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Brief Contributions 
An O(log2 N) Depth Asymptotically Nonblocking 

Self-Routing Permutation Network 
G.A. De Biase, C. Ferrone, and A. Massini 

Abstract-A self-routing multi-logN permutation network is presented 
and studied. This network has 3 1 0 ~  N - 2 depth and N(log~N)(31og~, 
N -2)/2 nodes, where N is the number of network inputs and 7 a  constant 
very close to 1. A parallel routing algorithm runs in 3 l o m  - 2 time on thii 
network. The overall system (network and algorithm) can work in pipeline 
and it is asymptotically nonblocking in the sense that its blocking probabil- 
ity vanishes when N increases, hence the quasi-totality of the information 
synchronously arrives in 3 l o W  - 2 steps at the network outputs. Thi 
network presents very good fault tolerance, a modular architecture, and it 
is suitable for information exchange in very large scale parallel processors 
and communication systems. 

Index Terms-Permutation networks, self-routing algorithm, blocking 
probability, stack of banyan networks. 

I. INTRODUCTION 
To construct a PRAM-like computing machine built by a very 

large number of processor elements (PES), the device devoted to the 
exchange of information between processors and memories is a very 
critical point. In fact, efficient nonblocking permutation networks 
(e.g., necessary for the construction of a PRAM EREW machine) 
become more and more expensive when the number of their inputs 
(outputs) N increases (by using crossbar networks, which have 0(1)  
depth, topological complexity and cost increase with O(N2)). For this 
reason various kinds of nonblocking permutation devices, built by 
means of blocking permutation networks with O(Mog2N) topological 
complexity, have been extensively studied. 

Among blocking permutation networks, multistage banyan net- 
works are attractive for their moderate depth which guarantees that 
information reaches its destination in logzN steps, for the possibility 
to route information in pipeline by simple self-routing algorithms, 
and for their topological complexity which is (Mog2N)/2 nodes. They 
are considered a cost-effective alternative to crossbar networks for 
large N ,  but the fact that multistage banyan networks are blocking, 
compromises the above mentioned advantages when connection re- 
quests are simultaneously presented at all network inputs. 

In some recent papers Lea [6], [7], Shyy and Lea [8], [lo], and 
Melen [9] point out that vertical stacks of K banyan networks can be 
nonblocking or strictly nonblocking permutation networks under 
suitable conditions. These stacks (multi-logN networks) maintain two 
important features of banyan networks: 

1) the logzN or O(log2N) depth between inlet-outlet pairs, and 
2) the self-routing capability. 

Unfortunately these studies on multi-logN networks do not provide 
routing algorithms with a time complexity comparable to the network 
depth. 

A way to build routing algorithms on permutation networks is the 
probabilistic one [ l l ] ,  [12], [2], but, with this approach, some infor- 
mation cannot reach its destination, and therefore the probabilistic 
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approach becomes valid if the amount of blocked information is neg- 
ligible. Using this approach, in a recent work a quasi-nonblocking 
self-routing interconnection network with log2N depth was intro- 
duced [2]. In the present work a network, which is more efficient for 
very large N ,  is presented. It is a 31ogzN - 2 depth multi-logN net- 
work on which a probabilistic self-routing algorithm acts. The overall 
system (network and algorithm) is asymptotically nonblocking in the 
sense that its blocking probability pbN vanishes when N increases. 

11. ASYMPTOTICALLY NONBL~CKING NETWORKS 
Let BN be a permutation network of size N (with N inputs and N 

outputs) and let I = ( i n )  and 0 = {on) ,  n = 1 ,  ..., N, be the sets of its 
inputs and outputs respectively. BN realizes N simultaneous one-to- 
one connections between each in and each on. In other words, BN 
performs a bijection I .+ 0. The one-to-one mappings of I onto 0 
are characterized by the set of all permutations P = ( p j ) ,  j = 1, ..., N!, 
of the elements of I onto 0. In nonblocking permutation networks all 
connection requests presented at the inputs in reach their destinations. 
If BN is a blocking network, a certain number of requests cannot be 
honored. The ratio pbN = (Tin - rou,)/rin, where rin is the number of 
simultaneous connection requests (input) and rout is the number of 
nonblocked requests (outputs), is the blocking probability of BN [ 111,  
[12], [2] and represents the probability that a request at the generical 
input in cannot reach its destination on when N requests are simulta- 
neously applied on the whole input set I .  pbN can depend on N (as an 
example, in banyan multistage networks pbN increases when N in- 
creases [ l l ] ,  [12]). The quantity qN = 1 - p b N  is the probability that a 
request at an input in reaches its destination on when N requests are 
simultaneously applied on the whole input set, and it will be called 
efficiency (efficiency is a measure of the nonblocking capability of a 
network, and nonblocking networks have qN = 1 for any N). In ban- 
yan multistage networks qN decreases when N increases [ 111, [ 121. 

