
Algorithmica (1994) 12:110-147 Algorithmica
�9 1994 Springer-Verlag New York Inc.

Algorithms for Parallel Memory,
I: Two-Level Memories

J. S. Vitter 2 and E. A. M. Shriver 3

Abstract. We provide the first optimal algorithms in terms of the number of input/outputs (I/Os)
required between internal memory and multiple secondary storage devices for the problems of sorting,
FFT, matrix transposition, standard matrix multiplication, and related problems. Our two-level
memory model is new and gives a realistic treatment of parallel block transfer, in which during a single
I/O each of the P secondary storage devices can simultaneously transfer a contiguous block of B
records. The model pertains to a large-scale uniprocessor system or parallel multiprocessor system
with P disks. In addition, the sorting, FFT, permutation network, and standard matrix multiplication
algorithms are typically optimal in terms of the amount of internal processing time. The difficulty in
developing optimal algorithms is to cope with the partitioning of memory into P separate physical
devices. Our algorithms' performances can be significantly better than those obtained by the well-
known but nonoptimal technique of disk striping. Our optimal sorting algorithm is randomized, but
practical; the probability of using more than I times the optimal number of I/Os is exponentially small
in/(log/) log(M/B), where M is the internal memory size.

Key Words. I/O, Input/output, Disk, Secondary memory, Sorting, Distribution sort, FFT, Matrix
multiplication, Transposition, Permutation.

1. Introduction. Sorting is the canonical informat ion-processing application. It
accounts for roughly 20-25 % of the comput ing resources on large-scale computers
[8], [10]. In applicat ions where the file of records cannot fit into internal memory,
the records mus t be stored on (external) secondary storage, usually in the form of
disks. Sort ing in this framework is called external sorting. The bott leneck in
external sorting and m a n y other applicat ions is the time for the inpu t /ou tpu t (I/O)
between internal memory and the disks [8], [10]. This bott leneck is accentuated

as processors get faster and parallel computers are used.
The remedy we explore in this paper is to use secondary storage systems with

parallel capabilities [5], [6], [11], [14], [17]. We restrict our a t ten t ion in this paper

1 A summarized version of this research was presented at the 22nd Annual ACM Symposium on
Theory of Computing, Baltimore, MD, May 1990. This work was done while the first author was at
Brown University. Support was provided in part by a National Science Foundation Presidential Young
Investigator Award with matching funds from IBM, by NSF Research Grants DCR-8403613 and
CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval
Research and the Defense Advanced Research Projects Agency under Contract N00014-91-J-4052
ARPA Order 8225. This work was done in part while the second author was at Brown University
supported by a Bellcore graduate fellowship and at Bellcore.
2 Department of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129, USA.
3 Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA.

Received September 26, 1990; revised January 14, 1993. Communicated by C. K. Wong.

Algorithms for Parallel Memory, I: Two-Level Memories 111

to two-level storage systems with random access secondary storage. Magnetic
disks, for example, provide the functionality needed in our model of secondary
storage, so for simplicity we refer to secondary storage as disk storage, consisting
of one or more disk drives. Efficient algorithms for multilevel hierarchical memory
are considered in the companion paper [19].

In a previous work Aggarwal and Vitter [1] presented optimal upper and lower
bounds on the I/O needed for sorting-related problems of size N using a two-level
memory model where internal memory can store M records and the secondary
memory size is limitless. In their model an I/O can simultaneously transfer P
physical blocks, each consisting of B contiguous records. Their results generalized
the groundbreaking work done by Floyd [4], who gave optimal bounds for sorting,
realized by standard two-way merge sort, for the special case P - - 1 and

M = 2B = v/N. The P > 1 model in [1] is somewhat unrealistic, however, because
secondary storage is usually partitioned into P separate physical devices, each
capable of transferring only one block per I/O.

We are interested in optimal algorithms for realistic two-level storage systems
that allow P simultaneous data transfers. By realistic, we mean that each block
transfer must be associated with a separate secondary storage device. In the next
section we define a realistic two-level memory model with parallel block transfer,
which consists of an internal memory (capable of storing M records) and P disks,
each disk capable of simultaneously transferring one block of B records, as shown
in Figure 1. Another version of our model that turns out to be sufficient for our
purposes is to have the P disks controlled by P' processors, each with internal
memory capable of storing M/P' records. If P' _ P, each of the P' processors
can drive about P/P' disks; if P < P'_< M, each disk is associated with about
P'/P processors. The P' processors are connected by a network, such as a
hypercube or cube-connected cycles, that allows some basic operations like sorting
of the M records in the internal memories to be performed quickly in parallel in
O((M/P') log M) time. The special case in which P = P' is shown in Figure 2.

Our main measure of performance is the number of parallel I/Os required, but
we also consider the amount of internal computation. The bottleneck in the
problems we consider is generally the I/O, at least in the multiprocessor versions
of the two-level memory model described above.

In this paper we consider large-scale instances of the following important
problems, which are defined in Section 3: sorting, permuting, matrix transposition,
FFT, permutation networks, and standard matrix multiplication. In Section 4 we
state our main results, namely, tight upper and lower bounds on the number of
I/Os and amount of internal processing needed to solve these problems, for each
of the uniprocessor and multiprocessor models mentioned above. The standard
matrix multiplication algorithm is simultaneously optimal in terms of internal
processing time. Our sorting, FFT, and permutation network algorithms are also
simultaneously optimal in terms of the internal processing time when P' -- O(1)
or log M = O(log(M/B)). For large-scale computer configurations, in which P and
PB are large; our algorithms for sorting, permuting, FFT, and permutation
networks can be significantly faster than the algorithms obtained by applying the
well-known technique of disk striping to good single-disk algorithms.

112 J.S. Vitter and E. A. M. Shriver

Sections 5-7 are devoted to the algorithms and their analyses. In Section 5 we
develop optimal algorithms for matrix transposition, FFT, and permutation
networks, by making use of the shuffle-merge primitive. Even though these
problems are sorting-related, it is much easier to develop optimal algorithms for
them than it is for sorting, since their I/O schedules are fixed and nonadaptive.

The main contribution of this paper is the optimal randomized algorithm for
sorting (and permuting) and its probabilistic analysis in Section 6. The probability
that it uses more than l times the optimal number of I/Os is exponentially small
in/(log/) log(M/B). 4 The sorting algorithm is a variant of a distribution sort; a
combination of two randomized techniques is used to do the partitioning so as
to take full advantage of parallel block transfer. The algorithm requires that the
disks operate independently in read mode, but in each disk write, the track written
to is the same among all the disks, which facilitates writing error correction
information (see [5], for example); in fact, some of the initial disk arrays being
developed require that parallel writes have this same-track property. In Section 7
we cover standard matrix multiplication. Conclusions and open problems are
discussed in Section 8.

2. The Two-Level Memory Model. First we define the parameters for our
two-level memory model with parallel block transfer, as shown in Figures 1 and 2:

DEFINITION 1. The parameters are defined by

N = number of records in the file,

M = number of records that can fit in the internal memory,

B = number of records per block,

P = number of disk drives,

P' = number of internal processors,

where 1 <_ B <_ M/2, M < N, 1 <_ P <_ LM/B], and 1 _< P' _< M. The parameters
N, M, B, P, and P' are referred to as the file size, memory size, block size, number
of disks, and number of processors, respectively. We denote the P disks by N1,
@z, . . . ,@P. Each disk is partitioned into consecutive tracks, each capable of
storing one block of B records, as shown in Figure 3. (For simplicity in our model,
we assume that a block, our unit of transfer, is the same size as a track.) If no
disk is specified when we refer to the "kth track," we mean the kth track of all P
disks collectively.

For purposes of making the problem definitions we give in the next section
more concrete, the locations on disk are numbered track-by-track in the following

4 For simplicity of notation, we use log x, where x > 1, to denote the quantity max{l, log 2 X}.

Algorithms for Parallel Memory, I: Two-Level Memories 113

P
A

Internal
memory

Fig. 1. The uniprocessor two-level storage model with parallel block transfer. The measure of
performance is the number of I/Os. During an I/O, each of the P disks can simultaneously transfer a
block of B contiguous records to or from the internal memory of size M.

cyclical fashion. Track 1 contains the first PB m e m o r y locations:

t rack 1 of 91 contains m e m o r y locations 1, 2 B,
t rack 1 of 9 2 contains m e m o r y locations B + 1, B + 2, . . . , 2B,

t rack 1 of 9~, contains m e m o r y locations (P - 1)B + 1, (P - 1)B + 2 PB.

P

Fig. 2. An alternate multiprocessor version of the model, for P' = P. Each of the P disks is controlled
by a separate processor with its own internal memory of size M/P. The interprocessor communication
is assumed to be sufficiently fast so that internal sorting can be done rapidly in parallel.

114 J.S. Vitter and E. A. M. Shriver

Tracks

Disks [] B records

~gv
Fig. 3. The disks are represented by horizontal lines and the tracks by vertical lines.

Track 2 contains the next P B memory locations:

track 2 of @1 contains memory locations PB + 1, PB + 2, . . . , (P + 1)B,
track 2 of ~2 contains memory locations (P + 1)B + 1, (P + 1)B + 2 , (P + 2)B,

track 2 o f ~ e contains memory locations (2P - 1)B + 1, (2P - 1)B + 2 2PB.

The numbering continues in this fashion for tracks 3, 4 ,
Parallelism appears in our model in two basic ways. First, records are transferred

concurrently in blocks of B contiguous records. It takes roughly the same amount
of time to access and transfer one block as it does one record. This reflects the
fact that the seek time for a record greatly dominates the time to transmit a record.
The second type of parallelism arises because P blocks can be transferred in a
single I/O. We make the realistic restriction that the P blocks must be associated
with tracks from P different disks. That is, only one track per disk can be accessed,
but there is no constraint on which track is accessed on each disk.

