
A New Approah to the Rearrangeability of (2 logN � 1) Stage MINsTiziana Calamoneri Annalisa MassiniDip. di Sienze dell'InformazioneUniversit�a di Roma \La Sapienza", Italyvia Salaria 113 - 00198 Rome, Italyfalamo,massinig�dsi.uniroma1.itAbstratIn this paper we present a twofold result. First weprovide a new routing algorithm to realize any permu-tation on all (2 logN � 1) stage MINs in the lass ofBene�s equivalent networks. The time omplexity is thesame as the Looping algorithm, i.e. O(N logN), butthe interest of the presented algorithm derives fromthat it is very general and it runs on every networkin the lass apart from its symmetry. Furthermore,it provides a onstrutive proof of rearrangeability fora wide lass of networks, substituting all the di�er-ent proofs presented in literature. Seond, we provethe rearrangeability of a lass of MINs whose rear-rangeability was not known; for them we desribe anO(N logN) time routing algorithm.Keywords: Multistage Interonnetion Networks,Rearrangeability, Routing Algorithms, Layered CrossProdut.1 IntrodutionAnN input multistage interonnetion network (MIN)is alled a rearrangeable network if it realizes every oneof the N ! permutations in a single pass.MINs onsisting of logN stages (Omega, Flip, In-diret Binary Cube, Baseline, Buttery) are all notrearrangeable. For this reason, 2 logN �1 stage MINshave been intensively studied. They are obtained byonatenating two logN stage MINs with the enterstage overlapped; Bene�s network is an example of thislass of MINs and it is usually represented as the on-atenation of a Baseline and a Reverse Baseline. Onemethod of rearranging the swithes of the Bene�s net-work is known as the Looping algorithm [6℄. It an,in general, be used for all symmetri MINs, as Bene�snetwork. Nevertheless, for a a general Bene�s equiva-lent MIN not having this symmetry property (e.g. theOmega-Omega�1) the Looping algorithm is not appli-able; moreover, for many 2 logN � 1 stage MINs it isneither known whether they are rearrangeable or not.For the Omega-Omega�1, Lee [4, 5℄ proposed a routing

algorithm based on the deomposition of the �rst halfof the network and the self-routing on the seond half.Both this algorithm and the Looping algorithm haveO(N logN) time omplexity. The main problem ofthese two shemes is their non portability, that is theywork only on the networks for whih they are designedsine they provide a ontrol sheme implementing therouting that exploits the network on�guration.Yeh and Feng [7℄ proposed a routing sheme real-izing any arbitrary permutation on a lass of 2 logNstage MINs. Networks in this lass are obtained byonneting two logN stage MINs by means of a stagethat an assume various onnetion patterns in orderto make the network symmetri. The routing shemerequires O(N logN) time. In [3℄ Feng and Seo onsiderthe 2 logN stage onatenation of Omega-Omega andshow that it an be onverted in a Omega-Omega�1or a Omega�1-Omega by modifying the enter stage.The time omplexity is O(N) but the algorithm an beapplied only on symmetri 2 logN stage Omega-basednetworks.
