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Abstract

In this paper we describe a routing algorithm that routes any permutation on a (2 log N−1) stage interconnection
network in O(N log N) time. The proposed algorithm works on any multistage interconnection network, MIN,
belonging to the equivalence class represented by the concatenation of a Reverse Butterfly and a Butterfly whose
first and second stages are swapped. Both the routing algorithm and the definition of equivalence classes are based
on the decomposition in factors of MINs obtained by using the Layered Cross Product. The interest of this result
is its approach, that is based on the use of only one factor of the studied MIN. Moreover, the algorithm provides
a proof that all (2 log N − 1) stage MINs obtained concatenating two log N stage Butterfly equivalent MINs, with
N = 8 inputs are rearrangeable.

I. INTRODUCTION

Interconnection networks are widely studied for realizing communication among processors and for
distributing information in telecommunication systems, using both electronic and optical technologies.
Many interconnection network topologies have been considered in the past decades and, among these,
Multistage Interconnection Networks, MINs, offer a good trade-off between routing time complexity and
topological complexity. An important requirement on interconnection networks is the realizability of any
permutations of data between inputs and outputs. An N input MIN is called a rearrangeable network if
it realizes every one of the N ! permutations in a single pass. MINs consisting of log N stages such as
Omega, Flip, Baseline and Reverse Baseline, Butterfly and Reverse Butterfly are all equivalent networks
[4], [5] and have attractive features, but they are not rearrangeable. For this reason, MINs obtained by con-
catenating two log N stage MINs with the center stage overlapped, have been intensively studied. Indeed,
2 log N −1 is the theoretically minimum number of stages required for obtaining rearrangeable multistage
interconnection networks [10]. The popular (2 log N−1) stage Beneš network [2], [3] is rearrangeable and
the Looping algorithm provides a method and a proof for its rearrangeability. Unfortunately it can be used
only on (2 log N − 1) stage symmetric MINs with recursive structure such as Baseline-Reverse Baseline
and Butterfly-Reverse Butterfly networks. The Looping algorithm does not work on the Omega-Omega−1

or Double Baseline even if they are in the class of Beneš equivalent networks as shown in [5]. For the
Omega-Omega−1, Lee [11], [12] proposed a routing algorithm based on the decomposition of the first half
of the network and the self-routing on the second half. The main problem of these two schemes is that
they exploit the network topology configuration and then work only on the networks they are designed
for. Both this algorithm and the Looping algorithm have O(N log N) time complexity. Recently, Das in
[7] has formulated a sufficient condition for checking the rearrangeability of (2 log N − 1) stage MINs
and has presented a routing algorithm requiring an O(N log N) time complexity. Note that lower values
for the time complexity have been obtained only for special class of permutations.

In [6] an algorithm to route any permutation on any Beneš equivalent MIN is described. In that work
the Layered Cross Product, LCP, of Even and Litman [8], is exploited to obtain the decomposition of
(2 log N − 1) stage MINs in factors. It is possible to decompose MINs either in bamboos [8], [5], [9]
exploiting the theory of prime factors of Paz [13], or in binary trees [8], [5]. In both cases, it is possible to
exhibit a partition of (2 log N − 1) stage MINs in equivalence classes [5]. The decomposition in bamboos



has been recently used in [1], by Bao et al., for Bit Permutation Networks, BPN, that are MINs where
the number of stages is not fixed, and a necessary condition for a BPN to be rearrangeable is given.

In this work we describe an algorithm that routes any permutation on a MIN belonging to the equivalence
class represented by the concatenation of a Reverse Butterfly and a Butterfly whose first and second stages
are swapped, exploiting the decomposition factors of the network.

The interest of this result is in the approach used, that is based on the use of only a factor of the
studied MIN, in a way similar to that presented in [6]. Moreover, the proposed algorithm provides a proof
that all (2 log N − 1) stage MINs obtained by concatenating two log N stage MINs, with N = 8 inputs
are rearrangeable. Finally, algorithms using the LCP based decomposition allow a deep understanding of
features of MINs and, hopefully, represents a step towards the proof of the rearrangeability of Omega-
Omega, that still remains an open problem for N = 2n, n > 3 [15].

II. PRELIMINARIES

In this section we give some definitions and introduce some notations used in the rest of the paper.

