 

Pr{lmaxc{XJ, k} _> INffPB}. 

To bound (9), we use ChernolTs bound [7]" 

LEMMA 1. I f  X is a nonnegative random variable and r > 0 we have 

E(e rX) 
Pr{X >_ u} < - -  

e r u  

Before we apply ChernolYs bound, we must construct the appropriate scenario. 
We let gt denote the number of clusters written to from bucket ~ ,  during 
write ~ ,  for 1 < t _< R, where R is the total number of write cycles used in 
Phase 1. We have 

N j, N j, C 
(10) ~ g , <  + C = - - + C .  

x<_t<_R PB/C PB 

The extra " +  C" term in (10) appears because the last track on each of the C 
clusters might be only partially filled. We define G t to be the number of groups 
belonging to bucket 5j, in write ~ that are assigned to cluster cga. Because only 
one group can be written to any one cluster in a write cycle, G, is restricted to 
the values 0 and 1. We have Pr{G, = 1} = g,/C and Pr{Gt = 0} = 1 - g,/C. Let 
ff~,(z) be the probability generating function for G,: 

(11) ffG,(z) : Pr{Gt = 0}z ~ + Pr{G, = 1}z ~ 

gt = l _ g _ t + _ z  
C C 

gt ( z -  1). = 1 + ~  

Let Nxj,,(z) be the probability generating function for Xj ,  1. We can bound Xj ,  1 
by the sum of independent random variables: Xj,, 1 < Gx + G2 + "'" + GR. For  
purposes of bounding (9), let us consider that Xj ,  1 = G1 + G2 q'- " '"  q- GR. Using 
(11), we have 

(12) f r  = ~r +~2+.- .  + o , ( z )  

= fCo,(z)  x {G~(z)  x . . .  x ~r 

(g'(z-1)) = [ I  1 + ~  . 
l <_t<_R 



130 J.s. vitter and E. A. M. Shriver 

By Chernoffs bound in Lemma 1, we have 

(13) 
N j,} E ( e x p ( r X g , ,  1)) 

Pr X j, 1 > - 1 ~  <_exp(r lNjPB)  

for each r > 0. We can express the numerator in (13), using (12) and the definitions 
of expected value and probability generating function, as 

(14) E(exp(rXj ,  1)) = Z Pr{Xj, , = t}e ~' 
t>_0 

= ~xy.,(e r) 

( g' ) = 1-[ 1 + ~ ( e r - -  1) �9 
l <_t<R 

To bound (14), we use the following lemma, which follows easily from convexity 
arguments. 

LEMMA 2. I f  ~ l<i<R al = Q and a i >_ O, for 1 <_ i <_ R, then 1-Ii<_i<R al is max- 
imized when a 1 = a 2 = "'" = aR = Q/R. 

By (10) and Lemma 2, we can maximize (14) by setting g~ = Ny C / R P B  + C/R 
for each t. Thus 

E(exp(rXj,. 1)) < l-[ (1  + 
l <_t<_R 

(NJ' + PB)(er--  I ! ) = (  I (N2, + RPBPB)(e* -- 1)) R' 

Substituting this bound into (13), we get 

Nj,} (1 + ((Nj, + PB)(e' - 1))/RPB) a 
Pr X j,, 1 >- l PB  <- exp(rINi,/PB ) 

Hence, by (8) and (9), we have 

(15) Pr Z > _ l  ~ S C  
(1 + ((Nj, + PB)(e* -- 1))/RPB) R 

e x p ( r I N j P B )  

By Lemma 3 in Section 6.4 and the Phase 1 bounds N > x / M B P / I n ( M / B )  and 

S - 1 < ~M~B/ ln2(M/B) ,  we have 

N j , + P B = N r  1 + <_N j, 1 +  N 
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where fl = 2PB(S - 1)/N <_ 2/In(M/B). Substituting this bound into (15), we have 

(16) Pr{Z _I }_ SC (1 + (Nj,(1 + fl)(e r - 1))/RPB) R 

exp(rlN j,/ P B) 

From the bound (1 + a) b < eab, for a > - 1 ,  we can approximate the numerator 
in (16) and get 

(17) pr{Z>l~---B}<_SCexp(Nj'(l + fl)(e~; 1 ) - r lN j ' )  

= SC exp ((1 + f l ) (e ' -  1 ) -  r/) ~ . 

