
COMPITO A

Esercizio 1 (13 punti)

Dato il seguente automa:

- minimizzare l'automa usando la tabella triangolare
- disegnare l'automa minimo
- progettare la rete sequenziale relativa all'automa minimo, secondo il procedimento di sintesi illustrato a lezione, utilizzando FF di tipo JK
- disegnare il diagramma temporale per la sequenza di ingresso 01110011.

Esercizio 2 (11 punti)

Disegnare l'automa che riceve in ingresso x2 e x1 e produce in uscita $\mathbf{0}$ se il numero di zero ricevuti su x2 e x1 è pari (altrimenti produce $\mathbf{1}$) come illustrato nel seguente esempio:

x2: 01110100 x1: 00011101 z: 01001110

Disegnare poi il diagramma temporale rispetto alle sequenze di ingresso date nell'esempio.

Esercizio 3 (6 punti)

Disegnare il funzionamento di un registro a caricamento parallelo e scaricamento seriale con 3 FF di tipo D.

COMPITO B

Esercizio 1 (9 punti)

Data l'espressione booleana (dove le variabili negate sono sottolineate) $x3 \times 2 \times 1 + x2 \times 1 + x3 \times 1 + x3 \times 2$

- scrivere l'espressione nella forma canonica SOP e nella forma canonica POS,
- minimizzare l'espressione usando la mappa di Karnaugh,
- disegnare il circuito con sole porte NAND.

Esercizio 2 (16 punti)

Seguendo il procedimento visto a lezione, progettare una rete sequenziale che riceve in ingresso una sequenza x e produce in uscita la somma binaria degli ultimi tre bit ricevuti (su due uscite, z1 e z0) come illustrato nel seguente esempio:

x: 00110110001111 z1: 00011111000111 z0: 00100000101011

Disegnare poi il diagramma temporale rispetto alla sequenza di ingresso data nell'esempio.

Esercizio 3 (5 punti)

Disegnare il funzionamento di un registro a caricamento seriale e scaricamento parallelo con 4 FF di tipo D.

COMPITO A Soluzione esercizio 1

L'automa in forma tabellare è:

	0	1
Q1	Q2/0	Q8/0
Q2	Q4/0	Q3/1
Q3	Q8/0	Q6/1
Q4	Q7/0	Q1/0
Q5	Q7/0	Q3/1
Q6	Q7/0	Q5/1
Q7	Q2/0	Q7/0
Q8	Q4/0	Q8/0

La tabella triangolare è:

Q2	X		_				
Q3	X	(3,6)(4,8)		_			
Q4	(2,7)(1,8)	X	X		_		
Q5	X	(4,7)	(7,8)(3,6)	X		_	
Q6	X	(4,7)(3,5)	(7,8)(5,6)	X	(3,5)		
Q7	(7,8)	X	X	(1,7)(2,7)	X	X	
Q8	(2,4)	X	X	(1,8)(4,7)	X	X	(2,4)
	Q1	Q2	Q3	Q4	Q5	Q6	Q7

Dopo una seconda analisi della tabella triangolare si vede che non ci sono stati equivalenti.

Assegnando la seguente codifica agli stati:

Q1=000

Q2=001

Q3=010

Q4=011

Q5=100

Q6=101

Q7=110

Q8=111

si ottiene la tabella di verità:

X	y2	y1	y0	Y2	Y1	Y0	Z	J2K2	J1K1	J0K0
0	0	0	0	0	0	1	0	0x	0x	1x
0	0	0	1	0	1	1	0	0x	1x	x0
0	0	1	0	1	1	1	0	1x	x0	1x
0	0	1	1	1	1	0	0	1x	x0	x1
0	1	0	0	1	1	0	0	x0	1x	0x
0	1	0	1	1	1	0	0	x0	1x	x1
0	1	1	0	0	0	1	0	x1	x1	1x

0	1	1	1	0	1	1	0	x1	x0	x0
1	0	0	0	1	1	1	0	1x	1x	1x
1	0	0	1	0	1	0	1	0x	1x	x1
1	0	1	0	1	0	1	1	1x	x1	1x
1	0	1	1	0	0	0	0	0x	x1	x1
1	1	0	0	0	1	0	1	x1	1x	0x
1	1	0	1	1	0	0	1	x0	0x	x1
1	1	1	0	1	1	0	0	x0	x0	0x
1	1	1	1	1	1	1	0	x0	x0	x0