The restriction that only one block can be accessed per disk during an I/O is
what distinguishes our model from the less realistic model of [1]. This distinction
is akin to the difference in parallel computation between the MPC (module parallel
computer) model and the less realistic PRAM model. However, general PRAM
simultation techniques use logarithmic time per step; if they were applied to the
algorithms in [1], the resulting algorithms would not be optimal in terms of I/O.
The algorithms we develop on our model use the same number of I/Os as those
in [1] for the less realistic model.

3. Problem Definitions. The problems we consider in this paper have been well
described in the literature. Most of the following definitions are those from [1],
with suitable modifications.

SORTING.
Problem Instance: The internal memory is empty, and the N records are stored in

the first N locations of secondary storage�9
Goal: The internal memory is empty, and the N records are stored in sorted

nondecreasing order in the first N locations of secondary storage�9

Algorithms for Parallel Memory, I: Two-Level Memories 115

PERMUTING.

The problem instance and goal are the same as for the sorting problem, except
that the key values of the N records are required to form a permutation of
{1, 2 , . . . , N}.

MATRIX TRANSPOSITION.
Problem Instance: The internal memory is empty, and a p x q matrix A = (A~,j)

of N = pq records is stored row by row in the first N locations of secondary
storage.

Goal: The internal memory is empty, and the transposed matrix A T is stored row
by row in the first N locations of secondary storage. (The q x p matrix A T is
called the transpose o fA i fA T .,,j = Aj,~, for all 1 _< i _< q and 1 _<j <p.)

The matrix transposition problem above is a special case of permuting in which
the permutation to be realized corresponds to converting a matrix from row-major
order to column-major order.

FAST FOURIER TRANSFORM (FFT).
Problem Instance: Let N be a power of 2. The internal memory is empty, and the

N records are stored in the first N locations of secondary storage.
Goal: The internal memory is empty, the N output nodes of the F F T digraph are

"pebbled" (as explained below), and the N records are stored in the first N
locations of secondary storage.

The F F T digraph consists of log N + 1 levels each containing N nodes; level 0
contains the N input nodes, and level log N contains the N output nodes. Each
noninput node has indegree 2, and each nonoutput node has outdegree 2. We
denote the ith node (0 < i < N - 1) in level j (0 < j < log N) in the F F T digraph
by ni, j. F o r j > 1 the two predecessors to node ni, j are nodes ni,j_ 1 and niez-l , j- 1,
where | denotes the exclusive-or operation on the binary representations. (Note
that nodes n~,j and ni.2~ , j each have the same two predecessors.)

The ith node in each level corresponds to record R~. We are allowed to pebble
node ni, j if its two predecessors hi , j_ 1 and n~.z-, ~_ 1 have already been pebbled
and if the records R~ and Riez_, corresponding to the two predecessors both reside
in internal memory. Intuitively, the FFT problem can be phrased as the problem
of pumping the records into and out of internal memory in a way that permits
the computation implied by the F F T digraph.

PERMUTATION NETWORKS. The problem instance and goal are the same as for
the F F T problem, except that the permutation network digraph (see below) is
pebbled instead of the F F T digraph.

A permutation network is a sorting network [8] consisting of comparator
modules or switches that can be set by external controls so that any desired
permutation of the inputs can be realized at the output level of the network. It
consists of J + 1 levels, for some J _> log N, each containing N nodes. Level 0

116 J.S. Vitter and E. A. M. Shriver

contains the N input nodes, and level J contains the N output nodes. All edges
are directed between adjacent levels, in the direction of increasing index. For
0 _< i _< N -- 1 and 0 _< j _< J we denote the ith node in level j as ni,j. For each
j _ 1 there is an edge from ni, i -1 to nl, i. In addition, ni, j can have one other
predecessor, call it n~,j_ 1, but in that case there is also an edge from n~,j_ 1 to nv,j;
that is, nodes n~,j and nv,j have the same two predecessors. We can think of there
being a "switch" between nodes n~,j and nv,j that can be set either to allow the
data from the previous level to pass through unaltered (that is, the data in node
hi, j_ 1 goes to n~,j and the data in nv,j-1 goes to nv,j) or else to swap the data
(so that the data in n~,j_ 1 goes to n~,j and the data in nv,~_ a goes to hi,j).

A digraph like this is called a permutation network if, for each of the N!
permutations (pl , Pz PN), we can set the switches in such a way to realize the
permutation; that is, data at each input node ni, o is routed to output node np~,j.
The ith node in each level corresponds to the current contents of record R~, and
we can pebble node n~,j if its predecessors have already been pebbled and if the
records corresponding to those predecessors reside in internal memory.

There is an important difference between permutation networks and general
permuting. In the latter case the I/Os may depend upon the desired permutation,
whereas with permutation networks all N! permutations can be generated by the
same sequence of I/Os or memory accesses.

STANDARD MATRIX MULTIPLICATION.
Problem Instance: The internal memory is empty. The elements of two k x k

matrices, A and B, where 2k 2 = N, are each stored in the first N locations of
secondary storage.

Goal: The internal memory is empty, and the product C = A x B, formed by the
standard matrix multiplication algorithm that uses O(k 3) arithmetic operations,
is stored in the first N locations of secondary storage.

4. Main Results. In this section we state our main results, Theorems 1-5, which
report optimal algorithms in terms of the number of I/Os and internal processing
time, in our two-level model with parallel block transfer, to solve the problems
defined in the previous section.

THEOREM 1. The number of I/Os required for sortin9 N records is

@ N -B log(N/B)) .
log(M/B),/'

the internal processing time is O(N log(N/B)(log M)/P' log(M/B)), which is the
optimal time O((N log N)/P'), for example, when log M = O(log(M/B)). The upper
bounds are given by a randomized algorithm; the probability of using more than the
average number of I/Os or internal processing time falls off exponentially. The lower
bounds apply to both the average case and the worst case. The lower bound on

Algorithms for Parallel Memory, I: Two-Level Memories 117

internal processing time is the well-known O((N log N)/P') bound from the comparison
model of computation. The I/O lower bound does not require the use of the comparison
model of computation, except for the case when M and B are extremely small with
respect to N, namely, when B log(M/B) = o(log(N/B)).

THEOREM 2. The number of I/Os required for computing the N-input FFT digraph
is

| N -B log(N/B) ~.
log(M/B),]'

the internal processing time is O(N log(N/B)(log M)/P' log(M/B)), which is the
optimal time O((N log N)/P'), for example, when log M = O(log(M/B)). The lower
bound on internal processing time is O((N log N)/P'). The average-case and worst-
case number of I/Os required for computing any N-input permutation network is

f~ N (PB Iog(N/B)).
log(M/B)]'

furthermore, there are permutation networks such that the number of I/Os needed to
compute them is

0 N -B log(N/B) ~
log(M/B)]'

and the internal processing time is O(N log(N/B)log M)/P' log(M/B)), which is
optimal when log M = O(log(M/B)). All lower bounds apply to both the average case
and the worst case.

THEOREM 3. The number of I/Os required to permute N records is

O (m i n { N N log(N/B)~
' PS log(M/B).},]'

and the internal processing time is

O(min{N(log P')/P', N log(N/B)(log M)/P' log(M/B)}).

The I /0 lower bound applies to both the average case and the worst case. The
second term in the I /0 upper bound corresponds to the randomized algorithm of
Theorem 1, and the first term in the I /0 upper bound makes use of a modification
of Phase 1 of the randomized algorithm.

118 J.S. Vitter and E. A. M. Shriver

THEOREM 4. The number of I/Os required to transpose a p x q matrix of N = pq
elements is

| N (p ~ (l + l ~

and the internal processing time is greater by a multiplicative factor of
O((PB log P')/P').

THEOREM 5. The number of I/Os required to multiply two k x k matrices using the
standard matrix multiplication algorithm is

k 3

�9 _ _ ,

and the internal processing time required is O(k3/p').

The I/O bounds in the theorems can be regarded in terms of the number of
"passes" through the file. One "pass" corresponds to the number of I/Os needed
to read and write the file once, which is 2N/PB. A "linear-time" algorithm (defined
to be one that requires a constant number of passes through the file) would use
O(N/PB) I/Os. The logarithmic factors that multiply the N/PB term in the above
expressions indicate the degree of nonlinearity.

The I/O lower bounds for Theorems 1-4 follow from the lower bounds proved
in [1] for the less realistic model in which P tracks can be accessed on the same
disk in a single I/O. Since any algorithm in our model automatically applies to
the model in [1], the same lower bounds apply. The I/O lower bounds proved in
[-1] are based only on routing concerns and thus hold for an arbitrarily power-
ful adversary, except in the case of sorting for the extreme case mentioned in
Theorem 1 when M and B are extremely small, in which case the comparison
model is used. Thus the hard part of sorting in the nonextreme case is the routing
of the records, not the determination of the records' order. The well-known technique
of key sorting [-8], which attempts to reduce sorting to permutation routing by
using a special-purpose method of determining the order of the records, is therefore
not going to use significantly fewer I/Os than will general sorting algorithms.

The lower bound in Theorem 5 for standard matrix multiplication follows by
taking the bound for the case P = 1 in [15] and dividing by P. The algorithms
that meet the lower bounds of Theorems 1-5 are described and analyzed in the
following sections.