DEFINEION 1 .  A blocking BN with eficiency qN is called asymptoti- 
cally nonblocking if: 

lim qN = 1 (1) 
N + -  

It is evident that the above defined interconnection structures have 
great importance in very massive systems (multiprocessors or com- 
munication systems). 

Let SN = {B,,) , k = 1 ,  .. ., K, be a set of K identical and inde- 
pendent permutation networks BNk of size N, the inputs and the out- 
puts of SN belong to the set r' = { lk )  = ( in,k) ,  and 0' = { Ok} = ( 0 , ~ )  

(n = 1, ..., N; k = 1 ,  ..., K ) ,  respectively. K permutations can act si- 
multaneously on the set S N ,  and K one-to-one mappings I + 0 can 
be simultaneously performed (each mapping on each B N k ) .  P' = { p k } ,  

k = 1 ,  ..., K (P* c P), is the set of K uncorrelated permutations pk, 
belonging to the set P, which are simultaneously applied on BNt 
networks. If BNt are blocking networks (with blocking probability 

pbN) ,  the overall blocking probability pb; of the whole set SN can be 
defined as: 

DEFIN~ION 2. The overall blocking probability pb;  of a set SN is the 
probability that, if K requests are simultaneously presented each 
one at an input in of one BNk network, no connection request 

reaches its destination (when N x K requests are simultaneously 
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applied at the whole input set r' of SN). 

If connection requests at the inputs of each BNk are completely in- 
dependent (uncorrelated permutations pk simultaneously act on each 
BN,), pbi  is given by (see e.g., [4]): 

pb i  = pb," 

If 0 < pbN < 1, one can write: 

lim pb," = 0 
k - m  

From (2) and (3) there follows that: 

(3) 

where 17; is the overall efficiency of the set SN. 

DEFINITION 3. The overall efficiency q; of the set S, is the probabil- 
ity that, if K requests are simultaneously presented each one at an 
input in of one BNk network, at least one connection request 

reaches its destination (when N x K requests are simultaneously 
applied at the whole input set f of S,). 

Equation (4) shows that for any size N ,  when K (the number of BN, 

networks) goes to -, the overall efficiency qk of the set SN goes to 1 
under the sole condition that 0 < pbN c 1 .  According to Definition 3, 
the condition expressed by (I) ,  which states that a permutation net- 
work is asymptotically nonblocking when the size N increases, can be 
generalized for a set SN: 

THEOREM 1 .  Let SN be a set of identical and independent blocking 
networks BNk with blocking probability pbN, and let KM depend- 
ing on N, be the number of B,, networks of the set SN. The set SN 

is asymptotically nonblocking if all permutations pk presented at 
B,, networks are uncorrelated, and i f :  

where 0 < pbN < 1 for any N, and C(N) is anyfunction for which: 

lim C ( N )  = (6) N 4 -  

PROOF. The overall efficiency of a set S, is q; = 1 -phi, and 
lim, --)- 17; = 1 when lim,+- pb i  = 0.  There follows from (2) 
that: lim,+ pb; = lim,+ p b p  = 0 which is true if: 

lim K ,  Inpb, = --DO (7) 

It is easy to see that, with the substitution KN = -C(N)AnpbN, (7) is 
always verified if limN+C(N) = -. The ceiling in (5) is necessary 

0 
Theorem 1 states that a set of blocking networks SN is asymptoti- 

N-S- 

to guarantee integer KN values. 

cally nonblocking if KN increases according to (5). 

111. AN ASYMPTOTICALLY NONBLOCKING SELF-ROUTING 
PERMUTATION DEVICE 

Based on the results given in Section 11, a new self-routing asymp- 
totically nonblocking permutation device, based on stacks of KN 
blocking networks, can be carried out if the following assumptions 
hold: 

the permutation pi (input of the whole device) is transformed 
into a set P' of K N  uncorrelated permutations pk, 
each permutation f?k of the set P' acts independently on one 
BNk network of the set SN. 

