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tIn this paper we present a twofold result. First weprovide a new routing algorithm to realize any permu-tation on all (2 logN � 1) stage MINs in the 
lass ofBene�s equivalent networks. The time 
omplexity is thesame as the Looping algorithm, i.e. O(N logN), butthe interest of the presented algorithm derives fromthat it is very general and it runs on every networkin the 
lass apart from its symmetry. Furthermore,it provides a 
onstru
tive proof of rearrangeability fora wide 
lass of networks, substituting all the di�er-ent proofs presented in literature. Se
ond, we provethe rearrangeability of a 
lass of MINs whose rear-rangeability was not known; for them we des
ribe anO(N logN) time routing algorithm.Keywords: Multistage Inter
onne
tion Networks,Rearrangeability, Routing Algorithms, Layered CrossProdu
t.1 Introdu
tionAnN input multistage inter
onne
tion network (MIN)is 
alled a rearrangeable network if it realizes every oneof the N ! permutations in a single pass.MINs 
onsisting of logN stages (Omega, Flip, In-dire
t Binary Cube, Baseline, Butter
y) are all notrearrangeable. For this reason, 2 logN �1 stage MINshave been intensively studied. They are obtained by
on
atenating two logN stage MINs with the 
enterstage overlapped; Bene�s network is an example of this
lass of MINs and it is usually represented as the 
on-
atenation of a Baseline and a Reverse Baseline. Onemethod of rearranging the swit
hes of the Bene�s net-work is known as the Looping algorithm [6℄. It 
an,in general, be used for all symmetri
 MINs, as Bene�snetwork. Nevertheless, for a a general Bene�s equiva-lent MIN not having this symmetry property (e.g. theOmega-Omega�1) the Looping algorithm is not appli-
able; moreover, for many 2 logN � 1 stage MINs it isneither known whether they are rearrangeable or not.For the Omega-Omega�1, Lee [4, 5℄ proposed a routing

algorithm based on the de
omposition of the �rst halfof the network and the self-routing on the se
ond half.Both this algorithm and the Looping algorithm haveO(N logN) time 
omplexity. The main problem ofthese two s
hemes is their non portability, that is theywork only on the networks for whi
h they are designedsin
e they provide a 
ontrol s
heme implementing therouting that exploits the network 
on�guration.Yeh and Feng [7℄ proposed a routing s
heme real-izing any arbitrary permutation on a 
lass of 2 logNstage MINs. Networks in this 
lass are obtained by
onne
ting two logN stage MINs by means of a stagethat 
an assume various 
onne
tion patterns in orderto make the network symmetri
. The routing s
hemerequires O(N logN) time. In [3℄ Feng and Seo 
onsiderthe 2 logN stage 
on
atenation of Omega-Omega andshow that it 
an be 
onverted in a Omega-Omega�1or a Omega�1-Omega by modifying the 
enter stage.The time 
omplexity is O(N) but the algorithm 
an beapplied only on symmetri
 2 logN stage Omega-basednetworks.
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a bFigure 1: a. A r� and b. a �r, both of dimension 8.In this work we approa
h the problem of rearrange-ability from a novel point of view, taking into a
-
ount the partition into equivalen
e 
lasses of the set of2 logN �1 stage MINs [1℄. This partition is developedfrom the 
on
ept of Layered Cross Produ
t (LCP) [2℄,de�ned as follows:An l-layered graph, G = (V1; V2; : : : ; Vl; E) 
onsists