The previously best way to sort with multiple disks when P ' = 1 was the
following combination of the well-known techniques of disk striping and two-way
merge sort: The read/write heads of the P disks are synchronized, so that during
each I/O all the disk drives access the same track number on their respective disks.
This "striping" of the data on the disks effectively reduces the multiple disks to
only one logical disk, but with a larger block size B' = PB. The number of I/Os

Algorithms for Parallel Memory, I: Two-Level Memories 119

needed for two-way merge sort with the one logical disk is

O((N/B') log(N/B')/log(M/B')) = O((N/PB) log(N/PB)/log(M/PB)).

This bound can be larger than the one in Theorem 1 by a multiplicative log(M/B)
factor, which can be significant when P and PB are relatively large. For small
values of P, striping is efficient in terms of I/O, within a constant factor of optimal.

5. Shuffle-Merge and Its Applications. In this section we exploit a simple but
useful merging operation called shuffle-merge that can be used to achieve the
optimal I/O bounds mentioned in Theorems 2 and 4 for the problems of FFT,
permutation networks, and matrix transposition. The algorithms, which consist
of a series of shuffle-merges, are the ones described in [1], except that the disk
placement of the blocks of the merged runs must be done in a staggered way so
that the merging in the next pass can be done using full parallelism.

Without loss of generality, we assume for simplicity of exposition that N, M,
P, and B are powers of 2. The operation of shuffle-merge consists of performing
a perfect shuffle [16] on the elements of M / B runs of r records each, and the result
is a single shuffled run of r M / B elements. Pictorially, suppose the sorted runs
initially look like this:

Run 1: al a~

Run 2: a~ a 2

M R u n - - : aM/~ a~/B
B

1 o 'o a r

2
�9 : " t ~ r

� 9 arM/B

After the perfect shuffle, a single shuffled run remains:

1 2 arM/B. a~ a~ "" a~/B a~ a 2 "" a~/B "'" ar ar ""

It is easy to do shuffle-merges and take full advantage of parallel block transfer,
if the input runs are blocked and the blocks are staggered with respect to one
another on the disk, so that in a single I/O we can read the next track from each
o f the next P runs. For example, it suffices if the kth block of records from the ith
run (consisting of records i a(k-Xm+l a~B) is stored on track (i - 1) [r / P B 7 +
Fk/P7 of disk @1 +((k+i-Z)mode). (If r < PB/2, then this placement can be modified
so that more than one run is packed per track.) The algorithm consists of a series
of parallel block transfers. On reads (k - 1)M/PB + 1 k M / P B , we bring into
internal memory the kth block from each of the M / B runs. The records are shuffled
appropriately in internal memory and then written to the disks. The total number
of I/Os for the entire shuffie-merge is O(rM/PB), which is best possible, since each

120 J.S. Vitter and E. A. M. Shriver

record is read once from disk and written once to disk, making full use of
parallelism and blocking.

Permutation Networks and FFT. Every permutation of N elements can be
realized by three passes through an FFT network, by an appropriate setting of
the switches in the FFT network that depends on the permutation [20]. So we
can get optimal I/O strategies for an FFT-based permutation network by getting
optimal I/O strategies for FFT digraphs.

The FFT diagraph is defined in Section 3. For simplicity, we assume that log M
divides log N evenly. We divide the N records into N/M groups of M contiguous
records. Each group corresponds to a set of rows of the FFT digraph whose nodes
have links to only each other in the next log M levels of the FFT digraph. For
each of N/M I/Os, we input the M records in a group, pebble forward in the FFT
digraph log M levels, and then write the group back to the disks, in a staggered
way. Afterwards, a series of shuffle-merges are done to realign the records into
new groups of size M so that pebbling of each group can proceed for the next
log M levels, as shown in Figure 4. This continues until the entire FFT digraph
is pebbled. The above algorithm stops and performs a series of shuffle-merges
log N/log M times. Each series consists of max{l, 1OgM/B min{M, N/M}} shuffle-
merges, each requiring O(N/PB) I/Os. Thus the total number of I/Os used is

N N //1 1ogM/B N
(PB l~ M ~, + man{M, ~ })) , O

which can be shown by some algebraic manipulation to equal the bound given in
Theorem 2.

The bound on internal processing time in Theorem 2 follows from the fact that
the processing is done one memoryload at a time. Each memoryload accounts for
O(M/PB) I/Os, and O((M log M)/P') time is used to do the internal processing of
each memoryload.

J

\
/

•

J

x/
•

I

V
A

Fig. 4. Decomposit ion used for optimal pebbling of the F F T digraph, for N = 16, M = 4. The M
pebbles can be slid forward log M levels before the pebbles have to be regrouped.

Algorithms for Parallel Memory, I: Two-Level Memories 121

Matrix Transposition. Let us denote the B records that end up in the same block
in the transposed matrix as a "target group." Initially, in the original untransposed
matrix, several members of a given target group may be in the same block. We
call these members a "target subgroup." Each target subgroup initially has size

(1) I
1 B if B < min{p, q},

x = min~, q} if min{p, q) < B < max{p, q},

(B~ if max{p,q}<B.

The transposition algorithm consists of a series of shuffle-merges. Records in the
same target subgroup remain together throughout the course of the algorithm. In
each pass we merge together sets of M/B target subgroups, thus increasing the
size of the resulting target subgroups by a factor of M/B. The number of passes is

(2) [logMm B],

each requiring O(N/PB) I/Os. The upper bound for I/O in Theorem 4 follows by
substituting the three cases of (1) into (2).

Each memoryload accounts for | I/Os, and O((M log P')/P') time is used
to do the internal processing of each memoryload, thus yielding the bound on
internal processing time in Theorem 4.

6. External Sorting and Permuting. In this section we present and analyze the
optimal algorithms for sorting and permuting on the two-level memory model,
which achieve the bound listed in Theorems 1 and 3. We assume for simplicity of
exposition that N, M, P, and B are powers of 2; we show below that this
assumption does not result in any loss of generality. For sorting we also make
the simplifying assumption that all key values are distinct. This assumption is
satisfied, for example, if we append to the key field of each record the original
memory location of the record.

Permuting records is a special case of sorting. The bounds for sorting and
permuting given in Theorems 1 and 3 are the same, except when the internal
memory size M and block size B are extremely small with respect to the file
size N. In the latter case, permuting can be done using O(N/P) I/Os by a
modification of the sorting technique we discuss below, so we restrict our attention
to the sorting problem. The application of the sorting method to the special case
of permuting is discussed in Section 6.5.

The FFT and matrix transposition algorithms described in the previous section
were easy to implement using an optimal number of I/Os, because the merging
pattern in each pass was predetermined; it consisted of a series of shuffle-merges.

122 J.S. Vitter and E, A, M. Shriver

This made it easy to distribute the records onto the disks so that the merges in
the next pass accessed the records in a balanced fashion among all the disks.
However, this does not seem applicable to sorting. When merge sort is used for
external sorting, the merges in each pass are not in general perfect shuffles. When
the merges are not perfect shuffles, it is difficult to know how to distribute the
records onto the disks so as to guarantee balanced access to the disks in the next
merge pass. An interesting question of whether merge sort can be implemented
using the optimal number of I/Os is discussed in Section 8.

In order to get an optimal sorting algorithm we use the following practical
randomized approach, which is a recursive distribution sort:

1. If N < M, we sort the file internally. Otherwise we do the following steps:
2. [Find partitioning elements.] We deterministically find S - 1 partitioning

elements bl, b2 bs-1 that break the file into S roughly equal-sized buckets.
The parameter S will be defined shortly; it is always small enough so that the
partitioning elements can be stored easily in internal memory. For convenience,
we define the dummy partitioning elements bo = - ~ and bs = + ~ . The jth
bucket consists of all the records R in the file whose key values are in the range

b j_ 1 <- key(R) < bj.

.

.

[-Partition into buckets.] We partition the file into buckets based upon the
partitioning elements and distribute the records in each bucket evenly among
the P disks.
[,Recurse.] We sort each bucket by applying the sorting algorithm recursively.
(With high probability, the records in each bucket are distributed evenly among
the P disks, and thus they can be read into internal memory with O(N/SPB)
I/Os.) The output of the sorting algorithm is the concatenation of the sorted
buckets.

The partitioning in Step 3 is done in one of two ways, which we call Phase 1
and Phase 2. Phase 1, which is described in detail in Section 6.1, is used for the

partitioning when N > x / - ~ P / l n (M / B) . It can be thought of intuitively as a
hashing approach to distribute the blocks of each bucket among the disks. It
works effectively when the "hash function" distributes the records evenly, and by
analogy to the maximum bucket occupancy problem in hashing [-18], the distribu-
tion is even when the expected number of blocks per disk for each bucket is at
least a logarithmic amount. However, if N is not much larger than M, the
distribution using the hashing approach can be quite uneven, resulting in non-

optimal performance. In the latter case, when M < N < x / ~ P / l n (M / B) , the
partitioning is done by Phase 2, which is described in Section 6.2. Phase 2 uses a
partitioning technique motivated by a different instance of the hashing problem
and works with overwhelming probability. After the Phase 2 partitioning, each
bucket will have at most M records and can be sorted internally, as described in
Section 6.3.

An alternative to the Phase 2 technique for small N is the deterministic approach

Algorithms for Parallel Memory, I: Two-Level Memories 123

based on Leighton's Columnsort algorithm [9], as mentioned in [1] and described
in detail in Theorem 6 of [12]. However, we use Phase 2 here because it
complements Phase 1 nicely in approach and has fairly small constant factors.

As noted above, we assume for simplicity that N, M, P, and B are powers of 2.
We also choose S - 1 to be a power of 2. The assumption on M, P, and B, whose
values do not change during the course of the algorithm, clearly does not affect
the generality of the algorithm. We can make N a power of 2 at each level of
recursion by appending to the file hypothetical dummy records with key value
+ oe. These dummy records do not need to be written to the buckets, so the
cumulative sizes of the buckets is not affected. The running time increases as a
result by at most a small constant factor.