Picking r = ln(//(1 + fl)), for l > fl + 1, we have 

{ lN}  (( l)Nj)  (18) Pr Z >  < S C e x p  l - l - f l - l l n l +  fl 

By plugging into (18) the inequality ln(1 + x) > x - x2/2, for x > 0, we get 

Pr > I ~  < S C e x p  2 ( l + f l )  + +fl)2 j ~ "  

For  example, when 1 + fl < 1 < ~-, we have the exponentially small bound 

(19) Pr Z > l ~  < S C e x p -  

As l gets larger, we get directly from (18) the exponentially small bound 

> l  N N~, + 
Note that SC < M/B and by Lemma 3 we have Nj,/PB > �89 >_ �89 ln(M/B); 
thus the exponential term in (20) gets smaller exponentially more quickly than the 
SC term grows, even for relatively small I, and, in the early passes of Phase 1, 
Nj,/PB can be substantially larger than ln(M/B). 

6.2. Phase 2. In Phase 2 we want to sort N < x/~MBP/ln(M/B) records in one 
pass of the distribution sort using O(N/PB) I/Os, which is optimal. We use 
S = 2N/M + 1 partitions. This range of values of N is the case that cannot be 
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1 2 1 

Fig. 6. The shaded tracks collectively represent a logical track. 

handled by Phase 1, since when N is relatively small the records in each bucket 
will generally not be distributed evenly among the clusters. We want to guarantee 
that each bucket will consist of at most  M records so that no further partitioning 
is needed, and we want to distribute the blocks of each of the S buckets evenly 
over the disks. 

Before we give the algorithm, we first define the notions of "logical t rack" and 
"diagonal":  

DEFINITION 4. A logical track is defined as I = M/PB consecutive tracks that are 
accessed in I consecutive I/Os. When accessing the ith logical track, we actually 
access tracks I(i - 1) + 1, . . . ,  Ii. This is shown in Figure 6. 

DEFINITION 5. The ith diagonal, for 1 < i <_ N/M, is defined as the memoryload 
of M/B blocks in which the first set of ME/BN blocks consists of the ith logical 
track of disks ~1 . . . . .  ~MP/N, the second set of M2/BN blocks consists of the 
(i + 1)st logical track of disks ~MP/N+ 1 . . . . .  ~2MP/N~ and so on, wrapping back to 
i = 1 when i exceeds N/M. Diagonal 1 is illustrated in Figure 7. 

It  follows from the condition N < x / ~ P / l n ( M / B )  of Phase 2 that 1 < 
MP/N < P, and hence each diagonal is well defined. Every block in the file is a 
part  of a unique diagonal, and every diagonal contains the same number of blocks 
from each logical track. 

~MP/N 
~MP/N+1: ~ I ~ ~  
~2~e/N 

~P-MP[N+I 

~Dp 
Fig. 7. The shaded areas collectively represent diagonal 1. 

M~/Nrecords 
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Our algorithm consists of two passes: 

Pass 1. We scramble the records, memoryload by memoryload, and write them 
back to the disks. (This is where we use randomness in Phase 2.) This step 
can be done concurrently with the choosing of the partitioning elements. 

Pass 2. We read in the file, one diagonal (memoryload) at a time. For  each 
memoryload, we partition the records into buckets, based upon the 
partitioning elements. (The number of records in each bucket of a memory- 
load will be evenly distributed with high probability.) We write one block 
to disk from each bucket, cycling through the tracks on disk; we repeat 
this process until all the records of the memoryload are written. 

At the end of Pass 2, each bucket will contain at most M records; the sorting can 
then conclude with a final series of internal sorts. 

It is convenient to think of Phase 2 as an instance of the maximum occupancy 
problem in hashing, but different from the instance we used for motivation of 
Phase 1 in Section 6.1, in which we scrambled buckets randomly among the disks. 
Here we consider, for each separate diagonal, scrambling the M records of the 

diagonal randomly among the S buckets. The upper bound N < ~ - ~ P / I n ( M / B )  
guarantees that each diagonal read during Pass 2 contains some number of blocks 
from each of the NIP logical tracks; the random scrambling of the logical tracks 
in Pass 1 means that any given diagonal can contain any given record in the 
file. Since the number M of records per diagonal is substantially more than the 
number S of buckets, the analogy to hashing suggests for each diagonal that the 
distribution of the records in the buckets will very likely be even. This general 
intuition is verified formally for the actual problem at hand in Theorem 8. 

