
## Test A

# Esercizio 1

Analizzare il seguente circuito, svolgendo tutti i passi visti a lezione, fino ad ottenere il grafo dell'automa. Non minimizzare.



Esercizio 2: Minimizzate e trovate le classi di equivalenza (gli archi sono etichettati con input/output). Non serve graficare l'automa risultante, bastano le classi di equivalenza.



# Soluzione Test A Esercizio 1

$$D_A = X'A + XY$$
  
 $D_B = X'A + XB$   
 $Z = XB$ 

| P | Present |     |     |      | Flipl  | Flop           | Ne    | ext |        |
|---|---------|-----|-----|------|--------|----------------|-------|-----|--------|
|   | Sto     | ate | Inp | outs | Inputs |                | State |     | Output |
| , | Α       | В   | X   | У    | $D_A$  | D <sub>B</sub> | Α     | В   | Z      |
| Г | 0       | 0   | 0   | 0    | 0.0    | ) _            |       |     |        |
| Т | 0       | 0   | 0   | 1    | 0 (    | )              |       |     |        |
| 1 | 0       | 0   | 1   | 0    | 0 (    | )              |       |     |        |
|   | 0       | 0   | 1   | 1    | 1 (    |                |       |     |        |
| - | 0       | 1   | 0   | 0    | 0 (    |                |       |     |        |
| 1 | 0       | 1   | 0   | 1    | 0 (    |                |       |     |        |
| 1 | 0       | 1   | 1   | 0    | 0      | -              |       |     |        |
|   | 0       | 1   | 1   | 1    | 1      |                |       |     |        |
| Г | 1       | 0   | 0   | 0    | 1      | 1              |       |     |        |
|   | 1       | 0   | 0   | 1    | 1      | 1              |       |     |        |
|   | 1       | 0   | 1   | 0    | 0 (    | )              |       |     |        |
| L | 1       | 0   | 1   | 1    | 1 (    | ) _            |       |     |        |
| Г | 1       | 1   | 0   | 0    | 1      | 1              |       |     |        |
| 1 | 1       | 1   | 0   | 1    | 1      | 1              |       |     |        |
| 1 | 1       | 1   | 1   | 0    | 0      | l              |       |     |        |
| L | 1       | 1   | 1   | 1    | L 1.   | 1              |       |     |        |

| Pres     |   | T |           |   | ext<br>ate | 0           |
|----------|---|---|-----------|---|------------|-------------|
| Sto<br>A | В | X | outs<br>y | A | В          | Output<br>Z |
| 0        | 0 | 0 | 0         | 0 | 0          | 0           |
| Ö        | Ö | ő | 1         | ő | Ö          | Ö           |
| 0        | 0 | 1 | ō         | 0 | 0          | Ö           |
| 0        | 0 | 1 | 1         | 1 | 0          | 0           |
| 0        | 1 | 0 | 0         | 0 | 0          | 0           |
| 0        | 1 | 0 | 1         | 0 | 0          | 0           |
| 0        | 1 | 1 | 0         | 0 | 1          | 1           |
| 0        | 1 | 1 | 1         | 1 | 1          | 1           |
| 1        | 0 | 0 | 0         | 1 | 1          | 0           |
| 1        | 0 | 0 | 1         | 1 | 1          | 0           |
| 1        | 0 | 1 | 0         | 0 | 0          | 0           |
| 1        | 0 | 1 | 1         | 1 | 0          | 0           |
| 1        | 1 | 0 | 0         | 1 | 1          | 0           |
| 1        | 1 | 0 | 1         | 1 | 1          | 0           |
| 1        | 1 | 1 | 0         | 0 | 1          | 1           |
| 1        | 1 | 1 | 1         | 1 | 1          | 1           |

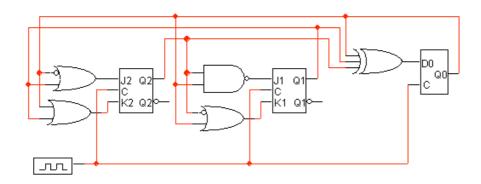
#### Esercizio 2

L'automa può essere minimizzato:

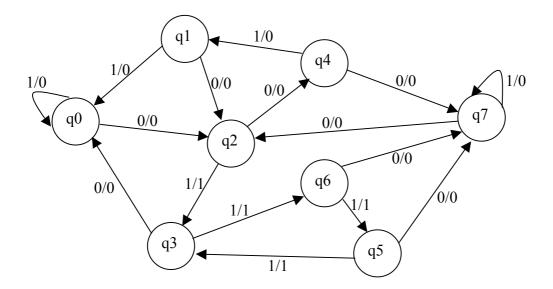
|    |    | 1  |    |    |    |    |    |
|----|----|----|----|----|----|----|----|
| Q1 | X1 |    |    |    |    |    |    |
| Q2 | X1 | X4 |    |    |    |    |    |
| Q3 | X1 | X3 | X3 |    |    |    |    |
| Q4 | X  | X  | X  | X  |    |    |    |
| Q5 | X  | X  | X  | X  | X2 |    |    |
| Q6 | X  | X  | X  | X  | X2 | X2 |    |
| Q7 | X  | X  | X  | X  |    | X5 | X2 |
| •  | 00 | 01 | O2 | O3 | 04 | O5 | 06 |

dove: -  $X \rightarrow distinguibili per l'output$ 

- X1 → distinguibili poiché con 1 va in stati distinguibili
- X2 → distinguibili poiché con 0 va in stati distinguibili
- X3 → distinguibili poiché con 1 va in stati distinguibili
- X4 → distinguibili poiché con 0 va in stati distinguibili
- X5 → distinguibili poiché con 0 va in stati distinguibili


Quindi posso fondere assieme gli stati Q4 ed Q7 nello stato Q'4.

Le classi di equivalenza sono:  $\{Q1\},\{Q2\},\{Q3\},\{Q4,Q7\},\{Q5\},\{Q6\},\{Q0\}\}$ 


## **Test B**

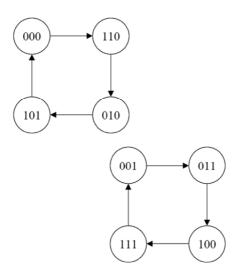
**Esercizio 1** Analizzare il seguente circuito, svolgendo tutti i passi visti a lezione, fino ad ottenere il grafo dell'automa. Non minimizzare. Notate che il circuito non ha input, a parte l'impulso di clock, e l'output si assume coincidere lo stato della memoria, quindi modellate il circuito con Moore. Attenzione, avete due FF JK e un D.

| D | Q(†+1) | Operation |
|---|--------|-----------|
| 0 | 0      | Reset     |
| 1 | 1      | Set       |



Esercizio 2 Minimizzare e ricavare le classi di equivalenza. Non occorre graficare l'automa minimizzato.




# Soluzione Test B

$$J2 = Q1 + Q0'$$
  $K2 = Q1 + Q0$   $J1 = (Q0 Q2)'$   $K1 = Q0 + Q2'$   $D0 = Q2$  xor  $Q1$  xor  $Q0$ 

|    | Curre<br>State |    |    | Flip-l         | Flop I | Next State |   |   |    |    |
|----|----------------|----|----|----------------|--------|------------|---|---|----|----|
| Q2 | Q1             | Q0 | J2 | J2 K2 J1 K1 D0 |        |            |   |   | Q1 | Q0 |
| 0  | 0              | 0  | 1  | 0              | 1      | 1          | 0 | 1 | 1  | 0  |
| 0  | 0              | 1  | 0  | 1              | 1      | 1          | 1 | 0 | 1  | 1  |
| 0  | 1              | 0  | 1  | 1              | 1      | 1          | 1 | 1 | 0  | 1  |
| 0  | 1              | 1  | 1  | 1              | 1      | 1          | 0 | 1 | 0  | 0  |
| 1  | 0              | 0  | 1  | 0              | 1      | 0          | 1 | 1 | 1  | 1  |
| 1  | 0              | 1  | 0  | 1              | 0      | 1          | 0 | 0 | 0  | 0  |
| 1  | 1              | 0  | 1  | 1              | 1      | 0          | 0 | 0 | 1  | 0  |
| 1  | 1              | 1  | 1  | 1              | 0      | 1          | 1 | 0 | 0  | 1  |