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a bFigure 1: a. A r� and b. a �r, both of dimension 8.In this work we approah the problem of rearrange-ability from a novel point of view, taking into a-ount the partition into equivalene lasses of the set of2 logN �1 stage MINs [1℄. This partition is developedfrom the onept of Layered Cross Produt (LCP) [2℄,de�ned as follows:An l-layered graph, G = (V1; V2; : : : ; Vl; E) onsists



Figure 2: All the possible �rs related to N = 16 and a representative of the orresponding equivalene lass.of l layers of nodes; Vi is the (non-empty) set of nodesin layer i, where 1 � i � l; E is a set of edges:every edge onnets nodes of two onseutive layers.Given two l-layered graphs G0 = (V 01 ; V 02 ; : : : ; V 0l ; E0)and G00 = (V 001 ; V 002 ; : : : ; V 00l ; E00), their Layered CrossProdut (LCP for short) , G0 
 G00 is an l-layeredgraph G = (V1; V2; : : : ; Vl; E) where Vi is the arte-sian produt of V 0i and V 00i , 1 � i � l, and anedge h(u0; u00); (v0; v00)i belongs to E if and only ifhu0; v0i 2 E0 and hu00; v00i 2 E00. G0 and G00 are alledthe �rst and seond fator of G, respetively.We all deomposition in fators the inverse opera-tion of the LCP. Eah MIN an be deomposed intotwo fators (for an example, see Fig. 1), whose the �rstone, all it r�, is always the same and it is representedby two omplete binary trees sharing their root; theother fator, �r, haraterizes eah lass; all possibleases for N = 16 are shown in Fig. 2, together witha representative MIN of the orresponding lass. Weare able to extrat those strutural properties usefulfor the rearrangeability from the �r fator only. To fo-us our attention on a whole lass instead of on a singleMIN allows us to design more general algorithms.

2 A New Routing Algorithm forBene�s Equivalent MINsIn this setion we propose a new algorithm for settingthe swithes of a Bene�s equivalent MIN in order tosatisfy any permutation �. Note that the proposedalgorithm runs on eah MIN belonging to the lassof Bene�s equivalent MINs, apart from its symmetry.Therefore, the Looping algorithm is a partiular aseof this more general algorithm.Before going on, we need to de�ne some onepts.Given a MIN G, a request for G is an ordered pair(u; v), u; v 2 f1; : : : ; Ng, omprising an input u andan output v.A permutation � for G is a set of N requests for Ghaving neither inputs nor outputs in ommon.G satis�es � if there exists a set of N edge disjointpaths from the input to the output of eah request in� passing through exatly one node in eah stage.A legitimate path from u to v is a path on G startingfrom input u, passing through exatly one node in eahstage, and ending in output v.Observe that the inputs and outputs of MINs arenot involved in the de�nition of LCP, but it is not re-stritive to add N inputs and N outputs both to theMINs and to their fators at the end of the omputa-tion of the LCP (see Fig. 3). This addition, although



not neessary, is very useful to highlight the start andthe end of eah legitimate path, both on the MIN andon its fators.Exploiting the LCP, we are able to handle the re-arrangeability of a MIN working only on its fators.To this aim, we state the following haraterization,whose proof is omitted in this extended abstrat.Lemma 1 A MIN G = G1 
 G2 is rear-rangeable if and only if there is no permutation� = f[1; �(1)℄; [2; �(2)℄; : : : ; [N; �(N)℄g suh thattwo among its requests, let they be [i; �(i)℄ and[j; �(j)℄, orrespond to two legitimate paths P (i; �(i))and P (j; �(j)) whose pairs of fators P1(i; �(i)) andP1(j; �(j)), P2(i; �(i)) and P2(j; �(j)) both share anedge at the same edge stage.We have to take into aount this lemma in order tohoose, among all the possible legitimate paths, thoseleading to a swith setting satisfying �. In other wordsthis is equivalent to onstrut a new permutation �0suh that the \upper" Baseline