Algorithm--Pass 1 of  Phase 2. For simplicity of exposition, we assume that the 
file resides in packed format across the disks, track by track. In reality the file 
formed by Phase 1 is not packed, but it can be read into internal memory using 
full parallelism, so our assumption is valid. 

We read in all the records, processing them one logical track (memoryload) at 
a time. For  each memoryload, we randomly permute the records in internal 
memory. Next we form blocks, based upon the permuted ordering, and we write 
the blocks back to the logical track from which they were read. 

for each memoryload of records ~/i  (1 < i < N/M) do 
begin 
read J / i  from the ith logical track into internal memory; 
randomly permute the M records; 
write J//i to the ith logical track 
end 

Algorithm--Pass 2 of  Phase 2. We read in all of the records, one diagonal 
(memoryload) at a time. The records for each memoryload are partitioned into 
buckets based upon the partitioning elements and then written to the disks as 
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follows: The records within each bucket are formed into blocks. We then write 
the blocks to the disks, including partially filled blocks, in the following order: 

of ~1, 
of 502, 

block 1 
block 1 

block 1 
block 2 
block 2 

of 5% 
of 5~ 
of 5~2, 

block 2 of 5as, 
and so on. 

If one of the buckets runs out of blocks before the others, dummy blocks for that 
bucket are written. The disks are written to, track by track, in the cyclical order 
1,2 . . . . .  P. 

k :=  1; 
for each diagonal J / i  (1 < i <_ N/M) do 

begin 
read Jgi from the ith diagonal into internal memory; 
partition the M records into buckets based upon the partitioning elements; 
form the records into blocks of size B; 
while a nonempty bucket remains do 

for j := 1 to S do 
begin 
schedule next block from 5j  to be written on next available track of ~k, 

assigning a dummy block if ~ is empty; 
k := (k rood P) + 1 
end; 

write the memoryload to the desired disks 
end 

By our assumptions, N, M, and P are powers of 2, and thus S = 2N/M + 1 is 
relatively prime to P. If, however, the least common multiple d of S and P were 
to satisfy d < SP, then the above code would have to be modified so that after 
each dis write cycles the order that the disks are written to would be cyclically 
shifted by one. The shifting would prevent each bucket from being written to only 
a small subset of the disks. 

Analysis of  Phase 2 

THEOREM 8. With overwhelming probability, Phase 2 of the distribution sort 
algorithm uses O(N/PB) I/Os to complete the sort of N records. The probability that 
the number of I/Os used is more than l times the average is exponentially small in 
/(log l) logE(M/B). 
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PROOF. The actual number of records read in each memoryload might be less 
than M records, since in Pass 2 the S - 1 = 2N/M partitioning elements are 
retained in memory.  The maximum size of each bucket formed must be less than 
M in order for the sorting to be completed by a series of internal sorts in the next 
pass, as described in Section 6.3, since the final sorting pass requires that a 
track/disk pointer and partially filled block be retained in memory. At most 
M - S - 1 records can be read per memoryload during Pass 2, and it is possible 
that only M - 1 - (B - 1) = M - B records can be read per memoryload during 
the final internal sorting step, assuming that the disk/track pointer does not exceed 
one record. For  convenience, we redefine M to be M -  B -  S so that a full 
memoryload can be read into or written from internal memory  in Pass 2. This 
changes the value of M by at most a small constant factor. 

The reading of the records in Pass 2, the reading and writing of the records in 
Pass 1, and the writing of the records in the final pass described in Section 6.3 
use O(N/PB) I/Os. We can restrict our attention to the remaining set of I /Os we 
have to consider, namely, the write operations in Pass 2 and the read operations 
in the final pass. These two quantities are equal, so we restrict our attention to 
the number  of write operations in Pass 2. Let Z be the number  of I /Os needed to 
write all the records, one bucket at a time, in Pass 2. We want to show that 

o(N) (21) z = 

with high probability. In particular, we shall show that 

is exponentially small in/( log l) log2(M/B). 
Let ~ be the number of times a set of S blocks is written in Pass 2, and let 