# Tabella stati futuri e automa

| Curr | ent S | itate | Next State |    |    |  |
|------|-------|-------|------------|----|----|--|
| Q2   | Q1    | Q1 Q0 |            | Q1 | Q0 |  |
| 0    | 0     | 0     | 1          | 1  | 0  |  |
| 0    | 0     | 1     | 0          | 1  | 1  |  |
| 0    | 1     | 0     | 1          | 0  | 1  |  |
| 0    | 1     | 1     | 1          | 0  | 0  |  |
| 1    | 0     | 0     | 1          | 1  | 1  |  |
| 1    | 0     | 1     | 0          | 0  | 0  |  |
| 1    | 1     | 0     | 0          | 1  | 0  |  |
| 1    | 1     | 1     | 0          | 0  | 1  |  |



**Esercizio 2** L'automa in forma tabellare è:

|    | 0    | 1    |
|----|------|------|
| Q0 | Q2/0 | Q0/0 |
| Q1 | Q2/0 | Q0/0 |
| Q2 | Q4/0 | Q3/1 |
| Q3 | Q0/0 | Q6/1 |

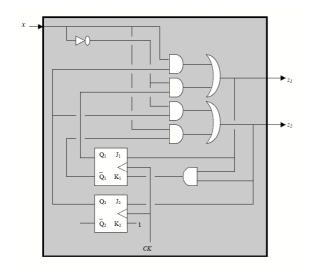
| Q4 | Q7/0 | Q1/0 |
|----|------|------|
| Q5 | Q7/0 | Q3/1 |
| Q6 | Q7/0 | Q5/1 |
| Q7 | Q2/0 | Q7/0 |

La tabella triangolare è:

| Q1 |            |       |            |            |            |    |    |
|----|------------|-------|------------|------------|------------|----|----|
| Q2 | X          | X     |            |            |            |    |    |
| Q3 | X          | X     | (0,4)(3,6) |            |            |    |    |
| Q4 | (2,7)(0,1) | (2,7) | X          | X          |            | _  |    |
| Q5 | X          | X     | (4,7)      | (0,7)(3,6) | X          |    | _  |
| Q6 | X          | X     | (4,7)(3,5) | (0,7)(5,6) | X          |    |    |
| Q7 |            | (4,7) | X          | X          | (1,7)(2,7) | X  | X  |
|    | Q0         | Q1    | Q2         | Q3         | Q4         | Q5 | Q6 |

Dopo una seconda analisi della tabella triangolare si ottengono le seguenti classi di equivalenza cui assegniamo i seguenti nuovi nomi di stato:

 $S1={Q0,Q1,Q7}$ 


 $S2=\{Q2\}$ 

 $S3=\{Q3,Q5,Q6\}$ 

 $S4 = \{Q4\}$ 

# Test C

**Esercizio 1** Analizzare il seguente circuito, svolgendo tutti i passi visti a lezione, fino ad ottenere il la tabella degli stati futuri. Non serve disegnare il grafo dell'automa, nè minimizzare.



Esercizio 2: Minimizzare il seguente automa dato in forma tabellare. Disegnare la tabella triangolare e ricavare le classi di equivalenza, non occorre graficare l'automa risultante.

|    | 0    | 1    |
|----|------|------|
| Q0 | Q2/0 | Q0/0 |
| Q1 | Q2/0 | Q0/0 |
| Q2 | Q4/0 | Q3/1 |
| Q3 | Q0/0 | Q6/1 |
| Q4 | Q7/0 | Q1/0 |
| Q5 | Q7/0 | Q3/1 |
| Q6 | Q7/0 | Q5/1 |
| Q7 | Q2/0 | Q7/0 |