Finally, every output of the device is obtained by the logical union of 
the corresponding outputs on of all BNk networks (see Definition 3). 

inputs 
I = {in) 

4 2  i31 

swap straight 

outputs 
0 = io*) 

1 
N 

Fig. 1 .  (a) A popular banyan network: the butterfly. This network is plotted 
for N = 32 and H = 5. Below: Its 2 x 2 node with its permitted states. (b) The 
permutation device. 

Now, let B,,= {s,,)(h = 1, ..., H)be a multistage banyan network 
of size N ,  consisting in H = log2N cascaded stages sh, each made by 
N/2 two-state 2 x 2 nodes (see Fig. la), and let S, = B Nk be a verti- 
cal stack of KN independent banyan networks B,, . The self-routing 
permutation device consists of two parts: The first part (randomizer) 
i c  rlpvntd tn trancfnnnino thP inniit nermiitntinn n. intn a w t  P* nf K.. 
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uncorrelated permutations pk, while the second one (router) addresses 
connection requests towards their destinations. The output ports on of 
the whole device are obtained by the logical OR of the corresponding 
output ports of all BN, (see Fig. lb). To easily obtain self-routing 
capability, this permutation device is built by stacks, the planes of 
which are butterfly networks, as shown in Fig. 2. As one can see, in 
all planes the output nodes of a network are in common with the 
input nodes of the subsequent network, for this reason the device 
depth is 310g2N - 2 stages. 

Randomim Router 

4 

SNi SN2 SN, 

b) 
Randomizer Router 

Fig. 2. (a) Vertical section of the permutation device for N = 25. The com- 
sponding outputs of each plane are ORed. (b) A device plane consisting of 
three butterfly networks. The output nodes of a butterfly are in common with 
the input nodes of the subsequent butterfly. 

A. The Randomizer 

TO generate the set P' of KN uncorrelated permutations pk, a way 
similar to that discussed in [3] can be efficiently used. In that work it 
is pointed out that two cascaded banyan networks, which are isomor- 
phic to a Benes network, are effective in generating random permuta- 
tions. Hence, two cascaded stacks (SN, and SN,, see Fig. 2) act as a 
randomizer. 

At the inputs of each plane of the first stack, KN copies of the same 
permutation pi are presented simultaneously. In each plane of each 
stack (constructed by butterfly networks) the nodes are set, at each 
time T, on a randomly chosen status (swap or straight). In this way, 
on each B y ,  N one-to-one connections between any input in and any 
output on are always obtained, and each connection request at an 
input in always reaches a random chosen output. Hence the permuta- 
tion pi is split into a set P' Of KN uncorrelated permutations pk [3]. 

B. Information Routing 

At the output of the randomizer the conditions for a correct appli- 
cation of (2) are verified. Requests are routed to their destinations by 
a third stack SN3 (consisting of KN butterfly networks too) on which 
runs the same simple distributed algorithm presented in I121 which 
works in parallel on all planes and on all nodes stage-by-stage, 
namely: 

on each node of stage h, each request is routed following its bi- 
nary destination address, namely: Nodes on stage h are set in a 

way that the requests are routed to the upper or lower node 
terminal if the hth most significant bit of the destination ad- 
dress is 0 or 1, respectively, 
if on a node two requests claim simultaneously two different 
node states (conflict occurrence), the state of the node is ran- 
domly chosen, and only one request continues along its correct 
path. 

C. Number of Planes 

Equation 5 gives the number of planes KN of the routing stack and, 
consequently, of the randomizer. The values of efficiency q ~ ,  for 
N = 2', 22, 23, . . . of a banyan multistage network, under permutation 
requests, are recursively given with good accuracy by the model pre- 
sented in [ 121 by Szymansky and Hamacher: 

H-1- 
starting from: qN, = x. In (8) h = 1, ..., H - 1, and H = log2N 

is the number of network stages. This model can be used to compute, 
by (2 ) ,  the blocking probability of the router planes, in fact pbN val- 
ues can be obtained by (8) by the substitution pbN = 1 - q ~ .  