DEFINITION 2. We denote the S buckets by 6el, 6a~ ,6es . The number of records
in the file that belong to bucket 6P~ is denoted Nj. In our two-level model with
parallel block transfer, we can look at only M records at a time, so partitioning
will be done one memoryload at a time. We denote the ith memoryload by ~//~.
A write cycle is defined as the collection of P blocks that we write to the disks
concurrently in a single I/O. We denote write cycles by ~/r ~ r z Read cycles
are defined analogously.

For the time being, let us assume that we can deterministically compute in
Step 2 the approximate partitioning elements ba, b2 bs- 1, using O(N/PB) I/Os.
(The algorithm and the analysis for computing the partitioning elements are

given in Section 6.4.) For Phase 1 we set S ~ v/M/B/lna(M/B); in particular, we set

S -- 1 to be a maximum of 1 and the largest power of 2 that is _< v /~ / lna(M/B) .
We show later in Lemma 3 that

N 3N
(3) - - < Nj <

2(S - 1) 2 (S - 1)

For Phase 2 we set S = 2N/M + 1; we show later in Lemma 4 that

(4) ~-M < N i < ~-M.

The upper bound for sorting in Theorem 1 follows from the following bound,
which is the main result of this paper:

THEOREM 6. The number of I/Os used by the above distribution sort algorithm to
sort N records is

0 N (~ log(N/B) ~

log(M/B) f

and the internal processing time is O(N log(N/B)(log M)/P' log(M/B)), with over-

124 J.S. Vitter and E. A. M. Shriver

whelming probability. In particular, the probability that the number of I/Os or the
internal processing time is more than 1 times the average is exponentially small in
/(log/) log(M/B).

PROOF. We define T(N) to be the number of I/Os used to sort N records and
TI(N) to be the number of I/Os used for all the calls to Phase 1. We see from
Theorem 7 that with high probability Phase 1 uses O(N/PB) I/Os to partition N
records and to store each bucket evenly across the disks, so that the buckets can
be retrived one-by-one in the next level of recursion with a total of O(N/PB) I/Os.
The above construction gives us

o(N) (5) TI(N) = ~ TI(Nj) +
l <_j<_S

with high probability. In particular, from Theorem 7, the probability that the
quantity represented by the big-oh term in (5) is more than IN/PB is exponentially

small in/(log/) log(M/B). In Phase 1 we set S ~ x/M/B/ln2(M/B); by (3) we have
Nj < 3N/2(S - 1). Substituting this bound into (5) and iterating the recurrence
until N < M, by which time Phase 1 certainly ends, we get

(6) =O N TI(N) (p~ log(N/B) ~
log(M/B)']

with high probability. In all the instances of partitioning during the recursive levels
of Phase 1, imbalance by more than a factor of l occurs independently with
exponentially small probability. By convexity arguments, we can combine
these probability bounds and bound the probability that TI(N) is more than
I times the expression in the big-oh term in (6) by a quantity exponentially small
in/(log/) log(M/B).

In Theorem 8 we show that with high probability Phase 2 uses O(N/PB) I/Os
in order to perform the last level of partitioning. The remaining buckets each
contain at most M records and can be sorted internally. This gives us

(7) =O N T(N) (fiB log(N/B) ~
log(M/B),]

with high probability. Since the partitioning in Phase 2 is independent of
those in Phase 1, we can bound the probability that T(N) is more than l times
the expression in the big-oh term in (7) by a quantity exponentially small in
/(log/) log(M/B).

The bound on internal processing time follows because the internal processing
is done one memoryload at a time. Each memoryload accounts for | I/Os,
and O((M log M)/P') time is used for the internal sorting, partitioning, and
overhead of each memoryload. []

Algorithms for Parallel Memory, I: Two-Level Memories 125

6.1. Phase 1. We use Phase 1 to partition the records of a file of N records

when N > x / - ~ P / l n (M / B) . The number S of partitions is approximately

x/-M~/ln2(M/B); in particular, we set S - 1 to be the maximum of 1 and the

largest power of 2 that is < ~ / l n 2 (M / B) . In order to read a file into internal
memory using full parallelism, the records of the file must be evenly distributed over
the disks, as a result of the previous pass of Phase 1. This is the crux of the prob-
lem. We show in Theorem 7 that Phase 1 does the partitioning using O(N/PB) I/Os.

We read the records of the file into internal memory, one memoryload at
a time. We assign the records to buckets based upon the partitioning elements
and organize the records so that records in the each bucket are continguous
in internal memory. We then write the records in each bucket of the memoryload
to the disks, using full parallelism. We use a randomized approach to distribute
the records. The main result of this subsection is showing that the requirement

N > x / - ~ P / l n (M / B) assures with high probability that the records of a bucket
(among all the memoryloads) will be spread out evenly among the disks.

In order to link together the records in each bucket (to allow fast retrieval of
the bucket in the next level of recursion), we need to remember the last track on
each disk where a block belonging to that bucket was written; we store these
pointers in internal memory. In order to reduce the number of pointers so that they
can be kept in internal memory, we "cluster" the disks into C logical clusters, as
shown in Figure 5. We set C to be min{P, S}.

DEFINITION 3. A cluster is a logical grouping of consecutive disks. The C clusters
are denoted c~1, ~2 , cg c. The P/C disks in the kth cluster c~ k are denoted ~k, a,
~k, 2 ~k,V/C" The ith track of a cluster refers collectively to the ith tracks of
all the disks that comprise the cluster. Records are written to the disks in
cluster-size units of P/C blocks, which we call a group.

Algorithm--Phase 1. Let last_diskj, k and last_track~,k represent the last disk and
the last track, respectively, written to in cluster cg k by bucket ~ . Let next_track k
represent the first track on cg k that has not been assigned to a bucket. We initialize
last_diskj, k := last_track j. k := 0 and next_track k := 1.

The file is processed memoryload by memoryload. For each 1 < i < N/M, the
ith memoryload is brought into internal memory. The records are partitioned into
buckets, based upon the partitioning elements. The records in each bucket are
formed into blocks, and the blocks within a bucket are formed into groups of size
P/C, except possibly the last group which might be only partially filled. We choose

CL { DII
~ .r'IC

~ ,~.,"lC

Fig. 5. Decomposition of the P disks into C clusters.

126 J.s. Vitter and E. A. M. Shriver

C groups to be written during this write cycle, and we assign these groups to
clusters by choosing a random permutation of {1, 2 C}. This is repeated C
groups at a time until the memoryload is written. (This is the only place where
randomness is used in Phase 1.)

What remains is to assign the blocks in a group to the disks in a cluster. In
each group we have a maximum of P/C blocks. We do not want to have empty
tracks on the disks, so we cycle through the disks in the cluster. Let us assume
that a group belonging to bucket ~ is assigned to cluster cg k. We assign the first
P/C - last diskj, k blocks to disks last diskj, k + 1 P /C on track last_trackk;
we assign the remaining blocks, if any, to disks 1, 2 on track next_track k. We
then update the value of last_disk j, k, and when the current track gets filled, we set
last_trackj, k to next_trackk and increment next_trackk.

For each memoryload we retain partially filled blocks in internal memory until
they are completely filled, but groups are written to the disks even if they contain
fewer than P/C blocks. Each time a group from bucket 5 j is written to cluster C6k,
we fill up the last track written on that cluster for 5 i before we start a new track;
that is, once a bucket writes to a particular track of a given cluster, it will not
write to another track of that cluster until the current track is completely filled.
This has the effect of making each track of each cluster completely filled, except
possibly for the last track of the cluster for each bucket.

In order for the recursion to work, we must link together the records of each
bucket. This will be done with pointers being made part of the blocks when they
are written to disk. Since records from a bucket are written as a group, we only
have to save pointers for the groups. Also, since an entire track in a cluster is
written to by only one bucket, the linking can be done by pointers in the block
on the first disk of each track in the cluster. To do this, we have one "previous
group" pointer for each track of each cluster, which we call pg. Each pg pointer
links together the groups of a given bucket that are on a given cluster, in reverse
order. If a block in a group from 5j is written to the first disk of a cluster Cgk, the
pg pointer of that block is set to last_trackj, k.

Once the assigning is done, we can write the chosen C groups to their assigned
disk locations. When we finish processing the file, we save on the disks the pointers
last_diskj, k and last trackj, k, so that we can locate the records for each bucket
during the next level of recursion.

last_diskj, k .'= 0 for all j, k;
next_tracke:= 1 for all k;
last_trackj, k-'= 0 for all j, k;
for each memoryload of records Jgl (1 <_ i <_ N / M) do

begin
read Mi into internal memory;
partition the records into buckets based upon the partitioning elements;
for each bucket Sfj (1 _< j _ S) do

begin
form the records into blocks of size B;
form the blocks to groups of blocks of size P/C
end;

Algorithms for Parallel Memory, I: Two-Level Memories 127

for each write cycle ~ do
begin
choose C groups of blocks to be written in ~/~t;
assign the groups to clusters via a random permutation of {1, 2 C};
{ assign the blocks in each group to the disks in a cluster }
for each cluster (~k (1 ~ k < C) do

begin
let ~ be the bucket whose group is assigned to ~k;
for each disk ~k, d such that P/C - last_disk j, k < d < P/C do

schedule the next block to be assigned to last_trackj, k on ~k,a;
if still more blocks to be assigned then

begin
temp_pg := iast trackj, k;
last_track~, k := next_trackk;
next_trackk := nexktrackk + 1;
for each disk ~k,d such that 1 < d < P/C - last_diskj, k do

begin
schedule the next block to be assigned to last_trackj, k on ~k,d;
if d = 1 then set the pg pointer of block to temp_pg
end

end;
update last_diskj, k
end;

write the blocks in ~ to the desired disks
end

end;
write pointers last_diskj, k and last trackj, k, for all j, k

Analysis of Phase 1

THEOREM 7. With overwhelming probability, each pass of Phase 1 uses O(N/PB)
I/Os to partiton a file of N records. In particular, the probability that the
number of I/Os used is more than l times the average is exponentially small in
/(log 1).max{log(M/B), N/PDS}.

