,Sistemi Digitali P-Z Appello 22 Gennaio 2009

Esercizio 1 (15 punti)

Seguendo il procedimento visto a lezione, progettare una rete sequenziale, che riceve in ingresso una sequenza x e produce due uscite, z1 e z0, tali che:

z1 produce il bit di parità pari rispetto agli ultimi tre bit . Un bit di parità pari è posto uguale a 1 se il numero di 1 in un certo insieme di bit è dispari (facendo diventare il numero totale di uno, incluso il bit di parità, pari).

z0 produce l'AND tra gli ultimi due bit come illustrato nel seguente esempio:

x: 00110110001111 z1: 00100000101011 z0: 00010010000111

Esercizio 2 (12 punti)

Si hanno quattro registri sorgente S0, S1, S2 e S3 e quattro registri destinazione D0, D1, D2 e D3 di 3 bit ciascuno. Si vuole realizzare un'interconnessione tale che:

- se il numero di 1 memorizzati in S0 è pari allora Di ← Si
- altrimenti $D_{(i+1) \mod 4} \leftarrow Si$

Si supponga infine di avere un segnale esterno GO che abilita le operazioni descritte se e solo se GO = 1. Si descriva l'interconnessione dettagliando tutti i segnali di controllo e le connessioni richieste.

Esercizio 3 (3 punti)

Data la stringa binaria X: 10111 calcolarne il valore in decimale, per i tre seguenti codici di rappresentazione:

X è un intero in complemento a due

X è un numero naturale

X è un numero in virgola fissa con due bit per la parte frazionaria

Sistemi Digitali P-Z Appello 22 Gennaio 2009

Compito B

NOME:

COGNOME: MATRICOLA:

Esercizio 1 (12 punti)

Disegnare l'automa che riceve in ingresso due stringhe x2x1 e produce in uscita 1 se la coppia x2 x1 ricevuta in t differisce dalla precedente (ricevuta in t-1) per un solo bit (altrimenti produce 0) come illustrato nel seguente esempio (da sinistra verso destra):

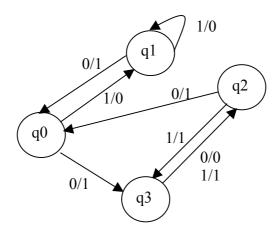
x2: 01110100 x1: 00011101 z: 01011101

Nell'istante iniziale, z=0.

Disegnare poi il diagramma temporale rispetto alle sequenze di ingresso date nell'esempio.

Esercizio 2 (12 punti)

Dato il seguente automa, progettare la rete sequenziale secondo il procedimento di sintesi illustrato a lezione, utilizzando FF di tipo JK e realizzando la parte combinatoria sia con porte logiche che con PLA.



Esercizio 3 (6 punti)

Dati A=47 e B=12 eseguire la somma e la sottrazione nella rappresentazione in complemento a due.

Sistemi Digitali P-Z Appello 22 Gennaio 2009

Esonero 1

NOME:

COGNOME:

MATRICOLA:

Esercizio 1 (12 punti)

Progettare una rete sequenziale con 2 linee di ingresso x e y e una linea di uscita z tale che: z = 1 ogni volta che sono state ricevute tre coppie (non consecutive) xy=00, dopodichè l'automa riparte dallo stato iniziale.

Esempio x: **0**1011**00**10111**0**00

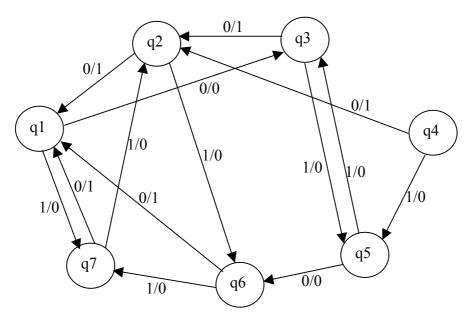
y: **0**0101**00**10011010

z: 000000100000001

(leggere le sequenze da sinistra).

Esercizio 2 (10 punti)

Minimizzare il seguente automa



Rispetto all'automa minimo tracciare il diagramma temporale per la sequenza di ingresso10010100, partendo dallo stato minimo a cui appartiene q1.

Sistemi Digitali P-Z Appello 22 Gennaio 2009

Esonero 2

NOME:

COGNOME: MATRICOLA:

Esercizio 1 (14 punti) Minimizzare l'automa descritto dalla seguente tabella degli stati futuri (A, B, ecc sono i nomi degli stati)

stato/input	x=0	x=1
A	G/00	C/01
В	G/00	D/01
С	D/10	A/11
D	C/10	B/11
Е	G/00	F/01
F	F/10	E/11
G	A/01	F/11

Esercizio 2 (16 punti) Progettare un circuito il cui output è 1 quando viene riconosciuta una delle seguenti stringhe: 001, 101 oppure 000. L'output è zero altrimenti.

