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Abstract

In this work a self-routing multi-log N permutation network is pre-
sented and studied. This network has logy N depth and N(logs N +
logy N)/2 nodes, where N is the number of network inputs. Its parallel
routing algorithm runs in log, N time. The network architecture guar-
antees that only a negligeable quantity of information is blocked, while
the quasi-totality of the information synchronously arrives in logy N
steps at the network outputs. Thanks to its distributed algorithm this
network works in pipeline, furthermore it has a modular architecture
suitable for very large IV, it can be used as very high performance fast
packet switching fabric and it is suitable for information exchange in
very large scale multiprocessor systems.



1 Introduction

One way to build space-division packet switches is the banyan based fab-
ric which consists of a structure based on banyan interconnection networks
(a class of multistage interconnection networks) [1][2]. The classical Shuffle,
Omega, Delta, Butterfly, etc. are all banyan interconnection networks which
are isomorphic among themselves. These networks have log, /V stages and can
be considered log, N depth directed graphs, where N is the number of the
vertices (inputs) and of the edges (outputs) of the network. In space-division
packet switches multiple concurrent paths from the inputs to the outputs are
needed; also if multicasting is considered (each output port can be addressed
by more than one input), the switching fabric can be based on a permutation
network, where one-to-one connections between every input and every output
are possible. When in a permutation network all input-to-output paths can al-
ways be estabilished simultaneously, this network is called nonblocking; banyan
networks are blocking, but they can be used as components of more complex
structures (such as dilated networks, fused networks and replicated or stacked
networks which have O(N log, N) or O(N logi N) nodes [3]-[8]) which may
become nonblocking or strictly nonblocking under certain conditions [3][9].

A lot of effort has been expended on the problem of fast routing on log, N



or multi-log N permutation networks. One can distinguish two different ap-
proaches: deterministic and probabilistic. Results of deterministic approach
in nonblocking networks are: a) the Batcher algorithm, which takes time
O(logi N)' on a O(Nlogs N) nodes network [10], and the Oruc algorithm
which runs in the same time but with minor multiplicative constants [11]; b)
the Upfal algorithm which runs on a Multi-butterfly network with O(log, N)
time complexity, but with large constants [12]; on the same network Upfal’s
routing time was reduced by Leighton and Maggs [7].

In the probabilistic approach (applicable also to blocking networks) only
part of the information arrives at its destination. In this approach the goal is
the search of a structure on which a suitable algorithm minimizes the block-
ing probability. Several Authors studied O(log, N) time routing algorithms
on various networks. Szymanski and Hamacher examined the behaviour of
d-dilated and r-replicated banyan networks under the assumptions of: a) per-
mutation requests, and b) random requests (uniform traffic) by means of an
analytic model which gives the blocking probability [13]. Yoon and Lee exam-
ined the behaviour of the B-Banyan network (a butterfly in which backward

links are introduced for blocked requests) [15], and recently Venkatesan and

!Generally the Batcher algorithm is considered to have O(log% N) time complexity. In a
recent paper Orug points out that its real time complexity is O(logg N) [11].



Mouftah present the behaviour of the balanced gamma network, a gamma net-
work where forward links and buffers in the last stage are added [14]. These
networks either have low efficiency? [13] or destroy the syncronization of in-
formation [15], or are based on a too rough analytic model [14].

In the present work a N(logy N + log, N)/2 nodes permutation network,
built by means of log, N k-butterfly networks, is presented. On this network
runs a parallel self-routing algorithm with log, N time complexity. A very high
overall efficiency is reached (quasi-nonblocking network) and packets arrive
synchronously in log, IV steps at the network outputs. With this network, one
can obtain a very high performance switching fabric for fast packet switching in
broadband communication systems, or an efficient permutation device suitable

for information exchange in large scale multiprocessor systems.

2 Quasi-nonblocking permutation networks

Many permutation networks presented in the literature are blocking, in par-
ticular the banyan ones. In blocking networks the ratio 1 = g /7, between
the number of nonblocked requests r,,; and the number of input requests r;,,
is its efficiency. 7 must be computed taking into account the whole set of

input-to-output permutations and it is a measure of permutation capability of

2In the next section the efficiency of a blocking network is defined.
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such a network [13]. Thus the efficiency, 1, is a measure of the nonblocking
capability of a network, and nonblocking permutation networks have always
1 = 1. The efficiency can be enhanced increasing the number of physical paths

between inputs and outputs as in d-dilated and r-replicated networks [3]-[8].
Definition 1 A permutation network where:

n=1-¢ and ekl
18 quasi-nonblocking.

From the usual definition of blocking probability of a network, P, = (r;, —
Tout)/Tin [8][13], follows B, = 1 — n and, consequently, a quasi-nonblocking

network is a network where P, is very close to zero.

3 A multi-log N permutation network

A new multi-log N quasi-nonblocking permutation network can be obtained
by a particular superposition of k = log, N butterflies. On such a structure a

probabilistic algorithm with log, N time complexity has been implemented.
3.1 Network description
The vertical section of the proposed network (for N = 2°) is presented in Fig.

la. The network is a three-dimensional structure, the planes of which are

shown in Fig. 1b. One can see that:
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Figure 1: a) Vertical section of the permutation network for N = 2°. The cor-
responding outputs of each plane are ORed. b) The five planes (k-butterflies)
of the structure. The symbols o, o, o, e represent respectively 2x2, 2x4, 4x2,
4x4 crossbars.
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e the k-th plane of the structure is a k-butterfly (a butterfly network with-
out the initial k — 1 stages, k = 1, ...,log, N); in such a way the network
on the first plane is a complete butterfly and the network on the last

plane is made by only one column of nodes (see Fig. 1b),

e the output terminals of the nodes of each stage of a k-butterfly are
connected with the input terminals of the nodes of the subsequent stage

on the plane k and plane k + 1,

e the nodes are 4x4 crossbars; on the boundary of the structure the nodes

have two idle input or output terminals (see Fig. 1b),

e the corresponding outputs of all planes are ORed.

As one can see from Fig. 1, the depth of this network is log, N and its number

of nodes is N(log; N +log, N)/2 < Nlogs N.

3.2 Parallel self-routing algorithm

The distributed self-routing algorithm is very simple. On each k-butterfly it
routes in parallel and in forward direction all information to the output ports
following the binary representation (dids...d,) of the destination addresses.
The states of the nodes at the stage m are set such that packets are routed
to right or left node terminal if d,,, = 0 or d,,, = 1 respectively. If two packets
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simultaneously ask for the same output terminal, a conflict (2-conflict) occours,
this conflict is resolved at node level sending one packet on a plane and the
other on another plane. If the node has four inputs (internal nodes), 3-conflicts
or 4-conflicts may also occour and, in these cases, some packets are blocked.
The network will have high efficiency if the total number of 3-conflicts or
4-conflicts will be negligeable.

The log, N depth of the network and the forward direction of the infor-
mation flux guarantee that the information wavefront synchronously passes
through the network in log, NV steps. Thus the network can work in pipeline,
infact packets can be presented on the network inputs at each time interval

At, where At is the stage-to-stage propagation time.

4 Simulation and results

The overall behaviour (network+algorithm) has been studied by numerical
simulation, in a wide range of N, under the assumption of a) permutation
requests and b) random requests (uniform traffic) [13]. Simulations are made
by the simple algorithm presented in the previous section and give the values
of network efficiency, n, and blocking probability, P, versus log, V.

A uniform information flux through the network minimizes 3-conflict and 4-

conflict occurence. To obtain an acceptable uniformity, the simulation program
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Figure 2: Flux of information through the network planes in the simulations.
The thick and thin lines represent respectively the main flux (k-butterfly non-
blocked packets) and the secondary flux (k-butterfly blocked packets).

sends information through planes as shown in Fig. 2. In this figure thick
lines represent the direction of the main flux — the packets nonblocked by k-
butterfly stages — while thin lines represent the information flux which should

be blocked by the k-butterfly stages whenever 2-conflicts occour.

4.1 Permutation requests

The simulation program takes as input a set of random chosen permutations.
Because of the rapid increase with N of the number of permutations (N!)
generating very large computation time, a sufficient number of attempts have
been executed at every step to obtain sufficiently steady mean values. The

result of simulations in the range N = 23 to N = 2'3 is shown in Table



N Tlper 77;?? Anper (%)
22 1. 0.
23 1. 0.
24 1. 0.
2° 0.99999 0.001
26 0.99992 0.008
27 0.99981 0.019
28 0.99966 0.034
29 0.99951 0.049
210 0.99934 0.066
21 0.99920 0.080
212 0.99907 0.093
213 0.99890 0.110
214 0.99878

215 0.99863

216 0.99848

217 0.99834

218 0.99819

Table 1: Network efficiency 7,., versus N under permutation requests.

1. It is important to examine the network behaviour for large N. Because
of the prohibitive computation time involved, simulations have been stopped

at N = 213, Several values of efficiency 7! have been computed from the

per
simulated values by extrapolation, these values are also shown in Table 1. In
this Table the deviation from the crossbar efficiency, A, is also presented
only for simulated efficiency values. Notice that the greatest P, value of the

simulated cases under permutation requests is P, = 0.00110, corresponding to

the efficiency 7 = 0.99890 for a network with N = 23 inputs.
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4.2 Random requests (uniform traffic)

The simulation program takes as input a set of N random chosen requests;
also in this case, to obtain sufficiently steady mean values, a sufficient number
of attempts have been executed at every step. The result of simulations in the
range N = 23 to N = 2'2 is shown in Table 2.

Under random requests several requests can choose the same network out-
put, but just one request can be honoured. For this reason, in the case of
random requests, the efficiency values are lower than those under permutation
requests. Also the crossbar network, which is strictly nonblocking, and then
presents the better efficiency under permutation requests (nger = 1), presents
in the case of random requests the efficiency behaviour shown in Table 2 (n<, ).

Because the efficiency of the presented network, 7., is very close to 1, the
values 7)., can be computed as a deviation from crossbar efficiency values used

as reference. In fact the 7,4, values can be obtained, in first approximation,

by:

comp __

Nran = Thran = ngmnper (1)

where 1<, is the efficiency of crossbar network under random requests. In

Table 2 the behaviour of 7S computed by Eq. 1 is also presented. Notice
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N Nran Nran USm Anran (%)
22 0.68367 0.68367 | 0.68367 0.
23 0.65632 0.65632 0.65632 0.
24 0.64407 0.64410 | 0.64409 0.003
2° 0.63783 0.63785 0.63786 0.005
20 0.63492 0.63495 0.63500 0.012
27 0.63345 0.63345 0.63357 0.019
28 0.63264 0.63260 | 0.63282 0.028
29 0.63226 0.63219 | 0.63250 0.038
210 0.63200 0.63187 | 0.63228 0.044
211 0.63182 0.63172 0.63222 0.063
212 0.63176 0.63161 0.63220 0.069

213 0.63145 | 0.63215
214 0.63136 | 0.63213
215 0.63125 | 0.63212
216 0.63116 | 0.63212
217 0.63107 | 0.63212
218 0.63096 | 0.63210

comp

Table 2: Network efficiency 7,4, versus N under random requests. The 0"

values are computed by Eq. 1.

that for N = 22 the deviation of network efficiency from crossbar efficiency,

Anyan, 18 less than 0.1%.

4.3 Internal buffers

A significant performance improvement can be achieved by adding one buffer
to each node of the network. With single buffers the network can resolve
3-conflicts and partially 4-conflicts. In this case a little part of information
arrives at the destination unsyncronized. Simulations have been performed for

the presented network under permutation requests and in pipeline mode for
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N et M | Al = Anier (%)
92 1. 0.68367 0.
93 1. 0.65632 0.
91 1. 0.64409 0.
25 | 0.999994 | 0.63786 0.0006
26| 0.999977 | 0.63500 0.0023
o7 | 0.999970 | 0.63355 0.0030
28 | 0.999966 | 0.63280 0.0034
29 | 0.999962 | 0.63247 0.0038
210 | 0.999953 | 0.63225 0.0047
211 | 0.999951 | 0.63219 0.0049
212 | 0.999949 | 0.63216 0.0051

Table 3: Efficiency n’4! and nl% versus N of buffered network.

ran
N =22 to N = 2'2 by means of the same self-routing algorithm described in
the previous sections. The results in the case of random requests are computed
by means of Eq. 1 and are presented in Table 3; as one can see, in this case,
the values of the deviation of network efficiencies from crossbar efficiencies are

negligeable.

5 Conclusions

The network described in this work has a very simple and modular architecture
which gives multiple physical channels for every logical path and, in this way,
solves the quasi-totality of packet conflicts. As one can see from Table 1, the
network can be considered quasi-nonblocking and for this reason its behaviour
under random requests is very close to that of crossbar network (see Table

13



2). Other important features are: i) the network routes packets by a simple
distributed self-routing procedure, ii) the packets pass through the network in
a synchronous manner and they can be pipelined, iii) the routing time (log, N)
is the fastest obtainable on banyan networks, iv) the topological complexity
(number of the nodes) is smaller than N log; N, v) because the molteplicity
of paths, the network presents a good fault tolerance degree.

If buffering capability is added, the network efficiency can be enhanced.
A very high performance switching fabric suitable for the future broadband
integrated services digital networks can be built with the presented architec-
ture. At present the behaviour of this switching fabric is also studied from the

standpoint of a precise analysis of its fault tolerance capability.
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