PROOF. The file is read into internal memory one memoryload at a time. The
actual number of records read in each time might be less than a memoryload since
the pointers (last_disk, last_track, and next_track) and the partially filled blocks are
retained in memory during the partitioning process. There are C(2S + 1) pointers
needed; assuming each pointer does not exceed a record, the pointers take up
C(2S + 1) records. Since each of the S buckets might have a partially filled block
of B - 1 records, the partially filled blocks can take up at most S (B - 1)
records, and we need space for the S - 1 partitioning elements. Therefore, at least
M - C(2S + 1) - SB + 1 records can be read in. For convenience, we redefine M
to be M - C(2S + 1) - SB + 1, so that a full memoryload can be read into or
written from internal memory. This changes the value of M by at most a small
constant factor.

128 J.s. vitter and E. A. M. Shriver

Let Z be the number of I/Os required during the next pass of Phase 1 or
Phase 2 to read in all the subfiles corresponding to the buckets formed from the
current file by Phase 1. We want to show that

o(N) Z - -

with high probability. We do that by showing that

Pr Z>_I

is exponentially small in/(log l)'max{log(M/B), N/PBS}.
The number of inputs needed in the next pass of Phase 1 or Phase 2 in order

to read into internal memory the subtile corresponding to some bucket formed
by the current pass of Phase 1 is the maximum number of tracks devoted to
that bucket among all the clusters. Let Xj, k represent the number of tracks of
cluster c~ k that have been assigned to bucket 6ej. We have

Z = Z m a x {Xj, k}.
1 <_j<S 1 <_k<_C

This gives us

(8) P r { Z > / ~ B } = P r t ~ max{Xj, k}>>_l~t-
k l <_j<S 1.<k.<C

The max term in (8) is the difficult expression to analyze. We use the fact that
N > x//-~P/ln(M/B) in Phase 1 to show that the X j, k are very evenly distributed
with respect to k. We have

max{Xj, k } > l ~ t { N-p~B) _ _< Pr 3j, max {Xj, k} > l
l<_k<C l < k < C

< S Pr tl.l<k<cmax (Xj,,k}~l NJ~BB}

where N~ is the number of records in bucket ~ , and j' is any value of j that

Algorithms for Parallel Memory, I: Two-Level Memories 129

a priori (before the partitioning elements are chosen) maximizes

Pr{lmaxc{XJ, k} _> INffPB}.

To bound (9), we use ChernolTs bound [7]"

LEMMA 1. I f X is a nonnegative random variable and r > 0 we have

E(e rX)
Pr{X >_ u} < - -

e r u

Before we apply ChernolYs bound, we must construct the appropriate scenario.
We let gt denote the number of clusters written to from bucket ~ , during
write ~ , for 1 < t _< R, where R is the total number of write cycles used in
Phase 1. We have

N j, N j, C
(10) ~ g , < + C = - - + C .

x<_t<_R PB/C PB

The extra " + C" term in (10) appears because the last track on each of the C
clusters might be only partially filled. We define G t to be the number of groups
belonging to bucket 5j, in write ~ that are assigned to cluster cga. Because only
one group can be written to any one cluster in a write cycle, G, is restricted to
the values 0 and 1. We have Pr{G, = 1} = g,/C and Pr{Gt = 0} = 1 - g,/C. Let
ff~,(z) be the probability generating function for G,:

(11) ffG,(z) : Pr{Gt = 0}z ~ + Pr{G, = 1}z ~

gt = l _ g _ t + _ z
C C

gt (z - 1). = 1 + ~

Let Nxj,,(z) be the probability generating function for Xj , 1. We can bound Xj , 1
by the sum of independent random variables: Xj,, 1 < Gx + G2 + "'" + GR. For
purposes of bounding (9), let us consider that Xj , 1 = G1 + G2 q'- " '" q- GR. Using
(11), we have

(12) f r = ~r +~2+.- . + o , (z)

= fCo,(z) x {G~(z) x . . . x ~r

(g'(z-1)) = [I 1 + ~ .
l <_t<_R

130 J.s. vitter and E. A. M. Shriver

By Chernoffs bound in Lemma 1, we have

(13)
N j,} E (e x p (r X g , , 1))

Pr X j, 1 > - 1 ~ <_exp(r lNjPB)

for each r > 0. We can express the numerator in (13), using (12) and the definitions
of expected value and probability generating function, as

(14) E(exp(rXj , 1)) = Z Pr{Xj, , = t}e ~'
t>_0

= ~xy.,(e r)

(g') = 1-[1 + ~ (e r - - 1) �9
l <_t<R

To bound (14), we use the following lemma, which follows easily from convexity
arguments.

LEMMA 2. I f ~ l<i<R al = Q and a i >_ O, for 1 <_ i <_ R, then 1-Ii<_i<R al is max-
imized when a 1 = a 2 = "'" = aR = Q/R.

By (10) and Lemma 2, we can maximize (14) by setting g~ = Ny C / R P B + C/R
for each t. Thus

E(exp(rXj,. 1)) < l-[(1 +
l <_t<_R

(NJ' + PB)(er-- I !) = (I (N2, + RPBPB)(e* -- 1)) R'

Substituting this bound into (13), we get

Nj,} (1 + ((Nj, + PB)(e' - 1))/RPB) a
Pr X j,, 1 >- l PB <- exp(rINi,/PB)

Hence, by (8) and (9), we have

(15) Pr Z > _ l ~ S C
(1 + ((Nj, + PB)(e* -- 1))/RPB) R

e x p (r I N j P B)

By Lemma 3 in Section 6.4 and the Phase 1 bounds N > x / M B P / I n (M / B) and

S - 1 < ~M~B/ ln2(M/B) , we have

N j , + P B = N r 1 + <_N j, 1 + N

Algorithms for Parallel Memory, I: Two-Level Memories 131

where fl = 2PB(S - 1)/N <_ 2/In(M/B). Substituting this bound into (15), we have

(16) Pr{Z _I }_ SC (1 + (Nj,(1 + fl)(e r - 1))/RPB) R

exp(rlN j,/ P B)

From the bound (1 + a) b < eab, for a > - 1 , we can approximate the numerator
in (16) and get

(17) pr{Z>l~---B}<_SCexp(Nj'(l + fl)(e~; 1) - r lN j ')

= SC exp ((1 + f l) (e ' - 1) - r/) ~ .

Picking r = ln(//(1 + fl)), for l > fl + 1, we have

{ lN} ((l)Nj) (18) Pr Z > < S C e x p l - l - f l - l l n l + fl

By plugging into (18) the inequality ln(1 + x) > x - x2/2, for x > 0, we get

Pr > I ~ < S C e x p 2 (l + f l) + +fl)2 j ~ "

For example, when 1 + fl < 1 < ~-, we have the exponentially small bound

(19) Pr Z > l ~ < S C e x p -

As l gets larger, we get directly from (18) the exponentially small bound

> l N N~, +
Note that SC < M/B and by Lemma 3 we have Nj,/PB > �89 >_ �89 ln(M/B);
thus the exponential term in (20) gets smaller exponentially more quickly than the
SC term grows, even for relatively small I, and, in the early passes of Phase 1,
Nj,/PB can be substantially larger than ln(M/B).

6.2. Phase 2. In Phase 2 we want to sort N < x/~MBP/ln(M/B) records in one
pass of the distribution sort using O(N/PB) I/Os, which is optimal. We use
S = 2N/M + 1 partitions. This range of values of N is the case that cannot be

132 J. S. Vitter and E. A. M. Shriver

1 2 1

Fig. 6. The shaded tracks collectively represent a logical track.

handled by Phase 1, since when N is relatively small the records in each bucket
will generally not be distributed evenly among the clusters. We want to guarantee
that each bucket will consist of at most M records so that no further partitioning
is needed, and we want to distribute the blocks of each of the S buckets evenly
over the disks.

Before we give the algorithm, we first define the notions of "logical t rack" and
"diagonal":

DEFINITION 4. A logical track is defined as I = M/PB consecutive tracks that are
accessed in I consecutive I/Os. When accessing the ith logical track, we actually
access tracks I(i - 1) + 1, . . . , Ii. This is shown in Figure 6.

DEFINITION 5. The ith diagonal, for 1 < i <_ N/M, is defined as the memoryload
of M/B blocks in which the first set of ME/BN blocks consists of the ith logical
track of disks ~1 ~MP/N, the second set of M2/BN blocks consists of the
(i + 1)st logical track of disks ~MP/N+ 1 ~2MP/N~ and so on, wrapping back to
i = 1 when i exceeds N/M. Diagonal 1 is illustrated in Figure 7.

It follows from the condition N < x / ~ P / l n (M / B) of Phase 2 that 1 <
MP/N < P, and hence each diagonal is well defined. Every block in the file is a
part of a unique diagonal, and every diagonal contains the same number of blocks
from each logical track.

~MP/N
~MP/N+1: ~ I ~ ~
~2~e/N

~P-MP[N+I

~Dp
Fig. 7. The shaded areas collectively represent diagonal 1.

M~/Nrecords

Algorithms for Parallel Memory, I: Two-Level Memories 133

Our algorithm consists of two passes:

Pass 1. We scramble the records, memoryload by memoryload, and write them
back to the disks. (This is where we use randomness in Phase 2.) This step
can be done concurrently with the choosing of the partitioning elements.