equivalent MIN satis-�es �0 top-down and the \lower" Baseline equivalentsatis�es �0 bottom-up. In partiular, given a Bene�sequivalent MIN and a permutation �, our algorithmbuilds legitimate paths stage by stage for eah requestof � suh that legitimate paths are pairwise edge dis-joint. To do that, it builds the fators of eah legiti-mate path on the fators of the MIN �r and r�. In fat,r� is a tree and therefore all its legitimate paths areunique. It follows that we an impose onditions on �ronly. Hene, the route followed by P (i; �(i)) uniquelydepends on its seond fator P2(i; �(i)).In order to avoid that the legitimate paths of eahpair of requests [i; �(i)℄ and [j; �(j)℄, share an edge atthe �rst edge stage, when we onstrut the fators ofthe legitimate path, stage by stage, we must imposethata) for i = 2k � 1 and j = 2k (or vie-versa) for somek 2 1; : : : ; N2 , P2(i; �(i)) goes down towards the lefthand and P2(j; �(j)) goes down towards the right hand(or vie-versa).Analogously, in order to avoid that P2(i; �(i)) andP2(j; �(j)) share and edge at the last edge stage, wemust impose that:b) for �(i) = 2k � 1 and �(j) = 2k (or vie-versa) forsome k 2 1; : : : ; N2 , P2(i; �(i)) goes up towards the lefthand and P2(j; �(j)) goes up towards the right hand(or vie-versa).Analogous onditions must hold in orrespondeneof eah edge stage of the MIN.An algorithm taking into aount these onsidera-tions is the following. We explain it both formally andby an example. We hoose to run our algorithm on aOmega-Omega�1 network, in order to highlight thatit works on it, di�erently from the Looping algorithm,
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a b cFigure 3: An example: a MIN with 8 inputs obtainedonatenating an Omega and its reverse and a permu-tation � to be satis�ed.that orretly omputes a swith setting for symmetriand reursive MINs only.Algorithm Routing on r� 
 �rInput: a MIN G = r� 
 �r and a permutation �;Output: a setting for all swithes of G, s.t. G satis�es�;1. Constrution of I(�) and O(�)(See Fig. 3.a and 3.b) Consider eah node (i; 1) of the�rst stage of G; let xi and xi + 1 be its inputs; thenassign to the orresponding node i of the �rst layer ofr� the same inputs; let I(�) be the obtained sequeneof the inputs of r�. Analogously, onsider eah node(i; 32N � 2) of the last stage of G; let yi and yi + 1 beits outputs; then assign to the orresponding node iof the last layer of r� the same outputs; let O(�) bethe obtained sequene of the outputs of r�. Observethat, even if in Fig. 3 I(�) oinides with the orderedsequene, this is { in general { not true.For sake of learness, from now on, we will high-light whih instrutions are performed on the MIN andwhih ones on the pair of sequenes (I(�); O(�)).2. Coupling elements in I(�) and O(�)(On (I(�); O(�)), see Fig. 4.a) Couple the (2k�1)-thand the 2k-th element of I(�), 1 � k � N2 . In the sameway, ouple the (2k � 1)-th and the 2k-th element ofO(�), 1 � k � N2 . From now on, given a j 2 I(�), wede�neMI(j) its mate, i.e. the element belonging to theouple whih j belongs to. In the example of Fig. 4.a,MI(6) = 5, MI(3) = 4 and so on. Analogously, givena �(j) 2 O(�), we de�ne MO(�(j)). Some examplesare: MO(�(5)) = �(1) and MO(�(1)) = �(5).3. Labeling I(�) and O(�)(On (I(�); O(�)), see Fig. 4.a and 4.b) Let Layer bethe urrently onsidered stage of swithes in G; at thebeginning Layer= 1;let j 2 I(�); at the beginning j = 1;repeat until all inputs and outputs are labeledif j is not labeled yet, then



