Compito A COGNOME (stampatello leggibile):

Esercizio 1 (7 punti)

NOME:

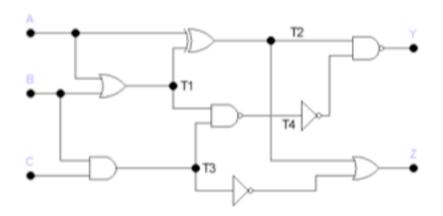
Si scriva la funzione booleana U di 3 variabili A, B e C che vale 1 quando almeno due delle tre variabili valgono 1. Nello scrivere la tabella di verità, considerare C il bit meno significativo. Si scriva anche l'espressione booleana in forma canonica disgiuntiva.

Esercizio 2 (4 punti)

Convertire i seguenti numeri da decimale a binario, su 8 bit: 33 e 86

Esercizio 3 (4 punti)

Convertire in modulo e segno (MeS) e in complemento a 2 (Ca2) i seguenti numeri, usando 8 bit: -35 e -128


Esercizio 4 (7 punti)

Si trovi la forma normale disgiuntiva minima per la seguente funzione booleana (ricordate che "-" indica una condizione di indifferenza, o don't care. Significa che alcune configurazioni delle variabili booleane di ingresso non sono ammesse, e pertanto è indifferente il valore che f assume per quelle configurazioni):

x	у	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	-
1	0	1	0
1	1	0	1
1	1	1	-

Esercizio 5 (8 punti)

Analizzare il seguente circuito e determinare le espressioni booleane minimizzate in forma normale disgiuntiva (somma di prodotti di letterali) di Y e Z, scrivendo dapprima le espressioni booleane di T1, T2, T3, e T4, ciascuna OPPORTUNAMENTE SEMPLIFICATA secondo i teoremi dell'algebra booleana:

Compito B

COGNOME (stampatello leggibile):

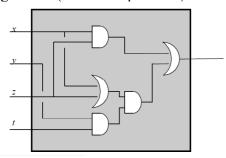
Esercizio 1 (5 punti)

NOME:

Convertire i seguenti numeri naturali da decimale a binario, su 8 bit: 105 e 122

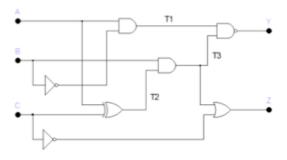
Esercizio 2 (3 punti)

Quali sono il minimo ed il massimo intero rappresentabile in complemento a due con 8 bit a disposizione?


Esercizio 3 (7 punti)

Si trovi la forma normale disgiuntiva minima per la seguente funzione booleana:

х	y	z	t	f
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0


Esercizio 4 (7 punti)

Analizzare il seguente circuito, e scrivere per il circuito un'espressione booleana in forma normale disgiuntiva (somma di prodotti).

Esercizio 5 (8 punti)

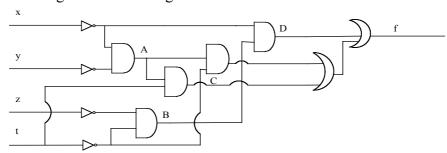
Ricavare l'espressione booleana minima (mediante i teoremi dell'algebra booleana) in forma normale disgiuntiva delle uscite Y e Z del circuito in figura, dopo aver ricavato le espressioni di T1, T2 e T3.

Compito C

NOME: COGNOME (stampatello leggibile):

Esercizio 1 (7 punti)

Si trovi la forma normale disgiuntiva minima per la seguente funzione booleana:


X	y	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Esercizio 2 (4 punti)

Convertire il numero 28,625 in base due con virgola fissa (utilizzando 8 bit per la parte intera e 8 per la parte frazionaria). Mostrare il procedimento di conversione. Si ha perdita di precisione nella conversione? Motivare la risposta.