Pass 2. We read in the file, one diagonal (memoryload) at a time. For each
memoryload, we partition the records into buckets, based upon the
partitioning elements. (The number of records in each bucket of a memory-
load will be evenly distributed with high probability.) We write one block
to disk from each bucket, cycling through the tracks on disk; we repeat
this process until all the records of the memoryload are written.

At the end of Pass 2, each bucket will contain at most M records; the sorting can
then conclude with a final series of internal sorts.

It is convenient to think of Phase 2 as an instance of the maximum occupancy
problem in hashing, but different from the instance we used for motivation of
Phase 1 in Section 6.1, in which we scrambled buckets randomly among the disks.
Here we consider, for each separate diagonal, scrambling the M records of the

diagonal randomly among the S buckets. The upper bound N < ~ - ~ P / I n (M / B)
guarantees that each diagonal read during Pass 2 contains some number of blocks
from each of the NIP logical tracks; the random scrambling of the logical tracks
in Pass 1 means that any given diagonal can contain any given record in the
file. Since the number M of records per diagonal is substantially more than the
number S of buckets, the analogy to hashing suggests for each diagonal that the
distribution of the records in the buckets will very likely be even. This general
intuition is verified formally for the actual problem at hand in Theorem 8.

Algorithm--Pass 1 of Phase 2. For simplicity of exposition, we assume that the
file resides in packed format across the disks, track by track. In reality the file
formed by Phase 1 is not packed, but it can be read into internal memory using
full parallelism, so our assumption is valid.

We read in all the records, processing them one logical track (memoryload) at
a time. For each memoryload, we randomly permute the records in internal
memory. Next we form blocks, based upon the permuted ordering, and we write
the blocks back to the logical track from which they were read.

for each memoryload of records ~/i (1 < i < N/M) do
begin
read J / i from the ith logical track into internal memory;
randomly permute the M records;
write J//i to the ith logical track
end

Algorithm--Pass 2 of Phase 2. We read in all of the records, one diagonal
(memoryload) at a time. The records for each memoryload are partitioned into
buckets based upon the partitioning elements and then written to the disks as

134 J.S. Vitter and E. A. M. Shriver

follows: The records within each bucket are formed into blocks. We then write
the blocks to the disks, including partially filled blocks, in the following order:

of ~1,
of 502,

block 1
block 1

block 1
block 2
block 2

of 5%
of 5~
of 5~2,

block 2 of 5as,
and so on.

If one of the buckets runs out of blocks before the others, dummy blocks for that
bucket are written. The disks are written to, track by track, in the cyclical order
1,2 P.

k := 1;
for each diagonal J / i (1 < i <_ N/M) do

begin
read Jgi from the ith diagonal into internal memory;
partition the M records into buckets based upon the partitioning elements;
form the records into blocks of size B;
while a nonempty bucket remains do

for j := 1 to S do
begin
schedule next block from 5j to be written on next available track of ~k,

assigning a dummy block if ~ is empty;
k := (k rood P) + 1
end;

write the memoryload to the desired disks
end

By our assumptions, N, M, and P are powers of 2, and thus S = 2N/M + 1 is
relatively prime to P. If, however, the least common multiple d of S and P were
to satisfy d < SP, then the above code would have to be modified so that after
each dis write cycles the order that the disks are written to would be cyclically
shifted by one. The shifting would prevent each bucket from being written to only
a small subset of the disks.

Analysis of Phase 2

THEOREM 8. With overwhelming probability, Phase 2 of the distribution sort
algorithm uses O(N/PB) I/Os to complete the sort of N records. The probability that
the number of I/Os used is more than l times the average is exponentially small in
/(log l) logE(M/B).

Algorithms for Parallel Memory, I: Two-Level Memories 135

PROOF. The actual number of records read in each memoryload might be less
than M records, since in Pass 2 the S - 1 = 2N/M partitioning elements are
retained in memory. The maximum size of each bucket formed must be less than
M in order for the sorting to be completed by a series of internal sorts in the next
pass, as described in Section 6.3, since the final sorting pass requires that a
track/disk pointer and partially filled block be retained in memory. At most
M - S - 1 records can be read per memoryload during Pass 2, and it is possible
that only M - 1 - (B - 1) = M - B records can be read per memoryload during
the final internal sorting step, assuming that the disk/track pointer does not exceed
one record. For convenience, we redefine M to be M - B - S so that a full
memoryload can be read into or written from internal memory in Pass 2. This
changes the value of M by at most a small constant factor.

The reading of the records in Pass 2, the reading and writing of the records in
Pass 1, and the writing of the records in the final pass described in Section 6.3
use O(N/PB) I/Os. We can restrict our attention to the remaining set of I /Os we
have to consider, namely, the write operations in Pass 2 and the read operations
in the final pass. These two quantities are equal, so we restrict our attention to
the number of write operations in Pass 2. Let Z be the number of I /Os needed to
write all the records, one bucket at a time, in Pass 2. We want to show that

o(N) (21) z =

with high probability. In particular, we shall show that

is exponentially small in/(log l) log2(M/B).
Let ~ be the number of times a set of S blocks is written in Pass 2, and let

Y~.j represent the number of records found in memoryload J//i belonging to
bucket ~ . We have

(23) ~= I<,~<N/M max ~FYi'J-];.
�9 l _ < i _ < s (/ B / J

Since the last write for each bucket may be partial we get the bound

Note that Z is expressed in (24) in terms of ~, which by (23) is the sum
over i of maxl<_j<_s{[-Yi.j/B]}. The hard part of the analysis is showing that

136 J.s. vitter and E. A. M. Shriver

max~_<j_<s{[-Y~,/B1} is with very high probability comparable with the average
value of each [-Y~,/B1. We have

(25)

_< Pr > 1 PBS P

f t = P r ~ ___ t ~ - (e - 1)

= P r t ~ max~[Yi 'Jl~>l N }
,.I<_~<_N/M ,_< j_<sU B U - ~ - (p - i) .

Let us define j ' to be any value o f j that a priori (before the partitioning elements
are chosen) maximizes the expression Pr{FYI,j/B-] > lM/BS - (P - 1)M/N}. We
can bound (25) as follows:

(26) Pr f ~ max ~Y/ ' J l~ < / N }
U_<i_<N/M ,_~j_~sl.t B / . I - }-S - (P - 1)

N Pr~" max ~l-v~'J-]~ _> l M~ (P N -1)M}
---~,~ / . , _ < j _ < s / . / B / J

SN { [~] M (P NI)M}
< - - P r > l
- M - BS

_ _ SNM PrIY14' >/- MS (P-1)MBN (B-1)} .

Let us define l' so that

M M (P-1)MB (B 1).
(27) l ' - - = l --

S S N

Substituting the Phase 2 bound S = 2N/M + 1 into (27), we find after
some algebraic manipulation that l' > I - 2PB/M - 2NB/M 2. Since N <
~r~P/ln(M/B) in Phase 2, it follows that l' is at most a small constant amount
less than l; in particular, we have l' > l - 2 - 2/In(M/B). Substituting this value
of l' into (26) we get

Algorithms for Parallel Memory, I: Two-Level Memories 137

Let r i , j , k represent the number of records found in memoryload ~ggi
belonging to bucket 5 j read from the kth logical track. In particular we
have ~I<_k<_N/M Y~,y,k = YI,j'. Let #k represent the expected value of Yx,i',k" By
Lemma 4, each bucket contains at most 85M records of the file, and there
are N / M memoryloads. Thus, we have

5M 5 M 2

]2k = E(YLj') < -
1 < k <_ N/M - - N / M 8 N

Let T~, k be the number of records belonging to bucket ~ on the kth logical track.
We have]2k = Tj',kM/N. We want to bound Pr{YI,j, > l 'M/S}. We do that by
considering two cases: (1) small #k and (2) large]2k" The two cases are determined
by comparing]2k with the average size that YI,j',k would be if all the Tj, k terms
were equal to M2/N. Let 6 = 389 l' -3-9.15 We have

Pr Yx,y,k >]2k + 6
1 <k<_N/M
#k < M3/N 2

+ E Pr{Y1,j',.k >]2k + 612k}.
1 <_k<_N/M
~k >-- M3/N 2

The above bound (29) holds since

E]2k -~ "~-
1 <_k<_N/M
tak < M3/N 2

(]2k + <- + - -
1 <k<_N/M
Irk >_ M3/N 2

M 2

N

M
= (5, + ~ 3) - -

S - 1

3 M
< + - -

2 S

M
m I '

S

The probability term in (28) is expressed in (29) as a sum of tails of distributions
of Yl,y,k, where the starting point of each tail is sufficiently far from the mean]2k
SO that the result is exponentially small, as we shall see. Intuitively, in order to
get a small bound on the probability term, when]2k is small the tail should start
at some absolute distance from]2k, and when]2k is larger the tail should start at
some multiple of]2k"

We want to get tight upper bounds for the tails of the probability distribution
of YLj',R listed in the summations in (29). Both summands have the form
Pr{X >]2 + v}, where X = Yl,j',k,]2 = Ilk is the mean of X, and v is a positive

138 J.S. Vitter and E. A. M. Shriver

value. Let L = M2/N be the number of records read from the ith logical track by
any memoryload. The random variable X = Ylo'.k has the hypergeometric prob-
ability distribution

(30) er{X = t} =
t / k , L - - t /

with mean

(31) , -
Tj, kL Tj~ kM

M N

One approach to bounding Pr{X > # + v} is to use Chernoff-type bounds, as
we did in Section 6.1, except in this case we would have to use a two-variable
version involving the supergenerating function of (30), which has a simple closed
form. A simpler approach is to consider the ratio R(t) defined by

Pr{X = t + 1}

e r{X = t}

We have

(32) P r { X > # + v } = P r { X = # + v } + P r { X = / t + v + l } + . . .