label j 2 I(�) with `Left';label �(j) 2 O(�) with `Left';label MO(�(j)) = �(j0) with `Right';label j0 2 I(�) with `Right';j  MI(j0) 2 I(�) ;else hoose a non-labeled input as new j;end repeat (see Fig. 4.).4. Swith setting of the urrent stage(On the MIN, see Fig. 5.a) Set eah of the N2 swithesat stage Layer to straight if its left and right inputs arelabeled `Left' and `Right' in I(�), respetively; set theswith to ross otherwise; let the sequene I(�) passthrough swithes of stage Layer, so that an opportunepermutation of I(�) beomes the input sequene ofstage Layer+1.5. Updating(On (I(�); O(�)), see Fig. 4.d) Ordinately, onsiderfrom left to right eah j 2 I(�) labeled `Left' and letthe resulting sequene be IL(�). Analogously, ordi-nately, onsider from left to right eah j 2 I(�) la-beled `Right' and let the resulting sequene be IR(�).Do the same for O(�) building OL(�) and OR(�);I(�) IL(�) onatenated with IR(�);O(�)  OL(�) onatenated with OR(�);Layer  Layer+1.Observe that the new sequene I(�) is onstituted bya set of pairs orresponding to the pairs of inputs ofnodes at stage Layer (f. Figs. 4.d and 5.a).6. Iteration(See Fig. 5.b) Repeat all steps from 2 to 5 until Layer=logN .7. Swith setting of the last logN stages(See Fig. 5.) All swithes at stages 1; : : : ; logN � 1of G are set; the rest of the MIN is a Banyan networkhaving as input sequene an opportune permutation ofI(�) and therefore all the remaining swithes an beunivoally set.Theorem 2 Given a MIN G = r�
 �r and any per-mutation �, O(N logN) time is suÆient for settingits swithes s.t. G satis�es �.Proof We prove the statement by proving theorretness of the algorithm Routing on r� 
 �r and,onsequently, the rearrangeability of the lass of MINs,and by studying its omplexity.Let n = logN . The proof is by indution on n. Ifn = 1 the MIN onsists of a single node and the resultis obvious. Hene assume that the result is true fora MIN with N=2 inputs and prove for a MIN with Ninputs. The key idea is to observe that the middle2n� 3 layers of �r (i.e. eliminating the two roots) aretwo smaller �rs. Hene, it will be suÆient to deidewhether eah seond fator of the legitimate path isto be routed through the left or the right sub-�r. The
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only onstraints that we must satisfy to hoose the leftor the right sub-�r, both upward and downward, areonditions a) and b). In other words, if the �rst fatorsof any two legitimate paths share a node at the �rstlayer then their seond fators must go to di�erent sub-�rs, and if the �rst fators of any two legitimate pathsshare a node at the last layer then their seond fatorsmust ome from di�erent sub-�rs. These onstraintsare satis�ed by step 3 of the algorithm. It remainsto prove that we an always assign eah seond fatorof the legitimate path to the left or right sub-�r in away that satis�es the onstraints a) and b) and thatthis assignment is feasible, i.e. the onsequent swithsetting routes �. The proof that a) and b) are satis�edderives from two fats:i) the set of elements in I(�) and O(�) onsideredduring step 3 indues even yles;ii) for eah j 2 I(�)(O(�)) routed towards a sub-�r,its mate is routed towards the other sub-�r.The proof that the assignment is feasible derivesfrom two fats:i) for eah j 2 I(�) routed towards a sub-�r, �(j) 2O(�) is routed towards the same sub-�r;ii) for eah �(j0) 2 O(�) routed towards a sub-�r, j0 2I(�) is routed towards the same sub-�r.Eah sub-�r an be handled by the indutive hypoth-esis and therefore the orretness is proved.About the time omplexity, we divide the analysisstep by step. Step 1 runs in O(N) time. Steps 2, 3,4 and 5 all run in O(N) time and they are repeatedO(logN) times by Step 6. For what onerns Step7, the requests are self-routed and then O(N logN)time is suÆient. Hene, the global time omplexity isO(N logN). Q.E.D.Remark The previous theorem provides a onstru-tive rearrangeability proof for the whole lass of MINsdeomposable as r�
 �r; inside this lass we highlightthe Bene�s network, the Double Baseline and all thoseobtained by onatenating a Baseline equivalent andits reverse (e.g. Baseline-Reverse Baseline, Omega-Omega�1, Buttery-Reverse Buttery, et.).3 Rearrangeability of AnotherClass of MINsMany interesting networks (e.g. the Double Buttery,the Double Omega, et.) fall outside the lass obtainedas LCP of r�
 �r. The deomposition in fators of allthese networks has been studied in [1℄, and it has beenproved that they an be deomposed as LCP of r� and
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a b cFigure 6: a. A MIN with 8 inputs onstituted by twoonatenated opies of Buttery network; b. its �rstfator, i.e. a r�; . its seond fator, i.e. a modi�ed �r.a modi�ed �r. Namely, the merging of the leaves of� and of r is not performed ordinately, but reatingsome rossings (see Fig. 6.). For eah N , the numberof non equivalent modi�ed �rs that are a fator of aMIN is (logN�1)! and eah di�erent modi�ed �r leadsto a di�erent equivalene lass of MINs [1℄.Unfortunately, the algorithm desribed in the pre-vious setion annot run on eah equivalene lass inview of the asymmetry of the modi�ed �r with respetto the middle layer. Nevertheless, we an slightly mod-ify the algorithm so that it an run on another lassof MINs, proving also the rearrangeability of eah net-work belonging to this lass. A representative MINbelonging to this equivalene lass of networks is thenetwork obtained by onatenating an N input Re-verse Buttery and a Buttery whose the �rst andseond stages are reversed (see Fig. 6.a).In this extended abstrat we have no enough roomto desribe the modi�ations we have introdued tothe algorithm.4 Conlusions and Open Prob-lemsIn this paper we have provided an algorithm to real-ize any permutation � by setting the swithes of allMINs equivalent to the Bene�s network, i.e. all net-works deomposable as r�
 �r. With this algorithm wehave given a onstrutive proof of rearrangeability fora wide lass of networks, substituting all the di�erentproofs presented in literature. The time omplexity isthe same as the Looping algorithm, i.e. O(N logN),but the main di�erene is that the Looping Algorithmis immediately appliable only on the Bene�s Networksand on other networks built as two smaller opies ofthe same network plus two additive stages onnetingthem. Then we have proven the rearrangeability of alass of MINs whose rearrangeability was not known.



The idea under both algorithms is to perform a sortof routing with ertain properties on the �r fator only.Then, we translate this speial routing performed on�r in the swith setting of the onsidered MIN and,onsequently, in the routing of the permutation.The interest of this result lies in that the approahto rearrangeability, based on LCP, is ompletely newand it allows one to deal with a simpli�ed struture(the �r fator) instead of the whole MIN.Although we extend the set of MINs known to berearrangeable, for other lasses of MINs (e.g. Omega-Omega equivalent) it is still not known whether theyare rearrangeable. In fat, our approah requires todesign an \ad ho" routing algorithm for eah equiva-lene lass (i.e. for eah di�erent �r fator), so an inter-esting future work is to develop an algorithm runningon the �r fator of the Omega-Omega.Referenes[1℄ T. Calamoneri and A. Massini, EÆiently Chek-ing the Equivalene of Multistage InteronnetionNetworks, Pro. Parallel and Distributed Comput-ing and Systems (PDCS'99), 1999, 23-30.[2℄ S. Even and A. Litman, Layered Cross Produt- A tehnique to onstrut interonnetion net-works, 4th ACM SPAA, 1992, 60-69.[3℄ T. Feng and S{W. Seo, A New Routing Algorithmfor a Class of Rearrangeable Networks, IEEETrans. Comput., 43, 1994, 1270-1280.[4℄ K. Y. Lee, On the Rearrangeability of 2 logN�1-Stage Permutation Networks, IEEE Trans. Com-put., C34, 1985, 412-425.[5℄ K. Y. Lee, A New Bene�s Networks Control Algo-rithm, IEEE Trans. Comput., C36, 1987, 768-772.[6℄ B. C. Opferman and N. T. Tsao-Wu, On a Classof Rearrangeable Swithing Networks, Bell Syst.Teh. J., 50(5), 1971.[7℄ Y. Yeh and T. Feng, On a Class of Rearrange-able Networks, IEEE Trans. Comput., C41, 1992,1361-1379.