Y~.j represent the number of records found in memoryload J//i belonging to 
bucket ~ .  We have 

(23) ~= I<,~<N/M max ~FYi'J-];. 
�9 l _ < i _ < s ( / B / J  

Since the last write for each bucket may be partial we get the bound 

Note that Z is expressed in (24) in terms of ~, which by (23) is the sum 
over i of maxl<_j<_s{[-Yi.j/B]}. The hard part  of the analysis is showing that 
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max~_<j_<s{[-Y~,/B1} is with very high probability comparable with the average 
value of each [-Y~,/B1. We have 

(25) 

_< Pr > 1 PBS P 

f t = P r  ~ ___ t ~  - ( e -  1) 

= P r  t ~ max~[Yi 'Jl~>l N } 
,.I<_~<_N/M ,_< j_<sU B U - ~ - ( p  - i )  . 

Let us define j '  to be any value o f j  that a priori (before the partitioning elements 
are chosen) maximizes the expression Pr{FYI,j/B-] > lM/BS - ( P  - 1)M/N}. We 
can bound (25) as follows: 

(26) Pr f ~ max ~Y/ ' J l~  < / N } 
U_<i_<N/M ,_~j_~sl.t B / . I  - }-S - (P - 1) 

N Pr~" max ~l-v~'J-]~ _> l M~ (P N -1)M} 
---~,~ / . , _ < j _ < s / . / B / J  

SN { [~ ]  M (P NI)M} 
< - - P r  > l  
- M  - BS 

_ _  SNM PrIY14' >/- MS (P-1)MBN (B-1)} .  

Let us define l' so that 

M M (P-1 )MB (B 1). 
(27) l ' - -  = l -- 

S S N 

Substituting the Phase 2 bound S =  2N/M + 1 into (27), we find after 
some algebraic manipulation that l' > I - 2PB/M - 2NB/M 2. Since N < 
~r~P/ln(M/B) in Phase 2, it follows that l' is at most a small constant amount 
less than l; in particular, we have l' > l - 2 - 2/In(M/B). Substituting this value 
of l' into (26) we get 
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Let r i , j , k  represent the number of records found in memoryload ~ggi 
belonging to bucket 5 j  read from the kth logical track. In particular we 
have ~I<_k<_N/M Y~,y,k = YI,j'. Let #k represent the expected value of Yx,i',k" By 
Lemma 4, each bucket contains at most 85M records of the file, and there 
are N / M  memoryloads. Thus, we have 

5M 5 M 2 

]2k = E(YLj') < - 
1 < k <_ N/M - -  N / M  8 N 

Let T~, k be the number of records belonging to bucket ~ on the kth logical track. 
We have ]2k = Tj',kM/N. We want to bound Pr{YI,j, > l 'M/S}. We do that by 
considering two cases: (1) small #k and (2) large ]2k" The two cases are determined 
by comparing ]2k with the average size that YI,j',k would be if all the Tj, k terms 
were equal to M2/N.  Let 6 = 389 l' -3-9.15 We have 

Pr Yx,y,k > ]2k + 6 
1 <k<_N/M 
#k < M3/N 2 

+ E Pr{Y1,j',.k > ]2k + 612k}. 
1 <_k<_N/M 
~k >-- M3/N 2 

The above bound (29) holds since 

E ]2k -~ "~- 
1 <_k<_N/M 
tak < M3/N 2 

(]2k + <- + - -  
1 <k<_N/M 
Irk >_ M3/N 2 

M 2 

N 

M 
= (5, + ~ 3 )  - -  

S - 1  

3 M  
< + - -  

2 S  

M 
m I '  

S 

The probability term in (28) is expressed in (29) as a sum of tails of distributions 
of Yl,y,k, where the starting point of each tail is sufficiently far from the mean ]2k 
SO that the result is exponentially small, as we shall see. Intuitively, in order to 
get a small bound on the probability term, when ]2k is small the tail should start 
at some absolute distance from ]2k, and when ]2k is larger the tail should start at 
some multiple of ]2k" 

We want to get tight upper bounds for the tails of the probability distribution 
of YLj',R listed in the summations in (29). Both summands have the form 
Pr{X > ]2 + v}, where X = Yl,j',k, ]2 = Ilk is the mean of X, and v is a positive 
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value. Let L = M2/N be the number of records read from the ith logical track by 
any memoryload. The random variable X = Ylo'.k has the hypergeometric prob- 
ability distribution 