Definition II.1. A permutation Π for a MIN is a set of N different input-output pairs (i, j) with i, j ∈ [1, N ]
having neither inputs nor outputs in common. Each pair represents the connection request between one
input and one output.

A MIN satisfies the permutation Π if there exists a set of N edge disjoint paths from the input to the
output of each request in Π passing through exactly one node in each stage.

Definition II.2. A MIN is rearrangeable if it can satisfy all the N ! permutations.

The algorithm presented in this work is based on the partition of (2 log N−1) stage MINs in equivalence
classes, described in [5]. This partition is obtained by means of the decomposition in factors of a MIN
exploiting the theory of Layered Cross Product (LCP) [8]:

• an l-layered graph, G = (V1, V2, . . . , Vl, E) consists of l layers of nodes, Vi is the (non-empty) set
of nodes in layer i, where 1 ≤ i ≤ l; E is a set of edges such that every edge connects nodes of two
adjacent layers,

• the Layered Cross Product, G = G′ ⊗ G′′, of two l-layered graphs G′ = (V ′

1
, V ′

2
, . . . , V ′

l , E
′) and

G′′ = (V ′′

1
, V ′′

2
, . . . , V ′′

l , E ′′) is an l-layered graph G = (V1, V2,
. . . , Vl, E) where Vi is the cartesian product of V ′

i and V ′′

i , 1 ≤ i ≤ l, and an edge 〈(u′, u′′), (v′, v′′)〉
belongs to E if and only if 〈u′, v′〉 ∈ E ′ and 〈u′′, v′′〉 ∈ E ′′. G′ and G′′ are called the first and second
factor of G, respectively.

A binary tree and a MIN are examples of layered graphs.
The operation of decomposition in factors is the inverse operation of the LCP. As described in [5], any

(2 log N−1) stage MIN can be decomposed into two factors: the first one consists of two complete binary
trees sharing their roots, call it ∇

∆, and it is the same for all (2 log N − 1) stage MINs; the other factor

consists of two complete binary trees sharing their leaves, be it ∆
∇, and it characterizes each equivalence

class according to the way the leaves are connected. The number of the equivalence classes, that is the
number of ∆

∇, is (log N)!.

In the case of N = 8, there are only two possible classes, that are the sub-∆
∇ of the first and second ∆

∇ in
Figure 1, on the left side. The first class contains the Beneš network and the Reverse Butterfly-Butterfly, the
second class contains the Omega-Omega and the Butterfly-Butterfly (Reverse Butterfly-Reverse Butterfly).

All (log N)! possible equivalence classes in the case of N = 16 inputs (outputs) are shown in Figure 1
by means both of the ∆

∇ factor and the representative MIN, visualized as a Reverse Butterfly concatenated



Fig. 1. All the possible ∆
∇ factors in the case of MINs with N = 16 inputs (outputs). MINs are represented using butterfly-like stages.

with a log N stage MIN obtained as any permutation of the Butterfly stages (factor ∇
∆ is not shown in

Figure 1).
In [6] an algorithm for setting the switches of a Beneš equivalent MIN is described. It exploits only the

∆
∇ factor because the paths on the ∇

∆ factor are imposed by the tree structure. For this reason, the routing

algorithm is designed by using only the ∆
∇ factor, but the relations among input or output elements, derived

from ∇
∆, are taken into account to determine the paths. In particular, to avoid edge conflicts, elements (inputs

or outputs) using the same path on ∇
∆, must be separated on factor ∆

∇, that is they must use different paths

of ∆
∇. This can be obtained checking the building of the ∆

∇ paths level by level. To clarify this aspect we
use Figure 2. Let us observe the position of the inputs of the two factors. The two elements of input pairs
use the same edge on the first level of ∇

∆, then they must be associated to different edges of ∆
∇, namely

if we associate input 1 to the right first level edge, then we must associate 2 to the left one, then if we
use the left first level edge for 3, input 4 must use the right level, and so on. Of course, it is necessary
to proceed in the choice of the left or right edge by taking into account which edges will be used on the
other levels by each element.