Figure 2: All the possible �rs related to N = 16 and a representative of the 
orresponding equivalen
e 
lass.of l layers of nodes; Vi is the (non-empty) set of nodesin layer i, where 1 � i � l; E is a set of edges:every edge 
onne
ts nodes of two 
onse
utive layers.Given two l-layered graphs G0 = (V 01 ; V 02 ; : : : ; V 0l ; E0)and G00 = (V 001 ; V 002 ; : : : ; V 00l ; E00), their Layered CrossProdu
t (LCP for short) , G0 
 G00 is an l-layeredgraph G = (V1; V2; : : : ; Vl; E) where Vi is the 
arte-sian produ
t of V 0i and V 00i , 1 � i � l, and anedge h(u0; u00); (v0; v00)i belongs to E if and only ifhu0; v0i 2 E0 and hu00; v00i 2 E00. G0 and G00 are 
alledthe �rst and se
ond fa
tor of G, respe
tively.We 
all de
omposition in fa
tors the inverse opera-tion of the LCP. Ea
h MIN 
an be de
omposed intotwo fa
tors (for an example, see Fig. 1), whose the �rstone, 
all it r�, is always the same and it is representedby two 
omplete binary trees sharing their root; theother fa
tor, �r, 
hara
terizes ea
h 
lass; all possible
ases for N = 16 are shown in Fig. 2, together witha representative MIN of the 
orresponding 
lass. Weare able to extra
t those stru
tural properties usefulfor the rearrangeability from the �r fa
tor only. To fo-
us our attention on a whole 
lass instead of on a singleMIN allows us to design more general algorithms.

2 A New Routing Algorithm forBene�s Equivalent MINsIn this se
tion we propose a new algorithm for settingthe swit
hes of a Bene�s equivalent MIN in order tosatisfy any permutation �. Note that the proposedalgorithm runs on ea
h MIN belonging to the 
lassof Bene�s equivalent MINs, apart from its symmetry.Therefore, the Looping algorithm is a parti
ular 
aseof this more general algorithm.Before going on, we need to de�ne some 
on
epts.Given a MIN G, a request for G is an ordered pair(u; v), u; v 2 f1; : : : ; Ng, 
omprising an input u andan output v.A permutation � for G is a set of N requests for Ghaving neither inputs nor outputs in 
ommon.G satis�es � if there exists a set of N edge disjointpaths from the input to the output of ea
h request in� passing through exa
tly one node in ea
h stage.A legitimate path from u to v is a path on G startingfrom input u, passing through exa
tly one node in ea
hstage, and ending in output v.Observe that the inputs and outputs of MINs arenot involved in the de�nition of LCP, but it is not re-stri
tive to add N inputs and N outputs both to theMINs and to their fa
tors at the end of the 
omputa-tion of the LCP (see Fig. 3). This addition, although



not ne
essary, is very useful to highlight the start andthe end of ea
h legitimate path, both on the MIN andon its fa
tors.Exploiting the LCP, we are able to handle the re-arrangeability of a MIN working only on its fa
tors.To this aim, we state the following 
hara
terization,whose proof is omitted in this extended abstra
t.Lemma 1 A MIN G = G1 
 G2 is rear-rangeable if and only if there is no permutation� = f[1; �(1)℄; [2; �(2)℄; : : : ; [N; �(N)℄g su
h thattwo among its requests, let they be [i; �(i)℄ and[j; �(j)℄, 
orrespond to two legitimate paths P (i; �(i))and P (j; �(j)) whose pairs of fa
tors P1(i; �(i)) andP1(j; �(j)), P2(i; �(i)) and P2(j; �(j)) both share anedge at the same edge stage.We have to take into a

ount this lemma in order to
hoose, among all the possible legitimate paths, thoseleading to a swit
h setting satisfying �. In other wordsthis is equivalent to 
onstru
t a new permutation �0su
h that the \upper" Baseline equivalent MIN satis-�es �0 top-down and the \lower" Baseline equivalentsatis�es �0 bottom-up. In parti
ular, given a Bene�sequivalent MIN and a permutation �, our algorithmbuilds legitimate paths stage by stage for ea
h requestof � su
h that legitimate paths are pairwise edge dis-joint. To do that, it builds the fa
tors of ea
h legiti-mate path on the fa
tors of the MIN �r and r�. In fa
t,r� is a tree and therefore all its legitimate paths areunique. It follows that we 
an impose 
onditions on �ronly. Hen
e, the route followed by P (i; �(i)) uniquelydepends on its se
ond fa
tor P2(i; �(i)).In order to avoid that the legitimate paths of ea
hpair of requests [i; �(i)℄ and [j; �(j)℄, share an edge atthe �rst edge stage, when we 
onstru
t the fa
tors ofthe legitimate path, stage by stage, we must imposethata) for i = 2k � 1 and j = 2k (or vi
e-versa) for somek 2 1; : : : ; N2 , P2(i; �(i)) goes down towards the lefthand and P2(j; �(j)) goes down towards the right hand(or vi
e-versa).Analogously, in order to avoid that P2(i; �(i)) andP2(j; �(j)) share and edge at the last edge stage, wemust impose that:b) for �(i) = 2k � 1 and �(j) = 2k (or vi
e-versa) forsome k 2 1; : : : ; N2 , P2(i; �(i)) goes up towards the lefthand and P2(j; �(j)) goes up towards the right hand(or vi
e-versa).Analogous 
onditions must hold in 
orresponden
eof ea
h edge stage of the MIN.An algorithm taking into a