When in an interval (Nu, Nb), KN values are given by a function 
AN) 2 -C(N)/ln pbN,  Theorem 1 guarantees that the efficiency 7; of 
the set SN increases with N for all values of N belonging to the same 
interval. Among these functions, K N  = log: N is a good compromise 
between network complexity and efficiency increase. In this case the 
topological complexity of the presented network is 
N(log: N)(310& V - 2)/2 nodes and, also using y values very close 

to 1 (y=  1.05, 1.10, . . .), the network efficiency quickly increases in a 
wide interval of N, as shown in Fig. 3a. 

IV. SJMULATIONS 
The behavior of the device has been examined by numerical 

simulation under the assumption of permutation requests [ 111. 
Simulations give the values of the device efficiency ?$, versus N 
when a suitable function KN =AN) is chosen. The numerical program 
simulates the behavior of all stacks. For each Ni t  utilizes, as input of 
the whole device, a randomly chosen permutation p j .  The randomiza- 
tion of requests is obtained only by setting all the nodes of each plane 
of the randomizer on randomly chosen states. The routing of requests 
is obtained on the routing stack by the simple distributed algorithm 
presented in Section 1II.B. Because the rapid increase with N of the 
number of permutations pi (N!) generates very large computation 
times, to obtain the values of q; a number of attempts, sufficient to 
reach at least the 99% confidence level, has been executed in the 
interval 23 I N I 213. 

Simulated values of the device efficiency 77; compared with q; 
computed values, when KN = log2N and KN = log2N - 1, are presented 
in Fig. 3b. The blocking probability of the component banyan net- 
works are computed by (S), and the efficiency of the whole device by 
(2). The model of Szymansky and Hamacher generates slightly over- 
estimated pbN values (see Fig. 3 in [ 111 and Fig. 4 in [ 12]), and con- 
sequently the simulated efficiency values 7; of the permutation de- 
vice are slightly greater than the computed ones, 17; (about 0.25% in 
the considered interval of N). 
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h 2 N  

b) 
Fig. 3. (a) Efficiencies q; of the permutation device versus log2N; 

K ,  = log: N ( y =  1.00, 1.05, 1.10. 1.15, 1.20, 1.25, 1.30). (b) Computed 

efficiency values, U;, versus log2N: plot a is KN = IogzN, plot be is 

KN = log2.N - 1. The dotted line represents efficiency values 71; obtained by 
numerical simulation. 

V. CONCLUDING REMARKS 
The architecture presented is inherently fault tolerant, in fact it 

consists of three vertical stacks each of K N  banyan networks which 
implement many physical paths for each logical path. Faults on every 
network of each stack act on the overall performance of the structure. 
In absence of faults the overall efficiency of M cascaded stacks SNi is 

given by: 7; = ngIqki = nglq$. In the presented device 

qk = qk,, because qN, = qN,  = 1 in the randomizer, while qk, is 
given by (2) and (8). 

If in presence of faults the efficiency of each component network 
decreases by a quantity A ~ N .  the degradation of the efficiency of the 
whole device Aq; can be computed by: 

* *  

Now, by using (9) the degradation of the efficiency of the whole 
permutation device can be examined versus the efficiency degrada- 
tion of component networks. In Fig. 4, Aqk values versus the size N ,  

for several yvalues, are plotted. A small (10%) and a strong (40%) 
value for the efficiency degradation of all component networks is 
considered. The efficiency values of component banyan networks, in 
the absence of faults, are assumed V N  = 1 for the randomizer, while 
q~ values are computed by (8) for the router. As one can see from the 
figures, also with y values very close to 1, fault tolerance quickly 
increases with N .  

- 4  
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lWpN 
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4 ; 
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- 20 

- 10 

2 8 32 128 512 
l w Z N  

b) 

Fig. 4. Efficiency degradation of the whole permutation device, A q k ,  versus 

log2N for several y values. The degradatioon of the efficiency of all compo- 
nent banyan networks is a) A ~ N  = 10% and b) A ~ N  = 40%. 

The multistage structure of the permutation device, the distributed 
self-routing algorithm, and the forward direction of the information 
flux, guarantee that the information wavefront synchronously passes 
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through the network stages in 310gzN - 2 steps. Then the system can 
work in pipeline, and information can be presented at the device in- 
puts at each time interval T, where T i s  the stage-to-stage propagation 
time. 

The behavior of the efficiency of the device has been examined 
under the assumption of permutation request pattems. The efficiency 
values, closer and closer to 1 for large N, guarantee that, also under 
the assumption of random request pattems [12], the behavior of the 
permutation device is very close to that of nonblocking networks [2]. 
In the presented permutation device the two most important features 
of banyan networks are maintained: moderate depth (3logzN - 2 
stages) and simple request routing (obtainable by a self-routing dis- 
tributed algorithm, which permits pipelined operations). This permu- 
tation network becomes asymptotically nonblocking when a suitable 
increase with N of the number of planes, KN, is chosen (see Theo- 
rem 1). When the planes are banyan networks, this behavior is al- 
ready possible with KN = 10g2N. In this case the topological complex- 
ity (number of nodes) is O(log: N), which is the same as the Kop- 
pelman-Ory and Batcher networks [5], [ 11, that are nonblocking but 
have a worse depth (O(1og: N) instead of O(log2N)). With a very 
little increase in topological complexity, the desired efficiency of this 
permutation device can be quickly reached for any N. The behavior 
of efficiency and fault tolerance clearly highlights that this network 
becomes more and more advantageous as device size increases. 
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Contention-Free 2D-Mesh Cluster 
Allocation in Hypercubes 

Stephen W. Turner, Lionel M. Ni, and Betty H.C. Cheng 

Abstract-Traditionally, each job in a hypercube multiprocessor is  
allocated with a subcube so that communication interference among jobs 
may be avoided. Although the hypercube is a powerful processor topol- 
ogy, the 2D mesh is a more popular application topology. This paper 
presents a 2D-mesh cluster allocation strategy for hypercubes. The pro- 
posed auxiliary free list processor allocation strategy can efficiently 
allocate 2D-mesh clusters without size constraints, can reduce average 
job turnaround time compared with that based on subcube allocation 
strategies, and can guarantee no communication interference among 
allocated clusters when the underlying hypercube implements deadlock- 
free E-cube routing. The proposed auxiliary free list strategy can be 
easily implemented on hypercube multicomputers to increase processor 
utilization. 

Index Terms-Hypercube, processor allocation, 2Dimensional mesh, 
job turnaround time, message routing. 

I. INTRODUCTION 
The problem of subcube allocation has been studied extensively to 

maximize processor utilization and minimize system fragmentation in 
hypercubes. Several strategies have been proposed and implemented 
for subcube allocation, including the buddy strategy [I], the gray 
code (GC) strategy [2], the modified buddy strategy [3], the free list 
strategy [4], and the tree collapsing strategy [ 5 ] .  Of these approaches, 
only the free list and tree collapsing strategies have been shown to 
perform optimally, since they provide perfect subcube recognition. 

For hypercube machines, such as the nCUBE-2 and the newly an- 
nounced nCUBE-3, the restriction of allocating subcubes causes low 
processor utilization. Although the hypercube is a powerful network 
topology [6], 2D and 3-D meshes are more popular application to- 
pologies. For example, grid domain decomposition for solving partial 
differential equations is an application that can easily be implemented 
on 2D and 3-D meshes. In addition, 2D and 3-D meshes can allocate 
exactly (or close to) the number of processors requested. For exam- 
ple, if the optimal number of processors for a task is 600, then the 
smallest subcube that can be allocated is 1,024 processors, resulting 
in a waste of 424 processors, while a 2D mesh may allocate a 
20 x 30 cluster. 

Consider the 4-dimension cube shown in Fig. 1, in which one job 
is allocated a 2 X 5 mesh, and another job is allocated a 2 x 3 mesh. 
With a restriction to subcube allocation, both jobs cannot be simulta- 
neously executed, even though the total number of processors, 16, is 
sufficient. If the restriction to subcube allocation is removed, both 
clusters may be allocated in the 4-cube. However, a closer look re- 
veals that communication from node 0100 to node 1010 in the 2 x 5 
cluster will potentially cause link contention with communication 
between nodes 0110 and 0010 in the 2 x 3 cluster, if the popular 
deadlock-free E-cube routing is used [7] .  This contention potentially 
results in intercluster communication inte$erence, which should be 
minimized. Many known processor allocation strategies have been 
developed to guarantee contention-free cluster allocation, such as 
those subcube allocation strategies for hypercubes, the strategy used 
in the Intel Touchstone (2D mesh topology), and the one used in 
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