Il primo bit che viene letto è il bit **più a sinistra**. Le stringhe sono *sovrapponibili*, nel senso chiarito a lezione.

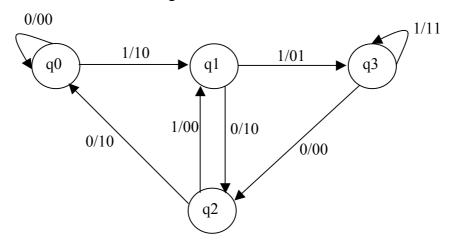
Pur non essendo richiesta l'applicazione di un criterio formale di minimizzazione dell'automa, sarà elemento di valutazione il numero degli stati complessivi utilizzati.

Soluzioni compito A

Esercizio 1

L'automa viene costruito nel seguente modo:

- **gli stati** sono 4 e corrispondono agli ultimi due bit ricevuti, cioè q0 corrisponde a 00, q1 corrisponde a 01, q2 corrisponde a 10 e q3 corrisponde a 11;
- **gli archi** vengono costruiti in modo che, partendo da uno stato e considerato il bit ricevuto in ingresso, si arrivi nello stato che rappresenta gli ultimi due bit ricevuti; ad esempio se si parte dallo stato q1(=01) e si riceve il bit 0 si arriva nello stato q2(=10), mentre se si riceve 1 si arriva nello stato q3(=11);
- i due bit di uscita si calcolano singolarmente secondo la richiesta del testo.



X	y1	y0	Y1	Y0	z1	z0	D1	D0
0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	0
0	1	0	0	0	1	0	0	0
0	1	1	1	0	0	0	1	0
1	0	0	0	1	1	0	0	1
1	0	1	1	1	0	1	1	1
1	1	0	0	1	0	0	0	1
1	1	1	1	1	1	1	1	1

Osservando la tabella è facile vedere che le espressioni delle funzioni di eccitazione sono:

$$D1 = y0$$

$$D0 = x$$

Utilizziamo le mappe di Karnaugh per minimizzare, se possibile, le espressioni relative alle uscite z1 e z0.

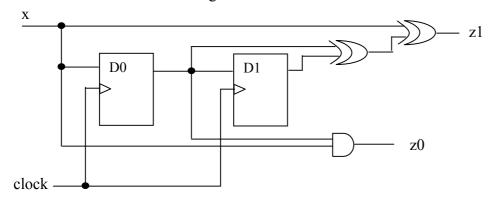
$x\y1y0$	00	01	11	10
0		1		1
1	1		1	0

$$z1 = \underline{x} \underline{y1} y0 + \underline{x} y1 \underline{y0} + \underline{x} \underline{y1} \underline{y0} + \underline{x} \underline{y1} \underline{y0} + \underline{x} \underline{y1} \underline{y0} = \underline{x} XOR (y1 XOR y0)$$

$x\y1y0$	00	01	11	10
0				
1		1	1	

$$z0 = x y0$$

La realizzazione circuitale è la seguente:



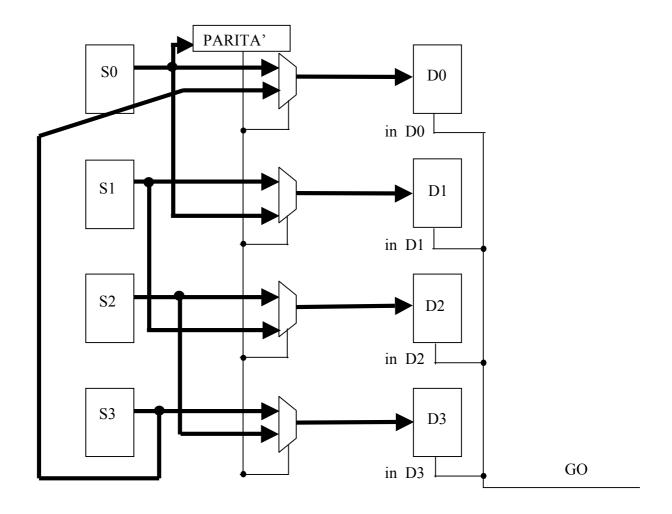
Esercizio 2

Anzitutto realizziamo un circuito combinatorio che calcoli la funzione di parità per un numero di 3 bit (cioè una funzione f(n) che dà 1 se e solo se il numero binario n contiene un numero pari di 1). La tabella è

X	У	Z	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

che è realizzabile col circuito espresso dalla seguente espressione booleana $x \oplus (y \oplus z)$ (chiamiamo PARITA' tale circuito).

