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Abstract

In this paper we present a twofold result. First we
provide a new routing algorithm to realize any permu-
tation on all (2log N — 1) stage MINs in the class of
Benes equivalent networks. The time complexity is the
same as the Looping algorithm, i.e. O(N log N), but
the interest of the presented algorithm derives from
that it is very general and it runs on every network
in the class apart from its symmetry. Furthermore,
it provides a constructive proof of rearrangeability for
a wide class of networks, substituting all the differ-
ent proofs presented in literature. Second, we prove
the rearrangeability of a class of MINs whose rear-
rangeability was not known; for them we describe an
O(N log N) time routing algorithm.

Keywords: Multistage Interconnection Networks,
Rearrangeability, Routing Algorithms, Layered Cross
Product.

1 Introduction

An N input multistage interconnection network (MIN)
is called a rearrangeable network if it realizes every one
of the N! permutations in a single pass.

MINs consisting of log N stages (Omega, Flip, In-
direct Binary Cube, Baseline, Butterfly) are all not
rearrangeable. For this reason, 2log N — 1 stage MINs
have been intensively studied. They are obtained by
concatenating two log N stage MINs with the center
stage overlapped; Benes network is an example of this
class of MINs and it is usually represented as the con-
catenation of a Baseline and a Reverse Baseline. One
method of rearranging the switches of the Benes§ net-
work is known as the Looping algorithm [6]. It can,
in general, be used for all symmetric MINs, as Benes
network. Nevertheless, for a a general Bene§ equiva-
lent MIN not having this symmetry property (e.g. the
Omega-Omega ') the Looping algorithm is not appli-
cable; moreover, for many 2log N — 1 stage MINs it is
neither known whether they are rearrangeable or not.
For the Omega-Omega~!, Lee [4, 5] proposed a routing

algorithm based on the decomposition of the first half
of the network and the self-routing on the second half.
Both this algorithm and the Looping algorithm have
O(NlogN) time complexity. The main problem of
these two schemes is their non portability, that is they
work only on the networks for which they are designed
since they provide a control scheme implementing the
routing that exploits the network configuration.

Yeh and Feng [7] proposed a routing scheme real-
izing any arbitrary permutation on a class of 2log N
stage MINs. Networks in this class are obtained by
connecting two log NV stage MINs by means of a stage
that can assume various connection patterns in order
to make the network symmetric. The routing scheme
requires O(N log N) time. In [3] Feng and Seo consider
the 2log N stage concatenation of Omega-Omega and
show that it can be converted in a Omega-Omega !
or a Omega*-Omega by modifying the center stage.
The time complexity is O(N) but the algorithm can be
applied only on symmetric 2log N stage Omega-based
networks.

Figure 1: a. A X and b. a €, both of dimension 8.

In this work we approach the problem of rearrange-
ability from a novel point of view, taking into ac-
count the partition into equivalence classes of the set of
2log N —1 stage MINs [1]. This partition is developed
from the concept of Layered Cross Product (LCP) [2],
defined as follows:

An l-layered graph, G = (V1,Va,..., V), E) consists
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Figure 2: All the possible Ss related to N = 16 and a representative of the corresponding equivalence class.

of [ layers of nodes; V; is the (non-empty) set of nodes
in layer ¢, where 1 < ¢ < [; E is a set of edges:
every edge connects nodes of two consecutive layers.
Given two I-layered graphs G' = (V{,V3,...,V/, E")
and G" = (V{",Vy',..., V", E"), their Layered Cross
Product (LCP for short) , G' ® G" is an I-layered
graph G = (V1,V5,..., Vi, E) where V; is the carte-
sian product of V/ and V', 1 < ¢ < [, and an
edge ((u',u"),(v',v")) belongs to E if and only if
(u',v"y € E" and (u",v") € E". G" and G" are called
the first and second factor of G, respectively.

We call decomposition in factors the inverse opera-
tion of the LCP. Each MIN can be decomposed into
two factors (for an example, see Fig. 1), whose the first
one, call it X, is always the same and it is represented
by two complete binary trees sharing their root; the
other factor, &, characterizes each class; all possible
cases for N = 16 are shown in Fig. 2, together with
a representative MIN of the corresponding class. We
are able to extract those structural properties useful
for the rearrangeability from the $ factor only. To fo-
cus our attention on a whole class instead of on a single
MIN allows us to design more general algorithms.

2 A New Routing Algorithm for
Benes Equivalent MINs

In this section we propose a new algorithm for setting
the switches of a Bene§ equivalent MIN in order to
satisfy any permutation II. Note that the proposed
algorithm runs on each MIN belonging to the class
of Bene§ equivalent MINs, apart from its symmetry.
Therefore, the Looping algorithm is a particular case
of this more general algorithm.