(30) er{X = t} = 
t / k ,  L - - t  / 

with mean 

(31) , - 
Tj, kL Tj~ kM 

M N 

One approach to bounding Pr{X > # + v} is to use Chernoff-type bounds, as 
we did in Section 6.1, except in this case we would have to use a two-variable 
version involving the supergenerating function of (30), which has a simple closed 
form. A simpler approach is to consider the ratio R(t) defined by 

Pr{X = t + 1} 

e r{X = t} 

We have 

(32) P r { X > # + v } = P r { X = # + v } + P r { X = / t + v + l } + . . .  

= P r { X = # } P r { X = # + v }  
Pr{X = #} 

+ Pr{X = ~, + 1} er{X = ~ + v + 1} + " ' .  
er{X =/~ + 1} 

Using (30), it is easy to see that R(# + v) is monotone decreasing in v, and hence 
we have Vr{X = # + v}/Vr{X = #} > Vr{X =/~ + v + 1}/Pr{X = # + 1}. Sub- 
stituting this bound into (32), we get 

(33) P r { X > # + v } < P r { X = # + V } ( P r { X = # } + P r { X = k t + I } + ' " )  
Pr{X =/~} 

Pr{X = # + v} 
< 
- Pr{X = #} 
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Note that we can write Pr{X = # + v} in the following form: 

(34) P r { X = # + v } = P r { X = # } P r { X = # + l } P r { X = # + 2 }  
Pr{X=#}  P r { X = # + l }  

Pr{X = # + v} 
X 

Pr{X = # + v-- 1} 

= Pr{X = #} 1-[ R(# + t). 
O<_t<v--1 

Using (34) and (33), we get 

(35) Pr{X _> # + v} _< I~ R(p  + t). 
O<_t<_v-1 

From (30), (31), the definition of R(t), and the bounds 0 < t < Ty,k < M, we find 
after some algebraic manipulation that 

(36) R(# + t) = 
(Tj,,k -- (# + t))(L -- (# + t)) 1 

< 

( # + t + l ) ( M - T j ,  k - L + # + t +  1 ) -  l + t / ( # + l ) "  

Thus, by (35) 

( 1 i) Pr{X>_#+v}_< H - l + t / ( # + l  " 
O<_t<_v-1 

Taking the logarithm of both sides and bounding the sum by an integral, we get 

(37) ln P r { X > # + v } <  ~ In(-1 1 )) 
O_<t<:v-1 "~ t/(# + 1 

< - f 2 - 1 1 n ( l + ~ + l + l )  dY 

= --(# + v ) ln(  p + v~ + v -  1 
\ # +  1 /  

_< - (~  + v ) l n ( ~ ) +  v - 1 -  (p + v) ln( l  - - -  
1). 

# + 1  

Taking the exponential of both sides, we get 

( ( 1)) 
(38) P r { X > # + v } <  exp v - l - ( # + v )  ln 1 # + 1  " 
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Let us start with the summand of the second sum in (29). By applying (38) and 
the bound In(1 - 1/(# + 1)) > -1 /# ,  we get 

(39) Pr{Yl,j',k ~ #k At- 6#k) ~ (1 + 6)-t~+O)~'kexp(6#k + 6). 

Since #k > M3/N2,  we get by some analysis that (39) is maximized when 
#k = M3/N2,  and we get 

( 4 0 )  Pr{Yl,~,,k >- #k + 6#k} <-- (1 + 6) -~+~)M3/N2 exp 6 ~ -  + 6 . 