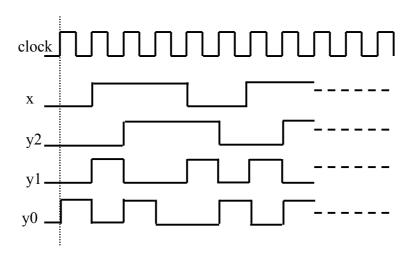
Le espressioni booleane per le funzioni di eccitazione e per la funzione di uscita z sono (per la complementazione uso la sottolineatura):

$$z = x \underline{y1} y0 + x \underline{y2} \underline{y1} + x \underline{y2} \underline{y1} \underline{y0}$$

$$J2 = \underline{x} y1 + x \underline{y1} \underline{y0}$$

$$K2 = \underline{x} y1 + x \underline{y1} \underline{y0}$$

$$J1 = \underline{x} y2 + x \underline{y0} + \underline{y2} \underline{y0}$$

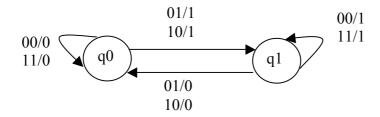

$$K1 = x \underline{y2} + \underline{x} \underline{y2} \underline{y0}$$

$$J0 = \underline{x} \underline{y2} + x \underline{y2} + \underline{x} \underline{y1}$$

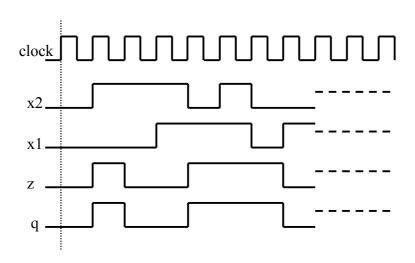
$$K0 = \underline{y2} \underline{y1} + x \underline{y2} + \underline{x} \underline{y2} \underline{y1}$$

Ottenute le espressioni per le funzioni di minimizzazione è facile disegnare il circuito.

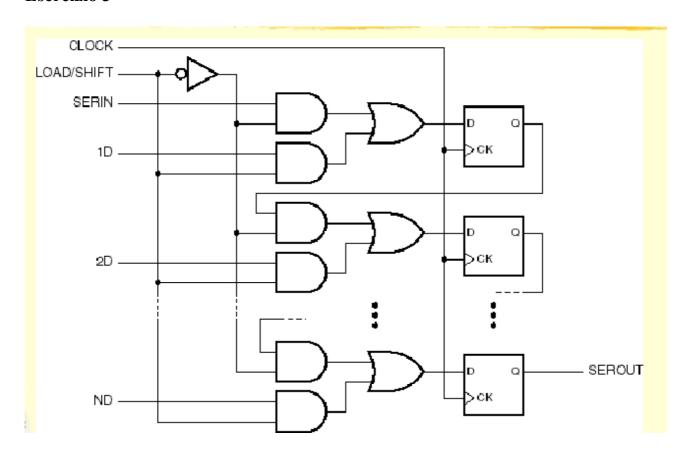
Il diagramma temporale è:



Esercizio 2


L'automa è costituito da due stati:

q0 – stato in cui si sono ricevuti un numero pari di zero sulle linee x2 e x1


q1 – stato in cui si sono ricevuti un numero dispari di zero sulle linee x2 e x1

Poiché l'automa è costituito da due stati, basta un bit per la codifica; assegnando agli stati la codifica q0=0 e q1=1, si ottiene il seguente diagramma temporale in cui sono riportati, nell'ordine, il clock, la sequenza ricevuta su x2, la sequenza ricevuta su x1, la sequenza prodotta su z e la codifica degli stati attraversati a fronte delle sequenze ricevute:

Esercizio 3

Soluzioni compito B

Esercizio 1

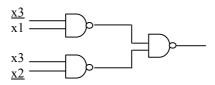
L'espressione canonica SOP si ottiene nel modo seguente:

```
x3 \ \underline{x2} \ \underline{x1} + \underline{x2} \ x1 + \underline{x3} \ x1 + x3 \ \underline{x2} =  se manca il letterale x_i si moltiplica per (x_i + \underline{x_i}) = 1 = x3 \ \underline{x2} \ \underline{x1} + \underline{x2} \ x1 \ (x3 + \underline{x3}) + \underline{x3} \ x1 \ (x2 + \underline{x2}) + x3 \ \underline{x2} \ (x1 + \underline{x1}) =  = x3 \ \underline{x2} \ \underline{x1} + x3 \ \underline{x2} \ x1 + \underline{x3} \ \underline{x2} \ x1 + \underline{x3} \ \underline{x2} \ x1 + \underline{x3} \ \underline{x2} \ x1 + x3 \ \underline{x2} \ x1 + x3 \ \underline{x2} \ x1 =  eliminando i termini ripetuti = x3 \ \underline{x2} \ \underline{x1} + x3 \ \underline{x2} \ x1 + \underline{x3} \ \underline{x3}
```

L'espressione SOP in forma canonica si può scrivere come OR di mintermini, nel nostro caso è: OR(m1, m3, m4, m5)

L'espressione POS in forma canonica si può scrivere come AND di maxtermini, nel nostro caso è: AND(M0, M2, M6, M7) = (x3 + x2 + x1)(x3 + x2 + x1)(x3 + x2 + x1)(x3 + x2 + x1)

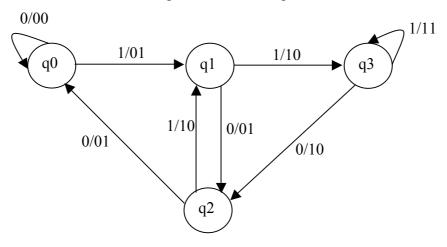
La tabella della funzione è:


x3	x2	x1	y
0	0	0	0
0	0	1	1
0	1	0	0
0 0 0 0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

La relativa mappa di Karnaugh

$\ \ x2x1$	00	01	11	10
x3\				
0	0	1	1	0
1	1	1	0	0

Dalla mappa di Karnaugh si ottiene la forma minimale SOP: $\underline{x3} \times 1 + x3 \times 2$.