Before going on, we need to define some concepts.
Given a MIN @, a request for G is an ordered pair
(u,v), u,v € {1,..., N}, comprising an input v and
an output v.

A permutation II for G is a set of N requests for G
having neither inputs nor outputs in common.

G satisfies 11 if there exists a set of N edge disjoint
paths from the input to the output of each request in
IT passing through exactly one node in each stage.

A legitimate path from u to v is a path on G starting
from input u, passing through exactly one node in each
stage, and ending in output v.

Observe that the inputs and outputs of MINs are
not involved in the definition of LCP, but it is not re-
strictive to add N inputs and N outputs both to the
MINs and to their factors at the end of the computa-
tion of the LCP (see Fig. 3). This addition, although



not necessary, is very useful to highlight the start and
the end of each legitimate path, both on the MIN and
on its factors.

Exploiting the LCP, we are able to handle the re-
arrangeability of a MIN working only on its factors.
To this aim, we state the following characterization,
whose proof is omitted in this extended abstract.

Lemmal A MIN G = Gy ® Gy is rear-
rangeable if and only if there is no permutation
o = {[1,n1)],[2,#(2)],...,[N,n(N)]} such that

two among its requests, let they be [i,m(i)] and
[7,7(j)], correspond to two legitimate paths P(i,n(i))
and P(j,7(j)) whose pairs of factors Py (i,7(i)) and
Pi(4,7(j)), Pa(i,w(i)) and P2(j,w(j)) both share an
edge at the same edge stage.

We have to take into account this lemma in order to
choose, among all the possible legitimate paths, those
leading to a switch setting satisfying II. In other words
this is equivalent to construct a new permutation II'
such that the “upper” Baseline equivalent MIN satis-
fies I’ top-down and the “lower” Baseline equivalent
satisfies II' bottom-up. In particular, given a Benes
equivalent MIN and a permutation II, our algorithm
builds legitimate paths stage by stage for each request
of IT such that legitimate paths are pairwise edge dis-
joint. To do that, it builds the factors of each legiti-

mate path on the factors of the MIN % and X. In fact,
X is a tree and therefore all its legitimate paths are

unique. It follows that we can impose conditions on 8
only. Hence, the route followed by P(i,7 (7)) uniquely
depends on its second factor Py (7,7 (i)).

In order to avoid that the legitimate paths of each
pair of requests [i, 7(¢)] and [j, 7(j)], share an edge at
the first edge stage, when we construct the factors of
the legitimate path, stage by stage, we must impose
that
a) for i = 2k — 1 and j = 2k (or vice-versa) for some
kel,... 5, P(i,n(i)) goes down towards the left
hand and P»(j, 7(j)) goes down towards the right hand
(or vice-versa).

Analogously, in order to avoid that Py(i,7(7)) and

Py(j,7(j)) share and edge at the last edge stage, we
must impose that:
b) for w(i) = 2k — 1 and w(j) = 2k (or vice-versa) for
some k €1,..., g, Py (i,7(i)) goes up towards the left
hand and P»(j,n(j)) goes up towards the right hand
(or vice-versa).

Analogous conditions must hold in correspondence
of each edge stage of the MIN.

An algorithm taking into account these considera-
tions is the following. We explain it both formally and
by an example. We choose to run our algorithm on a
Omega-Omega ™" network, in order to highlight that
it works on it, differently from the Looping algorithm,
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Figure 3: An example: a MIN with 8 inputs obtained
concatenating an Omega and its reverse and a permu-
tation II to be satisfied.

that correctly computes a switch setting for symmetric
and recursive MINs only.

Algorithm Routing on X ® %

Input: a MIN G = X ® % and a permutation II;
Output: a setting for all switches of G, s.t. G satisfies
II;
1. Construction of I(IT) and O(II)

(See Fig. 3.a and 3.b) Consider each node (i, 1) of the
first stage of G; let z; and z; + 1 be its inputs; then

assign to the corresponding node ¢ of the first layer of

X the same inputs; let I(IT) be the obtained sequence

of the inputs of X. Analogously, consider each node

(i, 2N — 2) of the last stage of G; let y; and y; + 1 be
its outputs; then assign to the corresponding node i
of the last layer of X the same outputs; let O(II) be

the obtained sequence of the outputs of X. Observe
that, even if in Fig. 3 I(II) coincides with the ordered
sequence, this is — in general — not true.

For sake of clearness, from now on, we will high-
light which instructions are performed on the MIN and
which ones on the pair of sequences (I(II), O(II)).