For the second class of (2 log N − 1) stage MINs of size N = 8, a general proof of rearrangeability
is not available in literature. A proof of rearrangeability of a network in this class, that is the Five-Stage
Shuffle/Exchange Network for N = 8, is due to Raghavendra and Varma [14] and is obtained by means
of an algorithm providing the switch setting by building the pairs of input arriving to nodes of the middle
stage. Once these pairs are formed, paths to middle stage nodes are provided and the self routing capability
of the last log N stage is used to realize the requested permutation. As for the Beneš network algorithm,
even this latter algorithm is applicable only to the network for which it is designed, since it is based on



a scheme that exploits the network configuration, then it works only for the Five-Stage Shuffle/Exchange
Network of size N = 8.

In next section, we describe a permutation routing algorithm for any MIN belonging to the second class
of the case N = 8. This algorithm allows to prove that all MINs having a ∆

∇ factor with these sub-∆∇s are
rearrangeable, that is all (2 log N − 1) stage MINs obtained by concatenating a Reverse Butterfly and a
Butterfly whose first and second stages are swapped, are rearrangeable.

III. THE PERMUTATION ROUTING ALGORITHM

In this section we propose a new permutation routing algorithm for any MIN belonging to the second
class of the case N = 8, working on its ∆

∇ factor that in the following we denote ∆
∇

′

8
. Then we use the

rearrangeability of this class of MINs to prove the rearrangeability of MINs that have ∆
∇

′

8
as sub-∆∇ in their

∆
∇ decomposition factor.

The aim of the algorithm is to find suitable pairs of inputs and outputs that can reach the middle stage
of ∆

∇

′

8
without generating conflicts on edges. These pairs are inputs of the switches in the middle stage of

the MIN. The requested permutation is obtained by using the self routing capability of log N stage MINs.
To this end, we define the following sequences that we use to check if input or output elements can

be coupled avoiding conflicts generation.

Let Π be the permutation:
(

1 2 3 4 5 6 7 8
π(1) π(2) π(3) π(4) π(5) π(6) π(7) π(8)

)

and let UP and DOWN be the

sequences: UP = [1, 2, 3, 4, 5, 6, 7, 8] and DOWN = [π(1), π(2), π(5), π(6), π(3), π(4), π(7), π(8)].
Observe that the sequence DOWN is obtained from the considered permutation by swapping the pairs

(π(3), π(4)) and (π(5), π(6)), due to the structure of ∆
∇.

We subdivide both the sequences, UP and DOWN , into two subsequences, that are: UPL = [1, 2, 3, 4]
and UPR = [5, 6, 7, 8], DOWNL = [π(1), π(2), π(5), π(6)] and DOWNR = [π(3), π(4), π(7), π(8)].

In Figure 2 all the above defined sequences are depicted; the sequence UP consists of all inputs of ∇
∆

and ∆
∇; the sequence DOWN consists of all outputs of ∇

∆ and ∆
∇; the sequences UPL and UPR consist

of the elements on left and right edges entering in the middle node of ∇
∆. Analogously the sequences

DOWNL and DOWNR consist of the elements on left and right edges outgoing from the middle node
of ∇

∆. Note that it is not possible to visualize the sequences UPL, UPR, DOWNL and DOWNR on ∆
∇

because the position of each element on an edge depends on the given permutation. A further subdivision
of the above sequences provides the following input pairs, pUP , and output pairs, pDOWN :

• (1, 2) and (3, 4) which form the sequence UPL

• (5, 6) and (7, 8) which form the sequence UPR

• (π(1), π(2)) and (π(5), π(6)) which form the sequence DOWNL

• (π(3), π(4)) and (π(7), π(8)) which form the sequence DOWNR

Observation 1. Each successive subdivision of sequences UP and DOWN provides the groups of
elements on each edge level of ∇

∆ and allows us to check how to build groups of elements on ∆
∇ edge levels

without conflicts. To avoid conflict generation, elements of the same group in ∇
∆ must be separated on ∆

∇,

namely elements on the same edge of ∇
∆ must be associated to different edges in ∆

∇.

We define the four paths in ∆
∇

′

8
, connecting the root of ∆ to the root of ∇, by associating labels L, for

left, and R, for right, to the edges of the two central stages of ∆
∇ as shown in Figure 2. Namely, the four

paths are defined as follows:
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Fig. 2. Factors of a MIN of size N = 8 where sequences UP , DOWN , UPL, UPR, DOWNL and DOWNR are highlighted.