Esercizio 3 (8 punti)

Analizzare il seguente circuito e determinare l'espressione booleana minimizzata in forma normale disgiuntiva (somma di prodotti di letterali) di A, B, C, D ed f. Semplificare opportunamente l'espressione f secondo gli assiomi dell'algebra booleana:

Esercizio 4 (4 punti)

Convertire in base 2 il seguente numero rappresentato in base 3: 2102. Utilizzare 8 bit.

Esercizio 5 (7 punti)

Data la seguente tabella di verità (ricordate che "-" indica una condizione di indifferenza, o don't care. Significa che alcune configurazioni delle variabili booleane di ingresso non sono ammesse, e pertanto è indifferente il valore che f assume per quelle configurazioni), minimizzare l'espressione in forma normale disgiuntiva utilizzando le mappe di Karnaugh:

X	y	Z	t	f
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	-
0	1	0	0	0
0	1	0	1	1
0	1	1	0	-
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	-
1	0	1	1	0
1	1	0	0	1

1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Compito D NOME:

COGNOME (stampatello leggibile):

Esercizio 1 (4 punti)

Convertire il numero 13,8 in base due con virgola fissa (utilizzando 8 bit per la parte intera e 8 per la parte frazionaria). Mostrare il procedimento. Si ha perdita di precisione nella conversione? Motivare la risposta.

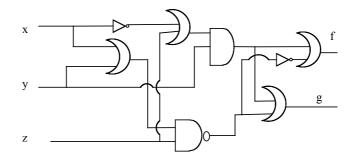
Esercizio 2 (4 punti)

Convertire in base 2 il seguente numero in base 5: 314. Utilizzare 8 bit. Mostrare il procedimento di conversione.

Esercizio 3 (7 punti)

Si trovi la forma normale disgiuntiva minima (somma di prodotti) per la seguente funzione booleana. La minimizzazione deve essere effettuata utilizzando gli assiomi dell'algebra di Boole:

X	y	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0


Esercizio 4 (7 punti)

Data la seguente tabella di verità (ricordate che "-" indica una condizione di indifferenza, o don't care. Significa che alcune configurazioni delle variabili booleane di ingresso non sono ammesse, e pertanto è indifferente il valore che f assume per quelle configurazioni), minimizzare l'espressione in forma normale disgiuntiva utilizzando le mappe di Karnaugh:

X	y	Z	t	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	-
0	1	1	1	-
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	-
1	1	0	1	-
1	1	1	0	-
1	1	1	1	-

Esercizio 5 (8 punti)

Analizzare il circuito e ricavare l'espressione booleana minima (mediante gli assiomi dell'algebra booleana) in forma normale disgiuntiva delle uscite f e g del circuito in figura.

Compito A - Soluzioni

Esercizio 1

A	В	С	U
0	0	0	0
0	0	1	0
0	1	0	0
	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC = BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C) = BC + AC + AB = B(A + C) + AC$$

Si noti che solo la prima espressione a sinistra è canonica.

Esercizio 2

33 -> 00100001

86 -> 01010110

Esercizio 3

- -35 [R=10100011,11011101,11011100]
- 128 NON è possibile con 8 bit convertire in modulo e segno. In Ca2 -128 = 10000000.

Esercizio 4

La mappa di Karnaugh con relativi primi implicanti essenziali è :

la FND è
$$f = \overline{z}$$

Esercizio 5

$$T1 = A + B$$

$$T2 = A \otimes T1 = \overline{A(A + B)} + \overline{A}(A + B) = A(\overline{A} \cdot \overline{B}) + \overline{A}B = \overline{A}B$$

$$T3 = BC$$

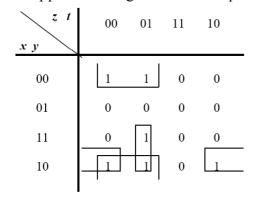
$$T4 = \overline{(A + B) \cdot BC} = \overline{ABC} + \overline{BC} = \overline{BC(A + 1)} = \overline{BC}$$

$$y = \overline{(\overline{A}B)BC} = \overline{\overline{A}BC} = A + \overline{B} + \overline{C}$$

$$z = \overline{BC} + \overline{A}B = \overline{B} + \overline{C} + \overline{A}B$$