ount these 
onsidera-tions is the following. We explain it both formally andby an example. We 
hoose to run our algorithm on aOmega-Omega�1 network, in order to highlight thatit works on it, di�erently from the Looping algorithm,

1 3 5 72 4 6 8

1 3 5 72 4 6 8

(1,1) (2,1) (3,1) (4,1)

(5,2) (6,2) (5,3) (6,3)

(7,4) (7,6) (7,5) (7,7)

(8,8) (9,8) (8,9) (9,9)

(10,10) (11,10) (12,10) (13,10)

π(1) π(3) π(2) π(6)π(5) π(7) π(8) π(4)

4 5 6 7

1 3 5 72 4 6 8

2 3

1

1 3 5 72 4 6 8

8 9

10=   N-23
2
_

1 53 72 64 8

1 53 72 64 8

1 2 3 4

5 6

7

8 9

10 11 12 13

π(1) π(2)π(3) π(6)π(5) π(8)π(7) π(4)

I(Π)

O(Π)

a b cFigure 3: An example: a MIN with 8 inputs obtained
on
atenating an Omega and its reverse and a permu-tation � to be satis�ed.that 
orre
tly 
omputes a swit
h setting for symmetri
and re
ursive MINs only.Algorithm Routing on r� 
 �rInput: a MIN G = r� 
 �r and a permutation �;Output: a setting for all swit
hes of G, s.t. G satis�es�;1. Constru
tion of I(�) and O(�)(See Fig. 3.a and 3.b) Consider ea
h node (i; 1) of the�rst stage of G; let xi and xi + 1 be its inputs; thenassign to the 
orresponding node i of the �rst layer ofr� the same inputs; let I(�) be the obtained sequen
eof the inputs of r�. Analogously, 
onsider ea
h node(i; 32N � 2) of the last stage of G; let yi and yi + 1 beits outputs; then assign to the 
orresponding node iof the last layer of r� the same outputs; let O(�) bethe obtained sequen
e of the outputs of r�. Observethat, even if in Fig. 3 I(�) 
oin
ides with the orderedsequen
e, this is { in general { not true.For sake of 
learness, from now on, we will high-light whi
h instru
tions are performed on the MIN andwhi
h ones on the pair of sequen
es (I(�); O(�)).2. Coupling elements in I(�) and O(�)(On (I(�); O(�)), see Fig. 4.a) Couple the (2k�1)-thand the 2k-th element of I(�), 1 � k � N2 . In the sameway, 
ouple the (2k � 1)-th and the 2k-th element ofO(�), 1 � k � N2 . From now on, given a j 2 I(�), wede�neMI(j) its mate, i.e. the element belonging to the
ouple whi
h j belongs to. In the example of Fig. 4.a,MI(6) = 5, MI(3) = 4 and so on. Analogously, givena �(j) 2 O(�), we de�ne MO(�(j)). Some examplesare: MO(�(5)) = �(1) and MO(�(1)) = �(5).3. Labeling I(�) and O(�)(On (I(�); O(�)), see Fig. 4.a and 4.b) Let Layer bethe 
urrently 
onsidered stage of swit
hes in G; at thebeginning Layer= 1;let j 2 I(�); at the beginning j = 1;repeat until all inputs and outputs are labeledif j is not labeled yet, then