• PLL uses the edges labeled L both in ∆ and in ∇
• PLR uses the edge labeled L in ∆ and the edge labeled R in ∇
• PRL uses the edge labeled R in ∆ and the edge labeled L in ∇
• PRR uses the edges labeled R both in ∆ and in ∇

We introduce the notation mateU(x) and mateD(x) to indicate the relation mate of coupling of an
element x with the other element of the pair in sequences UP and DOWN respectively. It is easy to
observe that for sequence UP the relation mate is fixed, whereas for the sequence DOWN the relation
depends on the considered permutation. As shown in the example of Figure 3, the relation mate for
element 3 provides: mateU(3) = 4 and mateD(3) = 1.

To form pairs that can be associated to paths of ∆
∇ without generating edge conflicts, we require that

for any pair (x, y) the following Pair Properties hold:
P1 (x ∈ UPL ∧ y ∈ UPR) ∨ (x ∈ UPR ∧ y ∈ UPL)
P2 (x ∈ DOWNL ∧ y ∈ DOWNR) ∨ (x ∈ DOWNR ∧ y ∈ DOWNL)
P3 pair (x, y) can be associated to fixed path Pij , where i, j ∈ {L,R} if and only if ((mateU(x) /∈

Piz ∧ mateU(y) /∈ Piz) ∧ (mateD(x) /∈ Pzj ∧ mateD(y) /∈ Pzj)), where z ∈ L,R

Observation 2. Pair Properties P1 and P2 avoid edge conflicts on level 2 and 3 of ∆
∇. Pair Property P3

avoids edge conflicts on level 1 and 4 of ∆
∇.

To correctly form pairs satisfying Pair Property P3 for any permutation, we must avoid to couple
elements that, even satisfying P1 and P2, can not be routed on ∆

∇

′

8
without conflicts, that is elements that

can not be both associated to the same path. This can be obtained by choosing the first element of the
first pair in a suitable way. This is realized by Step 1 of algorithm ROUTING ON ∆

∇

′

8
, given in section

III-B.

A. The Algorithm on an example for ∆
∇

′

8

Before giving the algorithm, we illustrate how it works by using the example in Figure 3. We determine
the pairs of elements and the ∆

∇

′

8
path each pair is associated.

As an example, if permutation
(

1 2 3 4 5 6 7 8

1 3 2 7 5 8 4 6

)

is considered, see Figure 3, the sequence UP
is [1, 2, 3, 4, 5, 6, 7, 8], as usual, the sequence DOWN is [1, 3, 5, 8, 2, 7, 4, 6], where pairs (2, 7) and (5, 8)
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Fig. 3. The pairs founded by the algorithm for the middle node stage.

are swapped due to the structure of ∆
∇.

We obtain the following sequences, where pairs (and consequently the relation mate) are highlighted
by means of parentheses:
UPL = [(1, 2), (3, 4)] and UPR = [(5, 6), (7, 8)]
DOWNL = [(1, 3), (5, 8)] and DOWNR = [(2, 7), (4, 6)]
Let us consider an element x1 in the sequence UP as starting element. Usually, we start considering
x1 = 1, but this is not always possible (see Procedure Check Permutation in the following algorithm
ROUTING ON ∆

∇

′

8
).

Then, in our example we start with x1 = 1. To satisfy Pair Property P1, we must couple it with an
element belonging to UPR. We can not couple it with 5 because pair (1, 5) does not respect Pair Property
P2. We can associate x1 = 1 with x2 = 6 and put pair (1, 6) on path PLL of ∆

∇

′

8
.

To determine a new pair, we consider the element x3 = mateD(x2), in our example is x3 = 4. This
implies that this new pair will be associated to either path PLR or PRR because the choice of x3 imposes
the use of right edge on bottom level of ∆

∇

′

8
. To minimize edge conflicts, we consider, as second element

of the pair, x4 = mateD(x1) and we check if Pair Properties are respected. In our example this choice is
in contradiction with property P1. Then we consider next element in sequence DOWNL, that is x4 = 5,
and we obtain the valid pair (4, 5). We can not associate (4, 5) to path PLR because a conflict on the
upper level of ∆

∇

′

8
would arise, then the path for pair (4, 5) is PRR.