2. Coupling elements in I(IT) and O(II)

(On (I(II), O(II)), see Fig. 4.a) Couple the (2k —1)-th
and the 2k-th element of I(I), 1 < k < &. In the same
way, couple the (2k — 1)-th and the 2k-th element of
O(I), 1 <k < & From now on, given a j € I(I), we
define M;(j) its mate, i.e. the element belonging to the
couple which j belongs to. In the example of Fig. 4.a,
Mi(6) =5, M(3) =4 and so on. Analogously, given
a w(j) € O(II), we define Mo(w(j)). Some examples
are: Mo(n(5)) = n(1) and Mo(w(1)) = = (5).

3. Labeling I(IT) and O(II)

(On (I(II),O(II)), see Fig. 4.a and 4.b) Let Layer be
the currently considered stage of switches in G; at the
beginning Layer= 1;

let j € I(II); at the beginning j = 1;
repeat until all inputs and outputs are labeled
if 7 is not labeled yet, then



label j € I(IT) with ‘Left’;
label 7(j) € O(IT) with ‘Left’;
label Mo(7w(j)) = n(j') with ‘Right’;
label j' € I(IT) with ‘Right’;
j  Mi(j) € I(I1) ;
else choose a non-labeled input as new j;
end repeat (see Fig. 4.c).

4. Switch setting of the current stage
(On the MIN, see Fig. 5.a) Set each of the & switches
at stage Layer to straight if its left and right inputs are
labeled ‘Left’ and ‘Right’ in I(IT), respectively; set the
switch to cross otherwise; let the sequence I(IT) pass
through switches of stage Layer, so that an opportune
permutation of I(IT) becomes the input sequence of
stage Layer+1.

5. Updating
(On (I(IT),0O(II)), see Fig. 4.d) Ordinately, consider
from left to right each j € I(II) labeled ‘Left’ and let
the resulting sequence be I, (II). Analogously, ordi-
nately, consider from left to right each j € I(II) la-
beled ‘Right’ and let the resulting sequence be I (1).
Do the same for O(II) building Oy, (II) and Og(II);
I(IT) + I, (IT) concatenated with Iy (II);
O(I) < O(IT) concatenated with Og(II);
Layer < Layer+1.
Observe that the new sequence I(II) is constituted by
a set of pairs corresponding to the pairs of inputs of
nodes at stage Layer (cf. Figs. 4.d and 5.a).

6. Iteration
(See Fig. 5.b) Repeat all steps from 2 to 5 until Layer=
log N.

7. Switch setting of the last log IV stages
(See Fig. 5.c) All switches at stages 1,...,log N — 1
of G are set; the rest of the MIN is a Banyan network
having as input sequence an opportune permutation of
I(IT) and therefore all the remaining switches can be
univocally set.

Theorem 2 Given a MIN G = X® © and any per-
mutation 11, O(N log N) time is sufficient for setting
its switches s.t. G satisfies I1.

Proof We prove the statement by proving the
correctness of the algorithm Routing on X ® $ and,
consequently, the rearrangeability of the class of MINs,
and by studying its complexity.

Let n = log N. The proof is by induction on n. If
n = 1 the MIN consists of a single node and the result
is obvious. Hence assume that the result is true for
a MIN with N/2 inputs and prove for a MIN with N
inputs. The key idea is to observe that the middle

2n — 3 layers of § (i.e. eliminating the two roots) are

two smaller %s. Hence, it will be sufficient to decide
whether each second factor of the legitimate path is
to be routed through the left or the right sub-§. The

j )
| |
(m: | 1213|456l 7] 8
o(M): |m(1) | (5)||n(3) | T(7)||T(2) | T(B)|| T(6) | TH(4)
T 1
LLOREL(D)
a
]
!
Left Right

my: 1| 21|3|4af|s|el7]s
Oo(M): |m(1) | (5)||T(3) | T(7)||T(2) | T(8) || TW6) | T(4)

Left | Right

Left | Right|| Left |Right || Right| Left || Right| Left
Im: 1] 23| 45|66 7] 8
o(M): (1) | (5) |[m(3) | m(7)||m(2) | T(8)||T(6) | (4)

Left | Right|| Left | Right ||Right | Left Left | Right

W(m:1 113|668 | M:|2]4a]5]7
Ox(M): | (1) | TW3)||TY(8) [T(6) | Ox(M):|TU5) | T(7)|[T(2) | TW(4)

Figure 4: An example: a. I(II) and O(II); b. first
step of their labeling; c. completion of their labeling;
d. division into I (II) and Ir(II), O (II) and Og(II).
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Figure 5: An example: a. setting the switches of

the first stage; b. setting the switches of stages
1...log N — 1; c. setting all the switches of the MIN.