Note that in Phase 2 we always have M a / N  2 > lnE(M/B). The bound in (40) is 
exponentially small in 62 log2(M/B) when 6 is small and exponentially small in 
6(log 6) log2(M/B) when 6 is large. For example, if 6 < �89 we can use the bound 
ln(1 + x) > x - x2/2, for x > 0, to get 

P r { Y l , y , k > # k + 6 # k } < - - e x p  - - ( l + 6 )  ln a ~  (6--62/2) exp 61n 2 B + 6  

= exp(6 62(1 -- 6) ln2 M )  
2 

< exp 6 -- ~ In z , 

which is exponentially small when 6 > 4/ln2(M/B). 
Similarly, by (38) and the bound ln(1 - 1/(p + 1)) > - 1/#, the summand of the 

first sum in (29) for #k ----- �89 is 

(41) 

Pr Y,,S, k 2 # k + 6 ~  < 1+6 exp t t~ ) t l +  ~ 
#k / 

which can be bounded by an expression similar to the right-hand side of (40). For 
smaller #k, we have from (38) 

(42) Pr Yl,j',k > #k + 6 

(M3/N2~-(#k+t~M3iN2) (6M3 ( 6M3~ 2) 
< 1 + 6  expt  ~ - - 1 -  #k+ N 2 , ] In  , 

#k / 

which is exponentially decreasing in a way similar to (40). 
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In conclusion, by combining (29), (40), (41), and (42), we can bound the 
probability (28) by 4N3/M 3 times a term exponentially small in/( log/)  log2(M/B). 
The 4N3/M 3 term is very quickly masked by the exponentially small term, since 

in Phase 2 we have N < x / ~ P / l n ( M / B ) ,  which implies that Na/M 3 < (M/B) 3/2. 
[]  

6.3. Completing the Sort. After Phase 2 is completed, we can read the blocks 
belonging to each bucket ~ using an optimal number O(N/(PBS) of I/Os; the disk 
and track location of every block (including the dummy blocks) belonging to each 
partition can be easily computed because the placement of the blocks was 
deterministic. Bucket ~ contains at most M records, so it can be sorted internally. 
We sort the records of the bucket, form blocks, and write the blocks to the next 
available track/disk, cycling through the disks. We retain in internal memory the 
last block if partially full. The records in the final partially filled block from 
can be treated as members of ~ +  1 when ~ +  1 is processed. 

k :=  1; 
for each bucket ~ (1 < j < S) from Phase 2 do 

begin 
read ~ into internal memory; 
sort the records in internal memory by key values; 
form blocks of size B; 
for each full block do 

begin 
schedule the block to be written to the next available track on ~k; 
k := (k mod P) + 1 
end; 

write the full blocks of 
end 

6.4. Findin9 the Partitioning Elements. All that remains is to show how to 
compute with O(N/PB) I/Os the S - 1 partitioning elements bl, b 2 . . . .  , bs-1 that 
break up the file into S roughly equal-sized buckets. The j th bucket ~ consists 
of those records R such that 

b j_ i < key(R) < b j, 

where b o = - ~  and b s = + ~ .  We need to show that conditions (3) and (4) of 
Section 6 are satisfied. Without loss of generality, we assume for simplicity of 
exposition that N, M, and S - 1 are powers of 2. 

Our procedure for computing the approximate partitioning elements must work 
for the recursive step of the algorithm, so we assume that the N records are stored 
in O(N/B) blocks of contiguous records, each of size at most B. Using the approach 
of [1], we first describe a subroutine that uses O(n/PB) I/Os to find the record 
with the kth smallest key (or simply the kth smallest record) in a set containing 
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n records, in which the records are stored on disk in at most O(n/B) blocks: We 
load the n records into memory, one memoryload at a time, and sort each of the 
[-n/M] memoryloads internally. We pick the median record from each of these 
sorted sets and find the median of the medians using the linear-time sequential 
algorithm developed in [2]. The number of I/Os required for these operations is 
O(n/PB + n/M) = O(n/PB). We use the key value of this median record to partition 
the n records into two sets. It is easy to verify that each set can be partitioned 
into blocks of size B (except possibly for the last block) in which each group is 
stored contiguously on disk. It is also easy to see that each of the two sets has 
size bounded by 3n/4. The algorithm is recursively applied to the appropriate half 
to find the kth smallest record; the total number of I/Os is O(n/PB). 

We now describe how to apply this subroutine to find the S - 1 approximate 
partitioning elements in a set containing N records. Let p and q denote powers 
of 2 to be specificed later. As above, we start out by sorting N / M  memoryloads 
of records, which can be done with O(N/PB) I/Os. Let us denote the ith sorted 
set by .///i. We construct a new set J~' of size at most Nip consisting of the kpth 
record (in sorted order) of J/r for 1 < k < M/p and 1 < i < N/M.  The records in 
~"i can be output one block at a time. The total number of contiguous blocks of 
records comprising J//' is O(I~'I/B), so we can apply the subroutine above to find 
the record of rank jq in J//' with only O([~#'I/PB)= O(N/pPB) I/Os; we call its 
key value b i. Thus, if p = Y~(S), the S -  1 bjs can be found with a total of 
O(SN/pPB) = O(N/PB) I/Os. 