L'interconnessione richiesta è pertanto



Esercizio 3

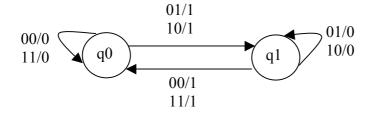
Soluzioni compito B

Esercizio 1

L'automa è costituito da due stati:

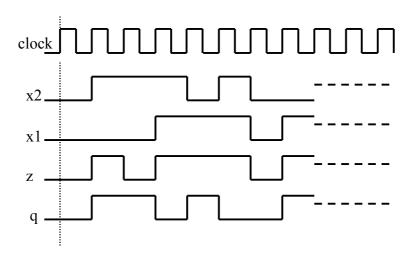
q0 – stato rappresentato da x2 e x1 uguali

q1 – stato rappresentato da x2 e x1 diversi



Poiché l'automa è costituito da due stati, basta un bit per la codifica; assegnando agli stati la codifica q0=0 e q1=1, si ottiene il seguente diagramma temporale in cui sono riportati, nell'ordine,

il clock, la sequenza ricevuta su x2, la sequenza ricevuta su x2, la sequenza prodotta su z e la codifica degli stati attraversati a fronte delle sequenze ricevute:



Esercizio 2 L'automa non è minimizzabile. La tabella degli stati futuri è:

X	y1	y0	Y1	Y0	Z	J1	K1	J0	K0
0	0	0	1	1	1	1	X	1	X
0	0	1	0	0	1	0	X	X	1
0	1	0	0	0	1	X	1	0	X
0	1	1	1	0	0	X	0	X	1
1	0	0	0	1	0	0	X	1	X
1	0	1	0	1	0	0	X	X	0
1	1	0	1	1	1	X	0	1	X
1	1	1	1	0	1	X	0	X	1

Minimizzando con Karnaugh si ottengono le seguenti espressioni:

$x\y1y0$	00	01	11	10
0	1		X	X
1			X	X

$$J1 = \underline{x} \ \underline{y0}$$

$x\y1y0$	00	01	11	10
0	X	X		1
1	X	X		

$$K1 = \underline{x} \underline{y0}$$

$x\y1y0$	00	01	11	10
0	1	X	X	

1	1	X	X	1
	_			

$$J0 = \underline{y1} + x$$

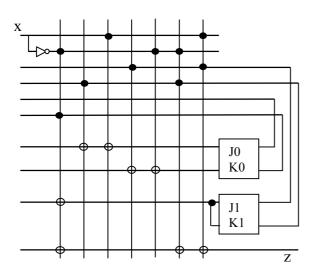
$x\y1y0$	00	01	11	10
0	X	1	1	X
1	X		1	X

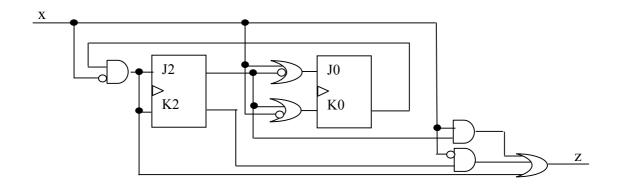
$$K0 = y1 + \underline{x}$$

$x\y1y0$	00	01	11	10
0	1	1		1
1			1	1

$$z = \underline{x} \ \underline{y1} + \underline{x} \ \underline{y0} + x \ y1$$

La realizzazione con PLA e con porte logiche sono le seguenti:





Esercizio 3

Per rappresentare i valori dati, A e B, nella rappresentazione in complemento a due sono necessari 7 bit; si ha così: A=0101111 e B=0001100, da cui si ricava A+B=0111011.

Per la differenza calcoliamo il valore –B complementando a 1 ogni bit e sommando alla sequenza ottenuta 1; si ha così: -B= 1110100 da cui calcoliamo: A-B=A+(-B)=0100011

N.B. Nella rappresentazione in complemento a 2 i numeri positivi hanno il bit più significativo uguale a zero (infatti per ottenere il valore decimale associato ad una sequenza binaria si assegna la potenza negativa al bit più a sinistra e positiva a tutti gli altri bit).