Following the same reasoning we produce the third pair and, obviously, the fourth is automatically
given.

We consider x5 = mateU(x4) = 6, but this element is already used. Then we consider elements in
the UPR sequence until we find a valid element, that is x5 = 7 in our example. We associate it with
x6 = mateU(x3) = 3. We obtain the valid pair (7, 3). We can associate it both to path PLR and to path
PRL because no conflict arises. Let PLR be the chosen path. The last pair is (8, 2) and it must be put on
path PRL.

B. Algorithm for routing on ∆
∇

′

8
factor

Given the ∆
∇

′

8
factor and a permutation Π, here follows the algorithm to find the four pairs that will be

used as inputs of the middle stage nodes of the considered MIN.



ROUTING ON ∆
∇

′

8
ALGORITHM

Input:
UPL = [(1, 2), (3, 4)], UPR = [(5, 6), (7, 8)] fixed sequences
DOWNL = [(π(1), π(2))(π(5), π(6))], DOWNR = [(π(3), π(4)) (π(7), π(8))] permutation sequences

Output:
for each input element, one of the paths PLL PLR PRL PRR

Step 1: Choice of the starting element
• if UPL ∩ DOWNL consists only of one element, then let it be the starting element x1

• if UPL ∩ DOWNL consists of three elements, then let the lacking element of UPL be the starting
element x1

• if UPL ∩ DOWNL consists of two elements and UP ∩ DOWN consists of one and only one pair
p′ then
Procedure Check Permutation:
if p′ ∈ UPi with i ∈ L,R, then let x1 be the element such that (x1 ∈ UPi) ∧ (x1 /∈ p′)

• if previous cases are not verified then let x1 = 1 be the starting element
Step 2: Determining the four pairs

1) associate x1

with an element x2 ∈ UP such that pair (x1, x2) respects properties P1 and P2; if x1 has been
obtained by Procedure Check Permutation then must be x2 6= mateU(mateD(x1))

2) consider element x3 = mateD(x2) in sequence DOWN and element x4 = mateD(x1) in sequence
DOWN , check if pair (x3, x4) respects Pair Properties P1 and P2; if not, find an element x4 in
the same sequence DOWNi, i ∈ L,R, containing mateD(x1), such that (x3, x4) satisfies Pair
Properties P1 and P2

3) consider element x5 = mateU(x4) in sequence UP , if it has been already put in a pair, find
an element in sequence UP not considered yet; consider x6 = mateU(x3) as second element if
possible, otherwise find an element in sequence UP not considered yet, such that pair (x5, x6)
satisfies Pair Property P1

4) form the last pair by using the two elements not considered yet
Step 3: Association of pairs to paths

1) associate
pair (x1, x2) to path PLL

2) associate pair (x3, x4) to path PLR, if an edge conflict on first level of ∆
∇ arises, then associate

(x3, x4) to path PRR

3) choose the path for (x5, x6) in the following way:
• if in previous step PLR has been used, associate pair (x5, x6) to path PRL, if an edge conflict

on fourth level of ∆
∇ arises, then use path PRR

• if in previous step PRR has been used, associate pair (x5, x6) to path PLR, if an edge conflict
either on first or fourth level of ∆

∇ arises, then use path PRL

4) if path PLR has not already been used in a previous step, then associate pair (x7, x8) to path PLR,
otherwise associate pair (x7, x8) to path PRL

C. On rearrangeability of MIN equivalence classes

In this section we prove the correctness of algorithm ROUTING ON ∆
∇

′

8
and the rearrangeability of

equivalence classes of MINs that present the ∆
∇

′

8
structure in their ∆

∇ decomposition factor.



Lemma 1. Given a permutation of N = 2n elements, it is always possible to find N/2 pairs satisfying
Pair Properties P1 and P2.