## Soluzione Test C

Passo 1 : ci sono 2 FF (di tipo JK sincrono, sensibili al fronte d'onda ascendente) e quindi ci

Passo 2 : in base ai valori di uscita dei FF avrò 4 possibili configurazioni:

•  $Q_1 \ Q_2 = 0 \ 0$   $\Rightarrow$  associo lo stato  $S_0$ •  $Q_1 \ Q_2 = 0 \ 1$   $\Rightarrow$  associo lo stato  $S_1$ •  $Q_1 \ Q_2 = 1 \ 0$   $\Rightarrow$  associo lo stato  $S_2$ •  $Q_1 \ Q_2 = 1 \ 1$   $\Rightarrow$  associo lo stato  $S_2$ 

Passo 3: per ogni ingresso dei FF e per ogni uscita del circuito calcolo l'EB associata

- $K_1 = z_1 \cdot z_2$   $J_1 = z_1 = x \cdot Q_2 + x \cdot Q_1$   $K_2 = 1$   $J_2 = z_2 = x \cdot Q_2 + x \cdot Q_1$

#### Passo 4: tabella degli stati futuri

| Sta                | Stato t Input t    |      | EntrateFF t |          |          |          | UsciteCirc t       |       | Stato tel |         |
|--------------------|--------------------|------|-------------|----------|----------|----------|--------------------|-------|-----------|---------|
| Q <sub>1</sub> (t) | Q <sub>2</sub> (t) | x(t) | $J_1(t)$    | $K_l(t)$ | $J_2(t)$ | $K_2(t)$ | z <sub>1</sub> (t) | z2(t) | Q1(t+1)   | Q2(t+1) |
| 0                  | 0                  | 0    | 0           | 0        | 0        | 1        | 0                  | 0     | 0         | 0       |
| 0                  | 0                  | 1    | 0           | 0        | 1        | 1        | 0                  | 1     | 0         | 1       |
| 0                  | 1                  | 0    | 0           | 0        | 1        | 1        | 0                  | 1     | 0         | 0       |
| 0                  | 1                  | 1    | 1           | 1        | 1        | 1        | 1                  | 1     | 1         | 0       |
| 1                  | 0                  | 0    | 1           | 0        | 0        | 1        | 1                  | 0     | 1         | 0       |
| 1                  | 0                  | 1    | 0           | 0        | 0        | 1        | 0                  | 0     | 1         | 0       |
| 1                  | 1                  | 0    | 1           | 1        | 1        | 1        | 1                  | 1     | 0         | 0       |
| 1                  | 1                  | 1    | 1           | 0        | 0        | 1        | 1                  | 0     | 1         | 0       |

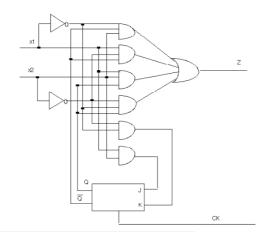
#### Soluzione esercizio 2

La tabella triangolare è:

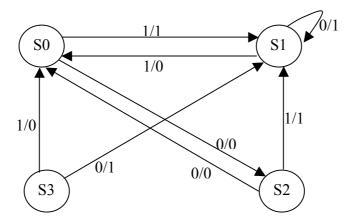
| Q1 |            |       | _          |            |            |    |    |
|----|------------|-------|------------|------------|------------|----|----|
| Q2 | X          | X     |            | _          |            |    |    |
| Q3 | X          | X     | (0,4)(3,6) |            | _          |    |    |
| Q4 | (2,7)(0,1) | (2,7) | X          | X          |            | _  |    |
| Q5 | X          | X     | (4,7)      | (0,7)(3,6) | X          |    |    |
| Q6 | X          | X     | (4,7)(3,5) | (0,7)(5,6) | X          |    |    |
| Q7 |            | (4,7) | X          | X          | (1,7)(2,7) | X  | X  |
|    | Q0         | Q1    | Q2         | Q3         | Q4         | Q5 | Q6 |