La realizzazione con sole porte NAND di un'espressione della forma AND-to-OR come la minimale SOP scritta, si ottiene sostituendo porte NAND alle porte AND e alla porta OR.

Esercizio 2

L'automa viene costruito nel seguente modo:

- **gli stati** sono 4 e corrispondono agli ultimi due bit ricevuti, cioè q0 corrisponde a 00, q1 corrisponde a 01, q2 corrisponde a 10 e q3 corrisponde a 11;
- **gli archi** vengono costruiti in modo che, partendo da uno stato e considerato il bit ricevuto in ingresso, si arrivi nello stato rappresenti correttamente gli ultimi due bit ricevuti; ad esempio se si parte dallo stato q1(=01) e si riceve il bit 0 si arriva nello stato q2(=10), mentre se si riceve 1 si arriva nello stato q3(=11);
- **i due bit di uscita** si calcolano sommando i due bit che rappresentano lo stato e il bit che si riceve in ingresso; ad esempio se si parte dallo stato 01 e si riceve il bit 0 si produce come output 01, mentre se si riceve 1 si produce come output 10.

X	y1	y0	Y1	Y0	z1	z0	J1	K1	J0	K0
0	0	0	0	0	0	0	0	X	0	X
0	0	1	1	0	0	1	1	X	X	1
0	1	0	0	0	0	1	X	1	0	X
0	1	1	1	0	1	0	X	0	X	1
1	0	0	0	1	0	1	0	X	1	X
1	0	1	1	1	1	0	1	X	X	0
1	1	0	0	1	1	0	X	1	1	X
1	1	1	1	1	1	1	X	0	X	0

Minimizzando con Karnaugh si ottengono le seguenti espressioni:

$x\y1y0$	00	01	11	10
0		1	X	X

$$J1 = y0$$

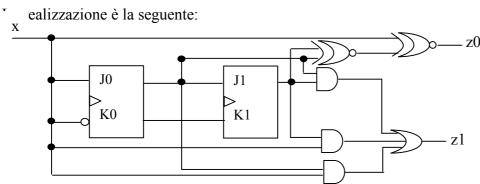
$x\y1y0$	00	01	11	10
0	X	X		1
1 _	X	X		1

$$K1 = \underline{y0}$$

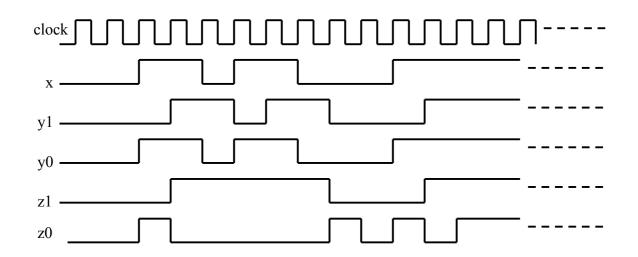
$x\y1y0$	00	01	11	10
0		X	X	
1	1	X	X	_1

$$J0 = x$$

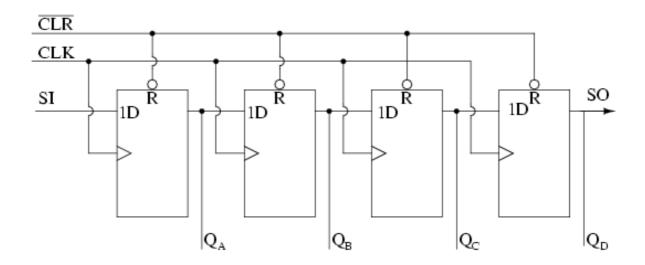
x\y1y0	00	01	11	10
0	X	1	1	X
1	X			X


$$K0 = \underline{x}$$

$x\y1y0$	00	01	<u>11</u>	10
0			1	
1		1	1	1


$$z1 = y1 y0 + x y0 + x y1$$

$x\y1y0$	00	01	11	10
0		1		1
1	1		1	


$$z0 = \underline{x} \ \underline{y1} \ y0 + \underline{x} \ y1 \ \underline{y0} + x \ \underline{y1} \ \underline{y0} + x \ y1 \ y0 = x \oplus (y1 \oplus y2)$$

Il diagramma temporale è:

Esercizio 3