Proof: Let us consider UPi and DOWNj , where i, j ∈ L,R such that UPi ∩ DOWNj 6= 0. Let x
be an element belonging to UPi ∩DOWNj . To satisfy Pair Properties P1 and P2, x cannot be coupled
neither with one of the other N/2 − 1 elements in UPi, nor with one of the other N/2 − 1 elements
in DOWNj . In the worst case, UPi ∪ DOWNj = N − 1, then there exists an element y belonging to
UP − (UPi ∪ DOWNj) such that pair (x, y) satisfies P1 and P2. We can repeat this reasoning, after
eliminating x and y from UP and DOWN .

Lemma 2. Given a permutation of N = 8 elements, it is always possible to find a partition in pairs
satisfying Pair Properties P1, P2 and P3.

Proof: We show that after the choice of the first two pairs (x, y) and (w, z) satisfying P1, P2 and
P3, we can always associate the remaining elements in pairs, still satisfying P1, P2 and P3. Usually, this
initial choice can be arbitrary, but there are few cases in which it must be imposed to properly selected
elements.

Let us consider UPL, UPR, DOWNL and DOWNR sequences as composed by Mate Pairs, MP ,
where a Mate Pair is an UP or DOWN pair for which the element order is eliminated. In Figure 4
Mate Pairs are represented by means of circles. Let (x, y) be a pair satisfying properties P1 and P2,
which existence is guaranteed by Lemma 1. Let (w, z) the pair obtained by taking w = mateD(y) as first
element, and choosing mateD(x) or another element in the same DOWNi, i ∈ L,R, as second element
z. Lemma 1 guarantees that it is possible to determine an element z such that (w, z) satisfies properties
P1 and P2. By construction, y and w belong to the same MP in DOWN . According to the arrangement
of the four elements x, y, w, z with respect to the MPs in UP and DOWN sequences, we have several
different cases. Namely, we have three cases for the MPs in UP (see Figure 4):

• case 1 UP: x, y, w, z belong to 2 different MPs
• case 2 UP: x, y, w, z belong to 3 different MPs
• case 3 UP: x, y, w, z belong to 4 different MPs

and two cases for the MPs in DOWN (see Figure 4):
• case a DOWN: x, y, w, z belong to 2 different MPs
• case b DOWN: x, y, w, z belong to 3 different MPs

All the possible relations are obtained by combining an UP and a DOWN case together.
To prove the lemma, we must show that it is always possible to build the other two remaining pairs

satisfying P1 and P2, and to associate the four pairs to the four paths PLL, PLR, PRL, PRR in such a
way P3 is satisfied.

Because of the choice of the first two pairs, DOWN sequences must assume one of the following
configurations:

• case a: DOWNL((w, y), (v, s)), DOWNR((x, z), (u, t)
• case b: DOWNL((w, y), (v, s)), DOWNR((x, u), (z, t))

These configurations are not restrictive, because we are interested in the relationships among MPs in
UP and DOWN sequences.

Let us start to examine the possible cases:
Case 1 UP pairs (x, y) and (w, z) must be separated both on the first level and on the fourth, then the
paths associated are PLL and PRR, respectively, see Figure 4; we distinguish two situations:

case a DOWN the remaining elements can be coupled in pairs, satisfying P1 and P2, that can be routed
on PLR and PRL without conflicts, indifferently;

case b DOWN the remaining elements can be coupled in the two pairs (u, v) and (s, t), satisfying P1
e P2; in order to respect Pair Property P3, it suffices to associate (u, v) to path PLR and (s, t)
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Fig. 4. The possible relations among elements of the two pairs are shown for the three UP cases and for the two DOWN cases, on left
and right side respectively. Since in Mate Pairs the element order is not relevant, they are represented simply as circles, without specifying
element names.

to PRL to guarantee that the elements in the same MP are separated on the fourth level (the
two pairs can be routed indifferently on paths of the first level).

Case 2 UP this case imposes that the two pairs (x, y) and (w, z) chosen are associated to paths PLL and
PRR, respectively, see Figure 4;

case a DOWN this case is similar to case1.b, where the first and fourth level are swapped, then we can
resolve it in the same way, considering, wlog, x, t and z, u as the MP in UPL;

case b DOWN this is the worst case. In fact, the particular configuration of elements can generate
conflicts, then we need additional controls to avoid of building pairs satisfying P1 and P2,
but not P3. To understand how to choose (x, y) and (w, z) in a correct way, observe that this
configuration implies that two elements are in the same MP both in UP and in DOWN
sequences. We can distinguish the following cases, obtained by using the number of elements
in UPL ∩ DOWNL (that is the same of |UPR ∩ DOWNR|):

• |UPL∩DOWNL| = |UPR∩DOWNR| = 1 or |UPL∩DOWNL| = |UPR∩DOWNR| = 3
In this case, there is an obligated pair: we build the first pair by using the only element in
the two intersections (if intersection is 1), or the remaining element with respect to the two
intersections (if intersection is 3); the second pair is built as usual. This case is treated as
case 2.a.