Dopo una seconda analisi della tabella triangolare ed utilizzando il grafo di equivalenza si ottengono le seguenti equivalenze cui assegniamo i seguenti nuovi nomi di stato:

$$S1 = \{Q0,Q1,Q7\}$$

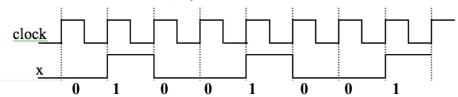

$$S2 = \{Q2\}$$

$$S3={Q3,Q5,Q6}$$


$$S4 = \{Q4\}$$

#### Test D

Analizzare il seguente circuito, svolgendo tutti i passi visti a lezione, fino ad ottenere il grafo dell'automa. Non minimizzare.




#### Esercizio 2: Dato l'automa:



a) disegnare il **diagramma temporale** per la sequenza di ingresso 01001001 (il bit più a sinistra è ricevuto nell'istante t0, cioè la stringa va letta temporalmente da sinistra verso destra), graficando le seguenti forme d'onda: 1) le stringhe **b0** e **b1** che rappresentano i due bit della memoria (l'automa ha evidentemente 2 FF, necessari per codificare 4 stati nel seguente modo: S0=00, S1=01, S2=10 e S3=11, dove b0 è il bit meno significativo e b1 il più significativo) e 2) l'uscita **z**.

Ovviamente, dovete graficare 8 impulsi di clock per ricavare le forme d'onda di b0, b1 e z al variare di x. Per facilitarvi, queste sono le forme d'onda del clock e di x:



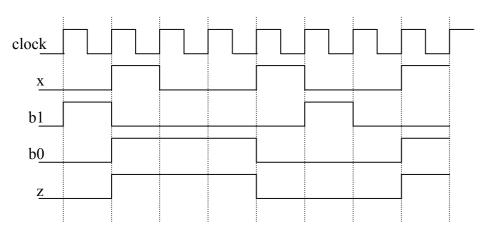
b) minimizzare l'automa

## Soluzione test D

L'automa ha due stati, quello in cui Q=0 e quello in cui Q=1. Ricaviamo le espressioni booleane di Z, J e K:

La tabella degli stati futuri è data da:

| $Q(t) \mathbf{x} 1(t) \mathbf{x} 2(t)$ | J(t) K(t) | Q(t+1) | z(t) |
|----------------------------------------|-----------|--------|------|
| 000                                    | 0 1       | 0      | 0    |
| 001                                    | 0.0       | 0      | 1    |
| 010                                    | 0.0       | 0      | 1    |
| 011                                    | 10        | 1      | 0    |
| 100                                    | 01        | 0      | 1    |
| 101                                    | 0.0       | 1      | 0    |


| 110 | 0 0 | 1 | 0 |
|-----|-----|---|---|
| 111 | 10  | 1 | 1 |

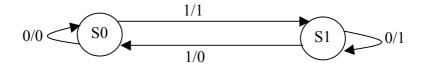
che genera il seguente automa di Mealy:

|    | 00     | 01     | 10     | 11     |
|----|--------|--------|--------|--------|
| S0 | S0 / 0 | S0 / 1 | S0 / 1 | S1 / 0 |
| S1 | S0 / 1 | S1 / 0 | S1 / 0 | S1 /Ø  |

## Soluzione esercizio 2

**a)** Codificando gli stati con due bit, b1b0, come: S0=00 S1=01 S2=10 S3=11 si ottiene per la seguenza assegnata il seguente diagramma temporale:




L'automa può essere rappresentato dalla seguente tabella:

|           | 0    | 1    |
|-----------|------|------|
| S0        | S2/0 | S1/1 |
| S1        | S1/1 | S0/0 |
| S2        | S0/0 | S1/1 |
| <b>S3</b> | S1/1 | S0/0 |

Per minimizzare si utilizza la tabella triangolare:

| S | 1 | X  |    |    |
|---|---|----|----|----|
| S | 2 |    | X  |    |
| S | 3 | X  |    | X  |
|   |   | S0 | S1 | S2 |

L'automa minimo si presenta come:

