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Layered Cross Product, LCP, of layered

graphs and show that several well known networks are

LCP-S of simple layered graphs, such as trees. Some im-

portant properties of these networks are shown to be triv-

ial consequences, once a network is presented as an LCP

of simpler graphs.

We believe that this new tool will make the construc-

tion of new networks easier, and it will simplify the study

of the properties of known and new networks.

1 Introduction

Many layered graphs are known to be useful as intercon-

nection networks. Examples are the butterfly network,

including all its different looking representations, meshes

of trees, fat-trees, the Bene3 network, multibutterflies. In

certain cases, networks were known under different names

for decades before it was discovered that they were actu-

ally isomorphic.

We believe the reason for this “blindness” was that

the networks were represented in forms which concealed
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their structure. To be more specific, these structures are

“essentially” 3-dimensional, and the representations used

to describe them were 2-dimensional.

We introduce a Layered Cross Product, LCP, of lay-

ered graphs and show that several of the important, and

well known networks, are LCP-S of simple layered graphs,

such as trees.

In particular the butterfly network is an LCP of two

binary trees. The mesh of trees is an LCP of two binary

trees with paths attached to their leaves. The fat tree

is an LCP of a binary tree and a quad-tree. These are

shown in detail. One can continue this expedition to

show that:

1

2

3

The Bene5 network [1], which is isomorphic to the

Waksman network [2], is the LCP of two structures:

The first is a binary tree which shares its leaves with

its mirror image, and the second is a binary tree

which shares its root with its mirror image. This

is not surprising, since the Bene3 network is known

to be layer isomorphic to the butterfly network con-

nected to its mirror image.

Consider two butterfly networks connected in tan-

dem (without reflection). (This tandem network is

known not to be layer isomorphic to the BeneE net-

work, and contrary to it, it is not known if the tan-

dem is rearrangeabIe; i.e. can realize alI permuta-

tions.) This network is an LCP of “bamboos”; see

Fig. 5.

The multibutterfly, introduced by Upfal [3], is an

LCP of a binary tree and a tree-like “pyramid”, in

which the 2i vertices of the i’th layer are connected



to the 2:+1 vertices of the (i+ 1)1‘st layer by an ex-

pander (see [4]).

Several of the important properties of these networks

are shown to be trivial consequences, once a network is

presented aa an LCP of simpler graphs.

We believe that this new tool will make the construc-

tion of new networks easier, and it will simplify the study

of the properties of known and new networks.

2 The Layered Cross product

A layered graph, of 1 + 1 layers, G = (Vo, VI). . . . ~, E),

consists of

1. 1 + 1 layers of vertices; ~ is the (nonempty) set of

vertices in layer i.

2. E is a set of edges. Every edge (u, v) connects two

vertices of two adjacent layers; i.e. if u c Vi then

‘v c v~+l.

Let G(l), G(z) be layered graphs, each of 1 + 1 layers;

i.e., for j c {1,2}, G(j) = (V(~lo, V(~)l, .,., V~~)l,E(j)).

Their Layered Cross Product, L CP, G(l) x G(z) is a laY-

ered graph, G’ = (V’o, V’l, . . . . V’?, E’), where:

1.

2.

For every O ~ i ~ 1, V’i = V(l)i x V(2)~.

There is an edge (u’, v’) in G1, connecting vertices

u’ = (u(l), u(z)) and v’ = (v(l), v(z)), if and only if

(u(l), v(l)) and (u(z), V(2)) are edges in G(l) and G(2),

respect ively.

Let us call the layer with index O the top layer, and the

layer with index 1 the bottom layer. We are interested in

the design and description of interconnection networks;

i.e. layered graphs in which paths of length 1 edges con-

nect vertices of the top layer with vertices of the bottom

layer. For this reason we say that a layered graph is

linked if it has the following property: ]Every vertex is on

a path of length 1 connecting a verte>c of the top level

with a vertex of the bottom level.

The LCP of two layered graphs is linked if and only if

each of the multiplicands is linked.

In this paper we are not interested in the labels or

names assigned to vertices; i.e. two layered graphs are
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considered equal if they are isomorphic, and the isomo,r-

phism preserves the level to which a vertex belongs. l[n

many applications it is useful to assign labels to the ver-

tices or edges in some specific manner; however, such a

labeling is application specific and will not be considered

in this paper.

Under this assumption, the LCP operation is commu-

tative and associative. Thus, we may consider the LCP

of more than two layered graphs, all with the same num-

ber of layers, without regard to the order in which they

are written, or the order in which the binary operations

are applied.

A simple path, of length 1, with one vertex in each of

the J+ 1 layers, serves as the identity element for the LCP

operation.