• |UPL ∩DOWNL| = |UPR ∩DOWNR| = 2 Let NMP be the number of MPs in DOWN
sequences that are equal to MP in UP sequences. By construction we have two cases:
– NMP = 1 Choosing (x, y) and associating it to path PLL, it comes out that w, z

and t = mateD(x) = mateU(y) must be associated to path PRR, generating a con-
flict. Note that y = mateU(mateD(x)). In this case, we must enforce that an element
y 6= mateU(mateD(x)) is chosen. Then we can build the three remaining pairs without
conflicts.

– NMP = 0 The assumptions imply that only one configuration is possible, namely UPL =
((x,w), (s, t)), UPR = ((y, v), (z, u)), DOWNL = ((w, y), (v, s)) and DOWNR =
((x, u), (z, t)), where u, s, t, v are not fixed. An ad-hoc solution for this situation is
to associate pair (s, u) to path PLR, and pair (t, v) to path PRL.



• |UPL∩DOWNL| = 0 = |UPR∩DOWNR| or |UPL∩DOWNL| = 4 = |UPR∩DOWNR|
This case is not possible, due to definition of case 2.b.

Case 3 UP we can associate pair (x, y) to path PLL and pair (w, z) to path PLR, respecting property P3;
case a DOWN the four remaining elements can be coupled into two pairs, respecting properties P1

and P2, and can be associated to PRL and to PRR, respecting property P3;
case b DOWN the remaining elements can be coupled in the two pairs (u, v) and (s, t), satisfying P1

and P2; in order to respect P3 property, it suffices to associate (u, v) to path PRR and (s,t) to
PRL.

We have shown that there exists an assignment of pairs to paths satisfying P3 in all the possible cases.

Theorem 3. Algorithm ROUTING ON ∆
∇

′

8
produces pairs satisfying the three Pair properties P1, P2 and

P3.

Proof: The algorithm ROUTING ON ∆
∇

′

8
provides a sequence of pairs, namely the algorithm builds

pairs first, then it associates pairs to paths of ∆
∇

′

8
giving the sequence. The correctness of the algorithm

derives from Lemma 1 and Lemma 2.

Theorem 4. All MINs in the class represented by the concatenation Butterfly-Butterfly, with N = 8 inputs,
that is MINs having the ∆

∇

′

8
factor, are rearrangeable.

Proof: The sequence of pairs obtained by means of algorithm ROUTING ON ∆
∇

′

8
represents the

intermediate permutation on the MIN, that is the permutation presented at the inputs of the middle node
stage. To realize this permutation it is possible to use the self-routing capability of the first log N − 1
stages of the MIN, that is the routing based on the binary representation of the destinations. By using
again the self-routing capability on the last log N stages, where inputs are the permuted elements obtained
by the algorithm and outputs are given by the given permutation, the routing is completed.

Corollary 5. All (2 log N − 1) stage MINs obtained by concatenating two logN stage MINs with N = 8
inputs are rearrangeable.

Proof: As proved in [5], all (2 log N − 1) stage MINs obtained by concatenating two log N stage
MINs with N = 8 inputs can be partitioned into two classes: the class represented by the concatenation
of a Reverse Butterfly and a Butterfly, and the class represented by the concatenation of two Butterfly (or
by two Reverse Butterfly).

MINs in the first class are equivalent to the Beneš, that is well known to be rearrangeable. An algorithm
for setting the switches of a MIN in this class, exploiting its decomposition as ∇

∆
8
⊗ ∆

∇
8

is described in
[6].

MINs in the second class can be decomposed as ∇
∆

8
⊗ ∆

∇

′

8
and the above algorithm ROUTING ON ∆

∇

′

8

allows to obtain the switch setting of such a MIN.