label j 2 I(�) with `Left';label �(j) 2 O(�) with `Left';label MO(�(j)) = �(j0) with `Right';label j0 2 I(�) with `Right';j  MI(j0) 2 I(�) ;else 
hoose a non-labeled input as new j;end repeat (see Fig. 4.
).4. Swit
h setting of the 
urrent stage(On the MIN, see Fig. 5.a) Set ea
h of the N2 swit
hesat stage Layer to straight if its left and right inputs arelabeled `Left' and `Right' in I(�), respe
tively; set theswit
h to 
ross otherwise; let the sequen
e I(�) passthrough swit
hes of stage Layer, so that an opportunepermutation of I(�) be
omes the input sequen
e ofstage Layer+1.5. Updating(On (I(�); O(�)), see Fig. 4.d) Ordinately, 
onsiderfrom left to right ea
h j 2 I(�) labeled `Left' and letthe resulting sequen
e be IL(�). Analogously, ordi-nately, 
onsider from left to right ea
h j 2 I(�) la-beled `Right' and let the resulting sequen
e be IR(�).Do the same for O(�) building OL(�) and OR(�);I(�) IL(�) 
on
atenated with IR(�);O(�)  OL(�) 
on
atenated with OR(�);Layer  Layer+1.Observe that the new sequen
e I(�) is 
onstituted bya set of pairs 
orresponding to the pairs of inputs ofnodes at stage Layer (
f. Figs. 4.d and 5.a).6. Iteration(See Fig. 5.b) Repeat all steps from 2 to 5 until Layer=logN .7. Swit
h setting of the last logN stages(See Fig. 5.
) All swit
hes at stages 1; : : : ; logN � 1of G are set; the rest of the MIN is a Banyan networkhaving as input sequen
e an opportune permutation ofI(�) and therefore all the remaining swit
hes 
an beunivo
ally set.Theorem 2 Given a MIN G = r�
 �r and any per-mutation �, O(N logN) time is suÆ
ient for settingits swit
hes s.t. G satis�es �.Proof We prove the statement by proving the
orre
tness of the algorithm Routing on r� 
 �r and,
onsequently, the rearrangeability of the 
lass of MINs,and by studying its 
omplexity.Let n = logN . The proof is by indu
tion on n. Ifn = 1 the MIN 
onsists of a single node and the resultis obvious. Hen
e assume that the result is true fora MIN with N=2 inputs and prove for a MIN with Ninputs. The key idea is to observe that the middle2n� 3 layers of �r (i.e. eliminating the two roots) aretwo smaller �rs. Hen
e, it will be suÆ
ient to de
idewhether ea
h se
ond fa
tor of the legitimate path isto be routed through the left or the right sub-�r. The
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only 
onstraints that we must satisfy to 
hoose the leftor the right sub-�r, both upward and downward, are
onditions a) and b). In other words, if the �rst fa
torsof any two legitimate paths share a node at the �rstlayer then their se
ond fa
tors must go to di�erent sub-�rs, and if the �rst fa
tors of any two legitimate pathsshare a node at the last layer then their se
ond fa
torsmust 
ome from di�erent sub-�rs. These 
onstraintsare satis�ed by step 3 of the algorithm. It remainsto prove that we 
an always assign ea
h se
ond fa
torof the legitimate path to the left or right sub-�r in away that satis�es the 
onstraints a) and b) and thatthis assignment is feasible, i.e. the 
onsequent swit
hsetting routes �. The proof that a) and b) are satis�edderives from two fa
ts:i) the set of elements in I(�) and O(�) 
onsideredduring step 3 indu
es even 
y
les;ii) for ea
h j 2 I(�)(O(�)) routed towards a sub-�r,its mate is routed towards the other sub-�r.The proof that the assignment is feasible derivesfrom two fa
ts:i) for ea
h j 2 I(�) routed towards a sub-�r, �(j) 2O(�) is routed towards the same sub-�r;ii) for ea
h �(j0) 2 O(�) routed towards a sub-�r, j0 2I(�) is routed towards the same sub-�r.Ea
h sub-�r 
an be handled by the indu
tive hypoth-esis and therefore the 
orre
tness is proved.About the time 
omplexity, we divide the analysisstep by step. Step 1 runs in O(N) time. Steps 2, 3,4 and 5 all run in O(N) time and they are repeatedO(logN) times by Step 6. For what 
on
erns Step7, the requests are self-routed and then O(N logN)time is suÆ
ient. Hen
e, the global time 
omplexity isO(N logN). Q.E.D.Remark The previous theorem provides a 
onstru
-tive rearrangeability proof for the whole 
lass of MINsde
omposable as r�
 �r; inside this 
lass we highlightthe Bene�s network, the Double Baseline and all thoseobtained by 
on
atenating a Baseline equivalent andits reverse (e.g. Baseline-Reverse Baseline, Omega-Omega�1, Butter
y-Reverse Butter
y, et
.).3 Rearrangeability of AnotherClass of MINsMany interesting networks (e.g. the Double Butter
y,the Double Omega, et
.) fall outside the 
lass obtainedas LCP of r�
 �r. The de
omposition in fa
tors of allthese networks has been studied in [1℄, and it has beenproved that they 
an be de
omposed as LCP of r� and
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a b cFigure 6: a. A MIN with 8 inputs 
onstituted by two
on
atenated 
opies of Butter
y network; b. its �rstfa
tor, i.e. a r�; 
. its se
ond fa
tor, i.e. a modi�ed �r.a modi�ed �r. Namely, the merging of the leaves of� and of r is not performed ordinately, but 
reatingsome 
rossings (see Fig. 6.
). For ea
h N , the numberof non equivalent modi�ed �rs that are a fa
tor of aMIN is (logN�1)! and ea
h di�erent modi�ed �r leadsto a di�erent equivalen
e 
lass of MINs [1℄.Unfortunately, the algorithm des
ribed in the pre-vious se
tion 
annot run on ea
h equivalen
e 
lass inview of the asymmetry of the modi�ed �r with respe
tto the middle layer. Nevertheless, we 
an slightly mod-ify the algorithm so that it 
an run on another 
lassof MINs, proving also the rearrangeability of ea
h net-work belonging to this 
lass. A representative MINbelonging to this equivalen
e 
lass of networks is thenetwork obtained by 
on
atenating an N input Re-verse Butter
y and a Butter
y whose the �rst andse
ond stages are reversed (see Fig. 6.a).In this extended abstra
t we have no enough roomto des
ribe the modi�
ations we have introdu
ed tothe algorithm.4 Con
lusions and Open Prob-lemsIn this paper we have provided an algorithm to real-ize any permutation � by setting the swit
hes of allMINs equivalent to the Bene�s network, i.e. all net-works de
omposable as r�
 �r. With this algorithm wehave given a 
onstru
tive proof of rearrangeability fora wide 
lass of networks, substituting all the di�erentproofs presented in literature. The time 
omplexity isthe same as the Looping algorithm, i.e. O(N logN),but the main di�eren
e is that the Looping Algorithmis immediately appli
able only on the Bene�s Networksand on other networks built as two smaller 
opies ofthe same network plus two additive stages 
onne
tingthem. Then we have proven the rearrangeability of a
lass of MINs whose rearrangeability was not known.



The idea under both algorithms is to perform a sortof routing with 
ertain properties on the �r fa
tor only.Then, we translate this spe
ial routing performed on�r in the swit
h setting of the 
onsidered MIN and,
onsequently, in the routing of the permutation.The interest of this result lies in that the approa
hto rearrangeability, based on LCP, is 
ompletely newand it allows one to deal with a simpli�ed stru
ture(the �r fa
tor) instead of the whole MIN.Although we extend the set of MINs known to berearrangeable, for other 
lasses of MINs (e.g. Omega-Omega equivalent) it is still not known whether theyare rearrangeable. In fa
t, our approa
h requires todesign an \ad ho
" routing algorithm for ea
h equiva-len
e 
lass (i.e. for ea
h di�erent �r fa
tor), so an inter-esting future work is to develop an algorithm runningon the �r fa
tor of the Omega-Omega.Referen
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