= P r { X = # } P r { X = # + v }
Pr{X = #}

+ Pr{X = ~, + 1} er{X = ~ + v + 1} + " ' .
er{X =/~ + 1}

Using (30), it is easy to see that R(# + v) is monotone decreasing in v, and hence
we have Vr{X = # + v}/Vr{X = #} > Vr{X =/~ + v + 1}/Pr{X = # + 1}. Sub-
stituting this bound into (32), we get

(33) P r { X > # + v } < P r { X = # + V } (P r { X = # } + P r { X = k t + I } + ' ")
Pr{X =/~}

Pr{X = # + v}
<
- Pr{X = #}

Algorithms for Parallel Memory, I: Two-Level Memories 139

Note that we can write Pr{X = # + v} in the following form:

(34) P r { X = # + v } = P r { X = # } P r { X = # + l } P r { X = # + 2 }
Pr{X=#} P r { X = # + l }

Pr{X = # + v}
X

Pr{X = # + v-- 1}

= Pr{X = #} 1-[R(# + t).
O<_t<v--1

Using (34) and (33), we get

(35) Pr{X _> # + v} _< I~ R(p + t).
O<_t<_v-1

From (30), (31), the definition of R(t), and the bounds 0 < t < Ty,k < M, we find
after some algebraic manipulation that

(36) R(# + t) =
(Tj,,k -- (# + t))(L -- (# + t)) 1

<

(# + t + l) (M - T j , k - L + # + t + 1) - l + t / (# + l) "

Thus, by (35)

(1 i) Pr{X>_#+v}_< H - l + t / (# + l "
O<_t<_v-1

Taking the logarithm of both sides and bounding the sum by an integral, we get

(37) ln P r { X > # + v } < ~ In(-1 1))
O_<t<:v-1 "~ t/(# + 1

< - f 2 - 1 1 n (l + ~ + l + l) dY

= --(# + v) ln(p + v~ + v - 1
\ # + 1 /

_< - (~ + v) l n (~) + v - 1 - (p + v) ln(l - - -
1).

+ 1

Taking the exponential of both sides, we get

((1))
(38) P r { X > # + v } < exp v - l - (# + v) ln 1 # + 1 "

140 J.S. Vitter and E. A. M. Shriver

Let us start with the summand of the second sum in (29). By applying (38) and
the bound In(1 - 1/(# + 1)) > -1 /# , we get

(39) Pr{Yl,j',k ~ #k At- 6#k) ~ (1 + 6)-t~+O)~'kexp(6#k + 6).

Since #k > M3/N2, we get by some analysis that (39) is maximized when
#k = M3/N2, and we get

(4 0) Pr{Yl,~,,k >- #k + 6#k} <-- (1 + 6) -~+~)M3/N2 exp 6 ~ - + 6 .

Note that in Phase 2 we always have M a / N 2 > lnE(M/B). The bound in (40) is
exponentially small in 62 log2(M/B) when 6 is small and exponentially small in
6(log 6) log2(M/B) when 6 is large. For example, if 6 < �89 we can use the bound
ln(1 + x) > x - x2/2, for x > 0, to get

P r { Y l , y , k > # k + 6 # k } < - - e x p - - (l + 6) ln a ~ (6--62/2) exp 61n 2 B + 6

= exp(6 62(1 -- 6) ln2 M)
2

< exp 6 -- ~ In z ,

which is exponentially small when 6 > 4/ln2(M/B).
Similarly, by (38) and the bound ln(1 - 1/(p + 1)) > - 1/#, the summand of the

first sum in (29) for #k ----- �89 is

(41)

Pr Y,,S, k 2 # k + 6 ~ < 1+6 exp t t~) t l + ~
#k /

which can be bounded by an expression similar to the right-hand side of (40). For
smaller #k, we have from (38)

(42) Pr Yl,j',k > #k + 6

(M3/N2~-(#k+t~M3iN2) (6M3 (6M3~ 2)
< 1 + 6 expt ~ - - 1 - #k+ N 2 ,] In ,

#k /

which is exponentially decreasing in a way similar to (40).

Algorithms for Parallel Memory, I: Two-Level Memories 141

In conclusion, by combining (29), (40), (41), and (42), we can bound the
probability (28) by 4N3/M 3 times a term exponentially small in/(log/) log2(M/B).
The 4N3/M 3 term is very quickly masked by the exponentially small term, since

in Phase 2 we have N < x / ~ P / l n (M / B) , which implies that Na/M 3 < (M/B) 3/2.
[]

6.3. Completing the Sort. After Phase 2 is completed, we can read the blocks
belonging to each bucket ~ using an optimal number O(N/(PBS) of I/Os; the disk
and track location of every block (including the dummy blocks) belonging to each
partition can be easily computed because the placement of the blocks was
deterministic. Bucket ~ contains at most M records, so it can be sorted internally.
We sort the records of the bucket, form blocks, and write the blocks to the next
available track/disk, cycling through the disks. We retain in internal memory the
last block if partially full. The records in the final partially filled block from
can be treated as members of ~ + 1 when ~ + 1 is processed.

k := 1;
for each bucket ~ (1 < j < S) from Phase 2 do

begin
read ~ into internal memory;
sort the records in internal memory by key values;
form blocks of size B;
for each full block do

begin
schedule the block to be written to the next available track on ~k;
k := (k mod P) + 1
end;

write the full blocks of
end

6.4. Findin9 the Partitioning Elements. All that remains is to show how to
compute with O(N/PB) I/Os the S - 1 partitioning elements bl, b 2 , bs-1 that
break up the file into S roughly equal-sized buckets. The j th bucket ~ consists
of those records R such that

b j_ i < key(R) < b j,

where b o = - ~ and b s = + ~ . We need to show that conditions (3) and (4) of
Section 6 are satisfied. Without loss of generality, we assume for simplicity of
exposition that N, M, and S - 1 are powers of 2.

Our procedure for computing the approximate partitioning elements must work
for the recursive step of the algorithm, so we assume that the N records are stored
in O(N/B) blocks of contiguous records, each of size at most B. Using the approach
of [1], we first describe a subroutine that uses O(n/PB) I/Os to find the record
with the kth smallest key (or simply the kth smallest record) in a set containing

142 J.S. Vitter and E. A. M. Shriver

n records, in which the records are stored on disk in at most O(n/B) blocks: We
load the n records into memory, one memoryload at a time, and sort each of the
[-n/M] memoryloads internally. We pick the median record from each of these
sorted sets and find the median of the medians using the linear-time sequential
algorithm developed in [2]. The number of I/Os required for these operations is
O(n/PB + n/M) = O(n/PB). We use the key value of this median record to partition
the n records into two sets. It is easy to verify that each set can be partitioned
into blocks of size B (except possibly for the last block) in which each group is
stored contiguously on disk. It is also easy to see that each of the two sets has
size bounded by 3n/4. The algorithm is recursively applied to the appropriate half
to find the kth smallest record; the total number of I/Os is O(n/PB).

We now describe how to apply this subroutine to find the S - 1 approximate
partitioning elements in a set containing N records. Let p and q denote powers
of 2 to be specificed later. As above, we start out by sorting N / M memoryloads
of records, which can be done with O(N/PB) I/Os. Let us denote the ith sorted
set by .///i. We construct a new set J~' of size at most Nip consisting of the kpth
record (in sorted order) of J/r for 1 < k < M/p and 1 < i < N/M. The records in
~"i can be output one block at a time. The total number of contiguous blocks of
records comprising J//' is O(I~'I/B), so we can apply the subroutine above to find
the record of rank jq in J//' with only O([~#'I/PB)= O(N/pPB) I/Os; we call its
key value b i. Thus, if p = Y~(S), the S - 1 bjs can be found with a total of
O(SN/pPB) = O(N/PB) I/Os.

The above description can be expressed in the following pseudocode:

for each memoryload of records ~/'i (1 < i < N/M) do
begin
read J//i into internal memory;
sort the records in internal memory by key values;
construct ~/'i so that it consists of every pth record in memory;
write ~///i
end;

! I .

~ " := J//ll + "'" + "/#N/M,
for j := 1 to S - 1 do

bj := record of rank qj in J///'

The two lemmas below show that the partitioning is done evenly in Phases 1
and 2, respectively.

LEMMA 3. In the above partitioning algorithm, the number of partitioning
elements S satisfies S = N/pq + 1. I f we choose p = max{2 , (S -1) /4} and
q = N / (S - 1)p in Phase 1, where (S - 1)2<_2M, then condition (3) of Section
6 is true; that is

N 3N
- - < N j < - - .
2(S - 1) 2 (S - 1)

Algorithms for Parallel Memory, I: Two-Level Memories 143

LEMMA 4. I f p = M2/8N and q = 4N/M in the above partitionin9 algorithm
for Phase 2, then S = 2N/M + 1 and condition (4) of Section 6 is true;
that is,

3M < Nj < -~M.

The choices of p in Lemmas 3 and 4 satisfy p = f~(S), as can be verified by using

the condition N < x//-~P/ln(M/B) for Phase 2, and thus the partitioning can be
done with O(N/PB) I/Os, as mentioned above.

Lemmas 3 and 4 are special cases of the following general partitioning lemma:

LEMMA 5. The size Nj of the j th bucket 5ej produced by the above partitionin9
aloorithm satisfies

N N
p q - p ~ < N j < p q + p M.