Theorem 6. All MINs obtained by the concatenation of a Reverse Butterfly and a Butterfly whose first and
second stages are swapped are rearrangeable and the permutation routing algorithm requires O(N log N)
time.

Proof: All MINs obtained by the concatenation of a Reverse Butterfly and a Butterfly whose first
and second stages are swapped, can be decomposed as ∇

∆⊗
∆
∇ with the ∆

∇ factor having ∆
∇

′

8
s in the inner

stages (see [5]).
Then it is sufficient to show that for the ∆

∇ factor, we can route inputs to first level of the ∆
∇

′

8
structures



and outputs to the last level of ∆
∇

′

8
structures, in such a way we have the same groups of elements as

inputs and outputs for each ∆
∇

′

8
.

Let n = log N . The proof is by induction on n. The base case corresponds to ∆
∇

′

8
, for which algorithm

ROUTING ON ∆
∇

′

8
is given, that is n = 3. Hence assume that the result is true for a MIN with N/2 inputs

and prove for a MIN with N inputs. The key idea is to observe that eliminating the two roots of ∆
∇ we

obtain two smaller ∆
∇s. Hence, it suffices to decide for each input whether it is to be routed through the

left or the right sub-∆∇, and do the same for the outputs. The only constraints that we must satisfy when

we choose the left or the right sub-∆∇, both upward and downward, are: i) elements forming an input pair

must go to different sub-∆∇s from the root of ∆, ii) elements forming an output pair must go to different

sub-∆∇s from the root of ∇.
This can be obtained by proceeding as in the Looping algorithm, that is we start by any input and

we choose the sub-∆∇, we associate the mate of this element in the outputs to the other sub-∆
∇, then we

consider the mate in the inputs of this new element and proceed in this way until the loop is closed. If
we do not have considered all the inputs, we choose any new starting element and repeat the procedure
until all elements are associated either to the left sub-∆

∇ or to the right one.

Each sub-∆∇ can be handled by the inductive hypothesis and therefore the correctness is proved.
About the time complexity, we consider each input or output element once, for each of these elements

we choose the left or right sub-∆∇. This choice is repeated O(log N) times due to the structure of ∆
∇. Hence,

the global time complexity is O(N log N).

Remark 1. The proof of rearrangeability due to Raghavendra and Varma [14] for a network in the MIN
class identified as ∇

∆
8
⊗ ∆

∇

′

8
, namely the Five-Stage Shuffle/Exchange Network for N = 8, is obtained by

means of an algorithm providing the switch setting for any permutation. This algorithm is applicable only
to the network for which it is designed, since it exploits the network topology. On the contrary algorithm
ROUTING ON ∆

∇

′

8
is valid for any MIN in the class. Furthermore, an analysis of the two algorithms allows

to verify that the new proposed algorithm is more efficient. In fact, taking into account the comparison
operation, that is the more frequent and expensive operation for both algorithm, we have that ROUTING

ON ∆
∇

′

8
Algorithm requires a minor number of comparisons.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have provided an algorithm to realize any permutation Π on MINs belonging to the
complementary equivalence class of Beneš network with N = 8 inputs, with respect to the decomposition
as ∇

∆⊗
∆
∇.

By means of this algorithm, we give a constructive proof of rearrangeability for the equivalence class
of networks with N inputs, represented by the concatenation of a Reverse Butterfly and a Butterfly, whose
first and second stages are reversed; for this class the rearrangeability was not known. The time complexity
is O(N log N) which is the same as the well-known Looping algorithm for the Beneš network. Notice
that lower values for the time complexity have been obtained only for special class of permutations.

The interest of the LCP based decomposition approach is that: i) it is possible to study the routing
exploiting only the ∆

∇ factor, that is a simpler structure than the considered MIN, ii) proving the rearrange-

ability of specific network by using its ∆
∇ factor immediately implies the rearrangeability of the whole

equivalence class, iii) more general algorithms are obtained by means of decomposition, since they are
not tied to the network topology.



Finally, a deep understanding of the features of a MIN, provided by the utilization of its LCP based
factors, can lead to the proof of rearrangeability of other interesting classes of networks, e.g. the class
containing the Omega-Omega, that is an open problem since a long time.
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