Compito B SOLUZIONI

Esercizio 1


105 -> 01101001 122 -> 01111010

Esercizio 2

$$-128, +127$$

Esercizio 3

La mappa di karnaugh con i relativi primi implicanti essenziali è data da:

La relativa FND è

$$\overline{y} \cdot \overline{z} + x \cdot \overline{z} \cdot t + x \cdot \overline{y} \cdot \overline{t}$$

Esercizio 4

La espressione booleana ricavabile dallo schema circuitale è

$$x \cdot z + y \cdot t \cdot (x+z)$$

che in forma normale diventa:

$$x \cdot z + x \cdot y \cdot t + y \cdot z \cdot t$$

Esercizio 5

$$T1 = A\overline{B}$$

$$T2 = A \otimes C = A\overline{C} + \overline{A}C$$

$$T3 = B(A\overline{C} + \overline{A}C)$$

$$Y = \overline{(A\overline{B}) \cdot B(A\overline{C} + \overline{A}C)} = \overline{A\overline{B}BA\overline{C} + A\overline{B}B\overline{A}C} = \overline{0} = 1$$

$$Z = \overline{C} + B(A\overline{C} + \overline{A}C) = \overline{C} + AB\overline{C} + \overline{A}BC = \overline{C}(1 + AB) + \overline{A}BC = \overline{C} + \overline{A}BC$$

Compito C - Soluzioni

Esercizio 1

$$\overline{xyz} + \overline{xyz} + \overline$$

Esercizio 2

28,625 = 11100,101 (parte intera ottenuta con il metodo delle divisioni, parte frazionaria con il metodo delle moltiplicazioni).

Esercizio 3

$$A = \overline{xy}$$

$$B = \overline{zt}$$

$$C = \overline{txy}$$

$$D = \overline{zty}$$

$$f = \overline{xzt} + \overline{xyt} + \overline{xyt} = \overline{xzt} + \overline{xy}$$

Esercizio 4

$$2102_3 = 2*27+1*9+0*3+2 = 54+9+2=65_{10}=01000001_{Ca2}$$

Esercizio 5

z t	00	01	11	10
ху				
00	0	\bigcap	X	\bigcap
01	0	1	0	X
11	\forall	1	1	
10	0	11	0	(X)
		$\overline{}$		

L'espressione booleana in forma normale disgiuntiva minima è: $\overline{zt} + z\overline{t} + xy$

Compito D - Soluzioni

Esercizio 1

13,8 = 1101,1100110011001100... (parte intera ottenuta con il metodo delle divisioni, parte frazionaria con il metodo delle moltiplicazioni), per cui avendo 8 bit per la parte frazionaria si ha una perdita di precisione.

Esercizio 2

$$314_5 = 3*25+1*5+4*1 = 75+5+4=84_{10} = 01010100_{Ca2}$$

Esercizio 3

$$\overline{xyz} + \overline{xyz} + x\overline{yz} + x\overline{yz} + x\overline{yz} + x\overline{yz} = \overline{xyz} + y\overline{z}(x+\overline{x}) + x\overline{y}(z+\overline{z}) = \overline{xyz} + y\overline{z} + x\overline{y}$$

Esercizio 4

z t	00	01	11	10
ху			_	
00	0_	4	4	9
01		1	X	X
11	X	X	λ	X
10	0	0	0	0

L'espressione booleana in forma normale disgiuntiva minima è: $y + \overline{xzy}$

Esercizio 5

$$f = (x + y)z + y(x + z) = xz + yz + yx + yz = xz + y + yz = xz + y$$

$$g = (x + y) \cdot z + y(x + z) = x + y + z + yx + yz = xy + z + yx + yz = x + z + yz = x + z + y$$