Several examples are depicted in Figs. 1 and 2,

A layered graph is said to have the banyan property if

for every vertex of the top layer and every vertex of the

bottom layer there is a unique path of length 1 connect-

ing them. (See [5].) It is a simple matter to prove the

following theorem:

Theorem 2.1 The LCP operation yields a banyan

layered graph if and only if each of its multiplicands is

banyan.

Unfortunately, the rearrangeability property (i.e. the

existence of disjoint paths for every assignment of vertices

of the bottom layer to vertices of the top layer; see [4])

does not carry over from multiplicands to their LCP. (In

Fig. 2(b), each of the multiplicands is rearrangeable,

while their LCP is not; there are no two disjoint paths

connecting vertices O and 2 of the top layer with vertices

O and 1 of the bottom layer.)

3 The Butterfly Network

The butterfly network, B, was invented and reinvented,

independently and in various forms, since the Sixties. It

has even more names than known forms, including the

bidelta network, baseline network, flip network, modifieci

data manipulator, indirect binary cube network, Omega

net work. See, for example [6]. one known definition is

as follows:

Let 1 be a positive integer, and {O, l}t be the set of all

binary words of length 1. 1? = (Vo, Vl, . . . . ~, E), where



1. Vo,vi,..., V are disjoint sets of vertices. Each set

contains n = 21 vertices. For every O < i ~ 1, there

is a one-to-one assignment of labels: ~ ~ {O, l}’.

2. A vertex labeIeci (xl, X2, . . . . z?), of layer i–l, is con-

nected by an edge to vertex labeled (Y1, YZ, . . . . y{),

of layer i, if and only if for every ~ # i, Xj = Yj.

Theorem 3.1 The butterfly network, B, is the LCP

of two binary trees, one with its root up and one with its

root down.

Proofi There are many ways to prove this theorem.

Let us describe a graphical one.

Denote the LCP of the two trees by T. We want to

prove that P = l?,

An UF(i) (upward fork) is a linked layered graph. It

consists of two simple paths coming down from the top

layer and merge into a single path at layer i + 1.

Observe that a binary tree of height 1, with its root

down, is equal to

u~(()) x UF(l) X . . . X UF(~ – 1).

(See Fig. 1, (a) and (b),)

An DF(z) (downward fork) is a linked layered graph. It

is the mirror image of UF(’1-i). By symmetry, the binary

tree of height 1, with its root up, is equal to

DZ’(1) X DF(2) X . . . X ~~(i).

Thus,

~ = UF(0) X DI’(1) X UF(l) X ~3’(2) X ~. .

xuF(/ – 1) x Dl?(/)

Define SW(i) (switch) to be the following linked layer

graph. It has two vertices in each of the i + 1 layers.

There are two disjoint paths, of length 1, connecting the

two vertices of the top layer with the two at the bottom

layer. There are two more edges. Each connects a vertex

which is on one path and on the (i – 1) ‘st layer, with the

vertex on the the other path and on the i’th layer.

Observe that SW’(i) = UF(i – 1) x DI’(i). Thus,

P = Sw(l) x SW(2) x . . . x Sw(i). (1)

Next, let us label the vertices in each of the i + 1 lay-

ers of ~ with binary words of length 1, according to the
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following scheme. In each SW(j), label one of the down

going paths by O and the other by 1. Consider vertex

U=(UI, U2,... , U() of the LCP yielding P, as in Equation

1. Let the label of u be (Z1, Z2, . . .,z/), where z(j) = O

if uj is on the path labeled O of SW(j) and ~(j) = 1 if

uj is on the path labeled 1 of SW(j).

Now let us study the edges connecting a vertex u =

(u~, uz,..., Ul) of T, which is on layer i — 1 and whose

label is (zI, z2, . . . . z]), to vertices on layer i. If j # i,

then in SW(j), uj has only one edge going down. Thus,

if there is an edge going down from u to v, in P, then

~j and vj are on the same down path of SW(j), and

therefore have the same bit as their label. Howeverj if

j = i, then in S W( j), uj has two edges going down,

one to the path labeled O and one to the path labeled 1.

These two edges cause u to have two down going edges

in ?, in one of them the j’th bit of the label is O, and in

the other it is 1.

Clearly, this is the structure off?, proving the equality.

c1

Certain properties of B are simple consequences of The-

orem 3.1. First, since a binary tree has the banyan prop-

erty, by Theorem 2.1, B has the banyan property. More

interesting is the following immediate corollary:

Corollary 3.2 There is a layer preserving isomor-

phism between the butterfly network and its mirror im-

age, resulting from flipping top to bottom.

Additional properties which become transparent by

Theorem 3.1 are:

1.

2.

4

A layered subgraph of B, which consists of O < k ~

1 + 1 consecutive layers and the edges connecting

them in l?, (while all other vertices and edges are

removed), consists of 2~+1 - k components, each of

which is a butterfly network of k layers.

For every two vertices in any of the layers of B, there

is a layer preserving automorphism of B which maps

each of these vertices to the other.

Mesh of TYees

The mesh of trees was first introduced

1983, [7]. It can be described as follows.

by Leighton in



Let n = 21. Consider n2 vertices arranged in a n x n

matrix (but so far no edges are intrc}duced). For every

row of the matrix, construct a binary tree of height 1,

whose leaves are the n vertices of the row, and the re-

maining n – 1 vertices are new. Repeat for every column.

Now put the roots of the row-trees on layer O, the roots

of the column-trees on layer 21; the remaining vertices

are assigned to layers (in a unique waLy) to maintain the

requirement that all edges connect vertices of adj scent

layers. The mesh of trees, for 1 = 2 is shown in Fig. 3(a).

Clearly, the number of vertices is 3n2 – 2n and the

number of edges is 4n2 – 4n.

For a given 1, define a stalactite to be a layered graph

with 21 + 1 layers, the top layer is labeled O and the

bottom one is labeled 21, In its 1 + 1 lower layers it has a

binary tree whose root is on layer 21 and its n leaves are

on layer 1. In addition, there are n dlisjoint paths; each

leads from the top level down to one of the tree-leaves.

(An example, for 1 = 2 is shown on the l.h.s. of Fig.

3(b).)

A stalagmite is a mirror image of a stalactite.

Theorem 4.1 A mesh of trees is the LCP of a stalac-

tite and a stalagmite.

For example, the LCP of the stalactite and stalagmite,

shown in Fig. 3(b), yields the mesh of trees shown in Fig.

3(a).

Proof: Layer 1 of the stalactite consists of n ver-

tices. Name them rl, r2, . . . . rn, from left to right. Sim-

ilarly, name the vertices of layer 1 of the stalagmite,

cl, cz, . . ..c~. Layer 1 of their LCP consists of nz ver-

tices:

{(7’i, Cj) I 1< i,j < n}.

For a fixed i, in the stalactite, there is a simple path from

the top layer down to Ti. If we restrict our attention to

the top 1+1 layers, each such path acts as the identity el-

ement of the LCP, producing a copy of the binary tree of

the stalagmite. The leaves of this binary tree are the ver-

tices on the i’th row of the matrix. A :similar observation

follows for the columns. ❑

Obviously, the mesh of trees has the banyan property.

Furthermore, given any set of (disjoint) paths of length

21, connecting vertices of the top level with vertices of the

bottom level, and any two” free” vertices, u on top and v

at the bottom, there is a unique path of length 1 connect-

ing them, and it is disjoint from any other of the above

mentioned paths. i.e. the mesh of trees is nonbloclcing

(in the strict sense; for definitions see Pippenger [4]), by

having a “dedicated” path for every pair of free vertices.

It is interesting to mention that nz vertices and n2

edges can be removed, by putting edges which short-cut

the paths of length 2 passing through layer 1. The end

result maintains the property mentioned above and its

structure can be described as the LCP of a stalactite and

a stalagmite of 21 layers, in which each of the paths is

shortened by one edge. The case of 1 = 2 is shown in Fig.

4(a).

5 Fat-Trees

The concept of fat-trees was first introduced by Leiserson,

[8]. We will consider here a special type of a fat-tree, layer

isomorphic to one described by Leighton, et al. [9].

The definition of a fat-tree makes use of a layered tree,

called quad-tree: Its root, on layer O, has 4 sons on level 1,

and each of the 4i vertices on layer i, O < i < 1, has 4 sons

on level i+ 1. To get the ~at-tree, each vertex u on layer i,

O ~ i ~ /, of the quad-tree, is duplicated 2’-i times. The

duplicates are labeled (u, O), (u, 1),..., (u, 2’-i – 1). If in

the quad-tree there is an edge (u, v), where u is on layer i

and v is on layer i+l, then for every j, O ~ j ~ 2’-i-l–l,

(v, j) is connected by edges to (u, 2j) and (u, 2j+ 1). The

case of 1 = 2 is shown in Fig. 4(b).

Theorem 5.1 A fat-tree is the LCP of a quad-tree,

with its root up, and a binary tree, with its root down.

Proofi In a binary tree with its root down, if we

label the vertices on the i’th layer by the integers

0,1 . . . . . 21-i – 1, then it follows that the sons of the ver-

tex labeled j on the (i + 1) ‘st layer, are the vertices cm

the i’th layer labeled 2j and 2j + 1. It is now a simple

matter to see that the LCP of a quad-tree and a binary

tree is a fat-tree. c1

Again, it follows immediately from Theorem 2.1 thiit

a fat-tree has the banyan property.
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