The above description can be expressed in the following pseudocode: 

for each memoryload of records ~/'i (1 < i < N/M) do 
begin 
read J//i into internal memory; 
sort the records in internal memory by key values; 
construct ~/'i so that it consists of every pth record in memory; 
write ~///i 
end; 

! I . 

~ "  := J//ll + "'" + "/#N/M, 
for j := 1 to S - 1 do 

bj := record of rank qj in J///' 

The two lemmas below show that the partitioning is done evenly in Phases 1 
and 2, respectively. 

LEMMA 3. In the above partitioning algorithm, the number of partitioning 
elements S satisfies S = N/pq + 1. I f  we choose p = max{2 , (S -1 ) /4}  and 
q = N / ( S -  1)p in Phase 1, where ( S -  1)2<_2M, then condition (3) of Section 
6 is true; that is 

N 3N 
- - < N  j < - - .  
2(S - 1) 2 ( S -  1) 
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LEMMA 4. I f  p = M2/8N and q = 4N/M in the above partitionin9 algorithm 
for Phase 2, then S = 2N/M + 1 and condition (4) of Section 6 is true; 
that is, 

3M < Nj < -~M. 

The choices of p in Lemmas 3 and 4 satisfy p = f~(S), as can be verified by using 

the condition N < x//-~P/ln(M/B) for Phase 2, and thus the partitioning can be 
done with O(N/PB) I/Os, as mentioned above. 

Lemmas 3 and 4 are special cases of the following general partitioning lemma: 

LEMMA 5. The size Nj of the j th bucket 5ej produced by the above partitionin9 
aloorithm satisfies 

N N 
p q - p ~ < N j < p q + p  M.  

PROOF. Each element in J//' corresponds to a collection of p elements in the 
original file. Since the chosen partitioning elements are q apart in ~/ ' ,  this gives 
us pq elements that could be in SPj. Let e~ and e i+ 1 represent the pith record and 
p(i + 1)st record from the file in some memoryload. If ei < bi < ei+~, then the 
p - 1 elements between ei and ei+ 1 may also be in ~ .  Thus there may be p - 1 
additional records from each of the memoryloads, except from the memoryload 
that contributed bj. This gives us the upper bound 

N 
Nj<_pq+ - 1  ( p - 1 ) < p q + p ~ .  

By similar reasoning, we get the lower bound 

N N 
Nj > p q -  ~ ( p -  1) > p q -  p ~ .  [] 

Lemmas 3 and 4 follow directly from Lemma 5. The condition (S - 1) z < 2M 

in Lemma 3 is satisfied by the setting S < x / -~ / ln2 (M/B)  + 1 for Phase 1, and 
we have pN/m = (S - 1)N/4M < N/2(S - 1). 

6.5. Permuting for Very Small P and B. Aggarwal and Vitter [1] show in their 
one-disk model with P block transfers per I/O that the optimal way to permute 
when P and B are very small is the naive method of repeatedly moving P records 
in each I/O from their inputed positions to the desired final positions. This makes 
no use of blocking; each block transfer is used to transfer a single record. The 
resulting number of I/Os is O(N/P). 
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This algorithm does not translate directly to our more realistic two-level model 
with parallel block transfer, because there is no way to guarantee that the P block 
transfers involve separate disks. Instead, we achieve the desired O(N/P) I/O bound 
by using the following technique inspired by Phase 1: In the first pass, the records 
are read, one memoryload at a time. Each memoryload is permuted randomly in 
internal memory and written back to disk in the new permuted order. As a result, 
the records that need ultimately to end up on a particular disk i (call them 9~) 
are spread with high probability uniformly among all the disks. This is true for 

each 1 < i < P. (It might take two passes to do this, using x//P bins each time 
instead of P so that there is enough internal data structure space to manage the 
placement of all the bins on the disks.) 

In the deterministic second pass, for each 1 < i < P in parallel, one block of ~i  
is read into internal memory. Then B writes are executed; during each write, one 
record from ~t~ is written to disk i, in parallel for each 1 < i < P. 

The total number of I/Os is O(N/P), as desired, asuming that the first pass 
spreads each ~i  uniformly among the P disks. This uniformity condition can be 
proven using a modification of the analysis of Section 6.1. 

7. Standard Matrix Multiplication. The following is a basic divide-and-conquer 
approach for scheduling the multiplication of two k x k matrices using the 
standard algorithm: 

1. If k < x / ~ ,  we multiply the matrices internally. Otherwise we do the following 
steps: 

2. We subdivide A and B into eight k/2 x k/2 submatrices: A1-A 4 and B~-B 4. 

A 3 A , J  B3 B 4  

We reposition the records of the eight submatrices so that each submatrix is 
stored in row-major order. 

3. We use the algorithm recursively to compute 

C 1 = A1B 1 + A2B3, 

Cz = A1B2 + AzB4,  

C 3 : A3B 1 + A4B3, 

C4 = A3B2 + A4B4. 

4. We reposition C1-C 4 so that C is stored in row-major order. 

We partition secondary storage into four contiguous parts, one part for each 
set of submatrices. We define T(k) to be the number of I/Os used to add two k • k 
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matrices. Step 2 takes O(kE/PB) I/Os since, in the worst case, we can have at most 
four blocks that are assigned to be written to the same disk. The number of I/Os 
needed to do eight multiplications of submatrices recursively in Step 3 is 8 T(k/2), 
and the additions take a linear number O(k2/PB) o f  I/Os, since all of the 
submatrices are packed in blocks. Step 4 takes O(k2/PB) I/Os; it is similar to 

Step 2. When k > w/M, we get the following recurrence: 

\PB/' 

where T(v/M ) = M/PB. This gives us the desired I/O bound from Theorem 5. 
The recurrence for I(k), the amount of work done internally, satisfies 

I(k)= 8I(~)+O(k 2 log P'), 

where I(~/M) = M/PB, which yields the desired upper bound I(k) = O(k3).  The 
internal processing time is O(I(k)/P). 

8. Conclusions. In this paper we have introduced a new and realistic model of 
two-level storage with parallel block transfer between the internal memory and 
secondary storage. We have developed practical algorithms for sorting, permuting, 
matrix transposition, FFT, permutation networks, and standard matrix multi- 
plication, that use an optimal number of I/O steps. The algorithms for sorting and 
permuting are based upon a randomized version of distribution sort. The partition- 
ing is done by a combination of two interesting probabilistic techniques in order 
to guarantee that the accesses are spread uniformly over the disks. Applications 
of these techniques to obtain optimal algorithms for the P-HMM and P-BT 
hierarchical memory models are developed in the companion paper [19]. 

Preliminary work suggests that the amount of randomness in our distribution 
sort algorithm can be greatly reduced by applying universal hashing [3] in an 
interesting way. However, the problem of removing randomness completely from 
this technique is more difficult. 

The study of I/O efficiency has many applications besides the ones we studied 
in this paper. For example, graphics applications, multidimensional search pro- 
blems, and iterated lattice computations often involve I/O-bound tasks. We expect 
that the algorithms and insights we develop in this paper will have many 
applications in those domains. 

Addendum. At the beginning of Section 6 we gave some "intuitions" as to why 
merge sort seemed especially hard to implement with an optimal number of I/Os 
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in our  two-level  d isk  model .  O d d l y  enough,  a prac t ica l  and  op t ima l  determinis t ic  
sor t ing a lgor i thm was recent ly deve loped  by  N o d i n e  and  Vit ter  [12] using a 
"g reedy"  merge sort.  Unfo r tuna te ly  this merge sort  a lgor i thm does no t  seem to 
lead to op t ima l  de terminis t ic  sor t ing a lgor i thms in mos t  cases of  the P - H M M ,  
P-BT, and  o ther  para l le l  h ierarchical  m e m o r y  models.  N o d i n e  and  Vit ter  have 
subsequent ly  deve loped  an op t ima l  d i s t r ibu t ion  sort  a lgor i thm tha t  is determinis t ic  
and  tha t  does  general ize to give op t ima l  de terminis t ic  para l le l  h ie rarchy  a lgor i thms  

[13]. 
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