PROOF. Each element in J//' corresponds to a collection of p elements in the
original file. Since the chosen partitioning elements are q apart in ~/ ' , this gives
us pq elements that could be in SPj. Let e~ and e i+ 1 represent the pith record and
p(i + 1)st record from the file in some memoryload. If ei < bi < ei+~, then the
p - 1 elements between ei and ei+ 1 may also be in ~ . Thus there may be p - 1
additional records from each of the memoryloads, except from the memoryload
that contributed bj. This gives us the upper bound

N
Nj<_pq+ - 1 (p - 1) < p q + p ~ .

By similar reasoning, we get the lower bound

N N
Nj > p q - ~ (p - 1) > p q - p ~ . []

Lemmas 3 and 4 follow directly from Lemma 5. The condition (S - 1) z < 2M

in Lemma 3 is satisfied by the setting S < x / -~ / ln2 (M/B) + 1 for Phase 1, and
we have pN/m = (S - 1)N/4M < N/2(S - 1).

6.5. Permuting for Very Small P and B. Aggarwal and Vitter [1] show in their
one-disk model with P block transfers per I/O that the optimal way to permute
when P and B are very small is the naive method of repeatedly moving P records
in each I/O from their inputed positions to the desired final positions. This makes
no use of blocking; each block transfer is used to transfer a single record. The
resulting number of I/Os is O(N/P).

144 J.s. Vitter and E. A. M. Shriver

This algorithm does not translate directly to our more realistic two-level model
with parallel block transfer, because there is no way to guarantee that the P block
transfers involve separate disks. Instead, we achieve the desired O(N/P) I/O bound
by using the following technique inspired by Phase 1: In the first pass, the records
are read, one memoryload at a time. Each memoryload is permuted randomly in
internal memory and written back to disk in the new permuted order. As a result,
the records that need ultimately to end up on a particular disk i (call them 9~)
are spread with high probability uniformly among all the disks. This is true for

each 1 < i < P. (It might take two passes to do this, using x//P bins each time
instead of P so that there is enough internal data structure space to manage the
placement of all the bins on the disks.)

In the deterministic second pass, for each 1 < i < P in parallel, one block of ~i
is read into internal memory. Then B writes are executed; during each write, one
record from ~t~ is written to disk i, in parallel for each 1 < i < P.

The total number of I/Os is O(N/P), as desired, asuming that the first pass
spreads each ~i uniformly among the P disks. This uniformity condition can be
proven using a modification of the analysis of Section 6.1.

7. Standard Matrix Multiplication. The following is a basic divide-and-conquer
approach for scheduling the multiplication of two k x k matrices using the
standard algorithm:

1. If k < x / ~ , we multiply the matrices internally. Otherwise we do the following
steps:

2. We subdivide A and B into eight k/2 x k/2 submatrices: A1-A 4 and B~-B 4.

A 3 A , J B3 B 4

We reposition the records of the eight submatrices so that each submatrix is
stored in row-major order.

3. We use the algorithm recursively to compute

C 1 = A1B 1 + A2B3,

Cz = A1B2 + AzB4,

C 3 : A3B 1 + A4B3,

C4 = A3B2 + A4B4.

4. We reposition C1-C 4 so that C is stored in row-major order.

We partition secondary storage into four contiguous parts, one part for each
set of submatrices. We define T(k) to be the number of I/Os used to add two k • k

Algorithms for Parallel Memory, I: Two-Level Memories 145

matrices. Step 2 takes O(kE/PB) I/Os since, in the worst case, we can have at most
four blocks that are assigned to be written to the same disk. The number of I/Os
needed to do eight multiplications of submatrices recursively in Step 3 is 8 T(k/2),
and the additions take a linear number O(k2/PB) o f I/Os, since all of the
submatrices are packed in blocks. Step 4 takes O(k2/PB) I/Os; it is similar to

Step 2. When k > w/M, we get the following recurrence:

\PB/'

where T(v/M) = M/PB. This gives us the desired I/O bound from Theorem 5.
The recurrence for I(k), the amount of work done internally, satisfies

I(k)= 8I(~)+O(k 2 log P'),

where I(~/M) = M/PB, which yields the desired upper bound I(k) = O(k3). The
internal processing time is O(I(k)/P).

8. Conclusions. In this paper we have introduced a new and realistic model of
two-level storage with parallel block transfer between the internal memory and
secondary storage. We have developed practical algorithms for sorting, permuting,
matrix transposition, FFT, permutation networks, and standard matrix multi-
plication, that use an optimal number of I/O steps. The algorithms for sorting and
permuting are based upon a randomized version of distribution sort. The partition-
ing is done by a combination of two interesting probabilistic techniques in order
to guarantee that the accesses are spread uniformly over the disks. Applications
of these techniques to obtain optimal algorithms for the P-HMM and P-BT
hierarchical memory models are developed in the companion paper [19].

Preliminary work suggests that the amount of randomness in our distribution
sort algorithm can be greatly reduced by applying universal hashing [3] in an
interesting way. However, the problem of removing randomness completely from
this technique is more difficult.

The study of I/O efficiency has many applications besides the ones we studied
in this paper. For example, graphics applications, multidimensional search pro-
blems, and iterated lattice computations often involve I/O-bound tasks. We expect
that the algorithms and insights we develop in this paper will have many
applications in those domains.

Addendum. At the beginning of Section 6 we gave some "intuitions" as to why
merge sort seemed especially hard to implement with an optimal number of I/Os

146 J.s. vitter and E. A. M. Shriver

in our two-level d isk model . O d d l y enough, a prac t ica l and op t ima l determinis t ic
sor t ing a lgor i thm was recent ly deve loped by N o d i n e and Vit ter [12] using a
"g reedy" merge sort. Unfo r tuna te ly this merge sort a lgor i thm does no t seem to
lead to op t ima l de terminis t ic sor t ing a lgor i thms in mos t cases of the P - H M M ,
P-BT, and o ther para l le l h ierarchical m e m o r y models. N o d i n e and Vit ter have
subsequent ly deve loped an op t ima l d i s t r ibu t ion sort a lgor i thm tha t is determinis t ic
and tha t does general ize to give op t ima l de terminis t ic para l le l h ie rarchy a lgor i thms

[13].

Acknowledgments . W e thank Bowen Alpern, La r ry Carter , T o m Cormen, Mike
Goodr i ch , and M a r k N o d i n e for several helpful comments .

References

[1] A. Aggarwal and J. S. Vitter, The Input/Output Complexity of Sorting and Related Problems,
Communications of the A CM 31(9) (September 1988), 1116-1127.

[2] M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and R. E. Tarjan, Time Bounds for Selection, Journal
of Computer and System Sciences 7(4) (1973), 448461.

[3] J.L. Carter and M. N. Wegman, Universal Classes of Hash Functions, Journal of Computer
and System Sciences 18 (April 1979), 143-154.

[4] R.W. Floyd, Permuting Information in Idealized Two-Level Storage, in Complexity of Computer
Calculations, R. Miller and J. Thatcher, eds., Plenum, New York, 1972, pp. 105-109.

[5] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A. Patterson, Coding Techniques
for Handling Failures in Large Disk Arrays, Aloorithmica, this issue, pp. 182-208.

[6] W. Jilke, Disk Array Mass Storage Systems: The New Opportunity, Amperif Corporation,
September 1986.

[7] L. Kleinrock, Queueing Systems, Vol. I, Wiley, New York, 1979.
[8] D. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.
[9] F.T. Leighton, Tight Bounds on the Complexity of Parallel Sorting, IEEE Transactions on

Computers 34 (April 1985), 344-354.
[10] E.E. Lindstrom and J. S. Vitter, The Design and Analysis of BucketSort for Bubble Memory

Secondary Storage, IEEE Transactions on Computers 34 (March 1985), 218-233.
[11] N. B. Maginnis, Store More, Spend Less: Mid-Range Options Around, Computerworld,

November 16, 1986, p. 71.
[12] M.H. Nodine and J. S. Vitter, Large-Scale Sorting in Parallel Memories, Proceedings of the

3rd Annual ACM Symposium on Parallel Algorithms and Architectures, July 1991, pp. 29-39.
[13] M. H. Nodine and J. S. Vitter, Deterministic Distribution Sort in Shared and Distributed

Memory Multiprocessors, Proceedings of the 5th Annual ACM Symposium on Parallel
Algorithms and Architectures, July 1993, pp. 120-129.

[14] D.A. Patterson, G. Gibson, and R. H. Katz, A Case for Redundant Arrays of Inexpensive Disks
(RAID), Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data, June 1988, pp. 109-116.

[15] J. Savage and J. S. Vitter, Parallelism in Space-Time Tradeoffs, in Advances in Computing
Research, Vot. 4, F. P. Preparata, ed., JAI Press, Greenwich, CT, 1987, pp. 117-146.

[16] H.S. Stone, Parallel Processing with the Perfect Shuffle, IEEE Transactions on Computers 20
(February 1971), 153-161.

[17] University of California, Massive Information Storage, Management, and Use (NSF Institu-
tional Infrastructure Proposal), Technical Report No. UCB/CSD 89/493, University of
California at Berkeley, January 1989.

Algorithms for Parallel Memory, I: Two-Level Memories 147

[18] J.S. Vitter and Ph. Flajolet, Average-Case Analysis of Algorithms and Data Structures, in Hand-
book of Theoretical Computer Science, Jan van Leeuwen, ed., North-Holland, Amsterdam, 1990,
pp. 431-524.

1-19] J.S. Vitter and E. A. M. Shriver, Algorithms for Parallel Memory, II: Hierarchical Multilevel
Memories, Algorithmica, this issue, pp. 148-169.

[20] C. Wu and T. Feng, The Universality of the Shuffle-Exchange Network, IEEE Transactions on
Computers 30 (May 1981), 324-332.