Soluzioni Esonero 1

Esonero 1

NOME:

COGNOME:

MATRICOLA:

Esercizio 1 (12 punti)

Progettare una rete sequenziale con 2 linee di ingresso x e y e una linea di uscita z tale che: z = 1 ogni volta che sono state ricevute tre coppie (non consecutive) xy=00, dopodichè l'automa riparte dallo stato iniziale.

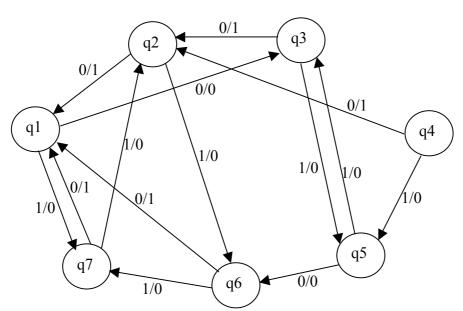
Esempio x: **0**1011**00**101111**0**00

y: **0**0101**00**1**0**011**0**10 z: 000000100000001

(leggere le sequenze da sinistra).

Esercizio 2 (10 punti)

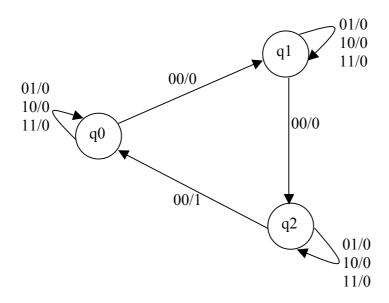
Minimizzare il seguente automa



Rispetto all'automa minimo tracciare il diagramma temporale per la sequenza di ingresso10010100, partendo dallo stato minimo a cui appartiene q1.

Esercizio 1

L'automa è quello di un contatore mod 3 che cambia stato a fronte della coppia xy=00 e resta nello stato in cui si trova a fronte delle altre tre possibili coppie in ingresso.



Indichiamo i due bit di codifica degli stati w1 e w2 e utilizziamo la seguente codifica:

q0 = 00

q1=01

q2 = 10

La tavola di verità è la seguente :

xyw1w2 W1W2 z j1k1 j2k	<u>ر</u>
0000 01 0 0x x)
0001 10 0 1x 0x	K
0010 00 1 x1 x)
0011 xx x x xx x	K
0100 00 0 0x x)
0101 01 0 0x 0x	K
0110 10 0 x0 x)
0111 xx x x xx x	K
1000 00 0 0x x)
1001 01 0 0x 0x	Κ
1010 10 0 x0 x)

1011	XX	X	XX	XX
1100	00	0	0x	x0
1101	01	0	0x	0x
1110	10	0	x0	x0
1111	XX	X	XX	XX

Dalla tabella si ricava subito che:

$$j2 = k2 = 0$$

e minimizzando con Karnaugh si ottengono le espressioni:

$$j1 = \underline{x} \underline{y} w2$$

$$k1 = \underline{x} \underline{y}$$

$$z = \underline{x} \underline{y} w1$$

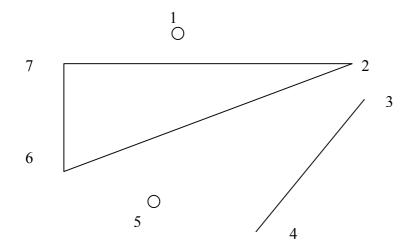
Lo schema circuitale si ottiene facilmente utilizzando le espressioni ricavate.

Le espressioni con FF di tipo D, ottenute minimizzando con le mappe di Karnaugh, sono:

$$d1 = \underline{x} \underline{y} w2 + y w1 + x w1$$

$$d2 = \underline{x} \underline{y} \underline{w1} \underline{w2} + y \underline{w2} + x \underline{w2}$$

Esercizio 2



$$A=(1)$$

$$B=(2,6,7)$$

$$C=(3,4)$$

Soluzioni Esonero 2

Esonero 2

NOME:

COGNOME: MATRICOLA:

Esercizio 1 (14 punti) Minimizzare l'automa descritto dalla seguente tabella degli stati futuri (A, B, ecc sono i nomi degli stati)

stato/input	x=0	x=1
A	G/00	C/01
В	G/00	D/01
С	D/10	A/11
D	C/10	B/11
Е	G/00	F/01
F	F/10	E/11
G	A/01	F/11

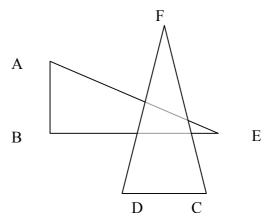
Esercizio 2 (16 punti) Progettare un circuito il cui output è 1 quando viene riconosciuta una delle seguenti stringhe: 001, 101 oppure 000. L'output è zero altrimenti.