only constraints that we must satisfy to choose the left
or the right sub—%, both upward and downward, are
conditions a) and b). In other words, if the first factors
of any two legitimate paths share a node at the first
layer then their second factors must go to different sub-
Ss, and if the first factors of any two legitimate paths
share a node at the last layer then their second factors
must come from different sub-9s. These constraints
are satisfied by step 3 of the algorithm. It remains
to prove that we can always assign each second factor
of the legitimate path to the left or right sub-§ in a
way that satisfies the constraints a) and b) and that
this assignment is feasible, i.e. the consequent switch
setting routes II. The proof that a) and b) are satisfied
derives from two facts:

i) the set of elements in I(II) and O(II) considered
during step 3 induces even cycles;

i) for each j € I(IT)(O(II)) routed towards a sub-§,

its mate is routed towards the other sub-%.

The proof that the assignment is feasible derives
from two facts:
i) for each j € I(II) routed towards a sub-§, 7(j) €

O(II) is routed towards the same sub-§;
i) for each 7(j') € O(II) routed towards a sub-§, j' €
I(IT) is routed towards the same sub-g.

Each sub-§ can be handled by the inductive hypoth-
esis and therefore the correctness is proved.

About the time complexity, we divide the analysis
step by step. Step 1 runs in O(N) time. Steps 2, 3,
4 and 5 all run in O(N) time and they are repeated
O(log N) times by Step 6. For what concerns Step
7, the requests are self-routed and then O(N log N)
time is sufficient. Hence, the global time complexity is
O(NlogN). Q.E.D.

Remark The previous theorem provides a construc-
tive rearrangeability proof for the whole class of MINs
decomposable as X® €; inside this class we highlight
the Benes network, the Double Baseline and all those
obtained by concatenating a Baseline equivalent and
its reverse (e.g. Baseline-Reverse Baseline, Omega-
Omega !, Butterfly-Reverse Butterfly, etc.).

3 Rearrangeability of Another
Class of MINs

Many interesting networks (e.g. the Double Butterfly,
the Double Omega, etc.) fall outside the class obtained

as LCP of X® . The decomposition in factors of all
these networks has been studied in [1], and it has been
proved that they can be decomposed as LCP of X and

Figure 6: a. A MIN with 8 inputs constituted by two
concatenated copies of Butterfly network; b. its first

factor, i.e. a X; c. its second factor, i.e. a modified 8.

a modified §. Namely, the merging of the leaves of
A and of V is not performed ordinately, but creating
some crossings (see Fig. 6.c). For each N, the number

of non equivalent modified §s that are a factor of a

MIN is (log N —1)! and each different modified § leads
to a different equivalence class of MINs [1].

Unfortunately, the algorithm described in the pre-
vious section cannot run on each equivalence class in
view of the asymmetry of the modified ¢ with respect
to the middle layer. Nevertheless, we can slightly mod-
ify the algorithm so that it can run on another class
of MINs, proving also the rearrangeability of each net-
work belonging to this class. A representative MIN
belonging to this equivalence class of networks is the
network obtained by concatenating an N input Re-
verse Butterfly and a Butterfly whose the first and
second stages are reversed (see Fig. 6.a).

In this extended abstract we have no enough room
to describe the modifications we have introduced to
the algorithm.

4 Conclusions and Open Prob-
lems

In this paper we have provided an algorithm to real-
ize any permutation II by setting the switches of all
MINs equivalent to the Bene§ network, i.e. all net-
works decomposable as X ® $. With this algorithm we
have given a constructive proof of rearrangeability for
a wide class of networks, substituting all the different
proofs presented in literature. The time complexity is
the same as the Looping algorithm, i.e. O(N logN),
but the main difference is that the Looping Algorithm
is immediately applicable only on the Bene§ Networks
and on other networks built as two smaller copies of
the same network plus two additive stages connecting
them. Then we have proven the rearrangeability of a
class of MINs whose rearrangeability was not known.



The idea under both algorithms is to perform a sort
of routing with certain properties on the £ factor only.
Then, we translate this special routing performed on
8 in the switch setting of the considered MIN and,
consequently, in the routing of the permutation.

The interest of this result lies in that the approach
to rearrangeability, based on LCP, is completely new
and it allows one to deal with a simplified structure
(the § factor) instead of the whole MIN.

Although we extend the set of MINs known to be
rearrangeable, for other classes of MINs (e.g. Omega-
Omega equivalent) it is still not known whether they
are rearrangeable. In fact, our approach requires to
design an “ad hoc” routing algorithm for each equiva-
lence class (i.e. for each different § factor), so an inter-
esting future work is to develop an algorithm running
on the § factor of the Omega-Omega.
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