Il primo bit che viene letto è il bit **più a sinistra**. Le stringhe sono *sovrapponibili*, nel senso chiarito a lezione.

Pur non essendo richiesta l'applicazione di un criterio formale di minimizzazione dell'automa, sarà elemento di valutazione il numero degli stati complessivi utilizzati.

Esercizio 1

	C,D					
В						
C	X	X		_		
D	X	X	A,B		_	
E	C,F	D,F	X	X		_
F	X	X	A,E	B,E C,F	X	
			D,F			
G	X	X	X	X	X	X
	A	В	C	D	E	F



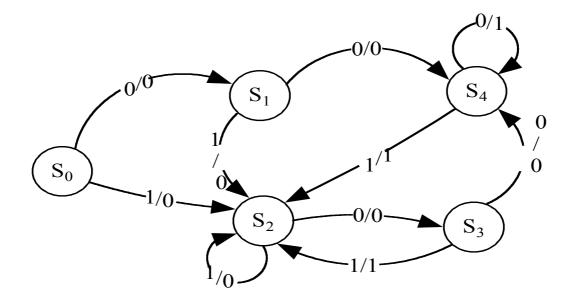
classi di equivalenza

A'=A,B,E C'=C,D,F G'=G

	x=0	x=1
A'	G'/00	C'/01
C'	C'/10	A'/11
G'	A'/01	C'/11

Esercizio 2

L'automa di Mealy è il seguente:



dove:

- S₀ indica lo stato iniziale
- S₁ lo stato in cui è stato riconosciuto "0"
- S₄ lo stato in cui è stata riconosciuta una stringa "00...0" di lunghezza almeno 2
- S₂ lo stato in cui è stato riconosciuto un "1"
- S₃ lo stato in cui è stato riconosciuto "10"

Si noti che non è necessario tenere uno stato per la stringa "101" perché è sufficiente tenere traccia dell'ultimo "1". Infatti concatenando un bit alla stringa "101" non si ottiene nessuna sequenza valida. Lo stesso ragionamento si può applicare alla stringa "001" e così via. Si poteva anche realizzare l'automa con tutti i possibili stati e poi minimizzarlo, ma sarebbe stato più laborioso.

Stato	Input 0	Input 1
S_0	$S_{1}/0$	$S_{2}/0$
S_1	S ₄ /0	$S_{2}/0$
S_2	$S_{3}/0$	$S_{2}/0$

S_3	S ₄ /0	$S_2/1$
S_4	$S_4/1$	$S_2/1$

Gli stati si codificano con 3 FF di tipo JK. La tabella degli stati futuri è la seguente:

Stato	Q ₂ (t)	Q ₁ (t)	Q ₀ (t)	X	J_2	K ₂	J_1	K_1	J_0	K ₀	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$	Z
C	0	0	0	0	0	X	0	X	1	X	0	0	1	0
S_0	0	0	0	1	0	X	1	X	0	X	0	1	0	0
C	0	0	1	0	1	X	0	X	X	1	1	0	0	0
S_1	0	0	1	1	0	X	1	X	X	1	0	1	0	0
S_2	0	1	0	0	0	X	X	0	1	X	0	1	1	0
\mathbf{S}_2	0	1	0	1	0	X	X	0	0	X	0	1	0	0
S_3	0	1	1	0	1	X	X	1	X	1	1	0	0	0
33	0	1	1	1	0	X	X	0	X	1	0	1	0	1
C	1	0	0	0	X	0	0	X	0	X	1	0	0	1
S_4	1	0	0	1	X	1	1	X	0	X	0	1	0	1
	1	0	1	0	X	X	X	X	X	X	X	X	X	X
	1	0	1	1	X	X	X	X	X	X	X	X	X	X
	1	1	0	0	X	X	X	X	X	X	X	X	X	X
	1	1	0	1	X	X	X	X	X	X	X	X	X	X
	1	1	1	0	X	X	X	X	X	X	X	X	X	X
	1	1	1	1	X	X	X	X	X	X	X	X	X	X

Applicando le mappe di Karnaugh si ottiene:

$$J_1 = x \; , \; K_1 = J_2 = Q_0 \cdot \overset{-}{x} \; , \; K_2 = x \; , \; J_0 = \overline{Q_2 x} \; , \; K_0 = 1 \; , \; z = Q_2 + Q_1 \cdot Q_0 \cdot x$$