Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 11

Esercizi svolti

Es. 1. Si considerino le funzioni booleane f(x, y, z, t) e g(x, y, z, t) tali che:

- *f* dà 1 se e solo se la stringa *xyzt* contiene un numero pari di 1;
- g dà 1 se e solo se la stringa xyzt vista come numero intero è divisibile per 2.

Si diano per f e g: la forma canonica congiuntiva e disgiuntiva, la minima forma SOP e POS ed infine la minima espressione booleana (ottenuta usando le porte composte, cioè NAND, NOR, ...)

SOLUZIONE:

La rappresentazione tabellare di f e g è:

	X	y	Z	t	f	\boldsymbol{g}
'	0	0	0	0	1	1
	0	0	0	1	0	0
	0	0	1	0	0	1
	0	0	1	1	1	0
	0	1	0	0	0	1
	0	1	0	1	1	0
	0	1	1	0	1	1
	0	1	1	1	0	0
	1	0	0	0	0	1
	1	0	0	1	1	0
	1	0	1	0	1	1
	1	0	1	1	0	0
	1	1	0	0	1	1
	1	1	0	1	0	0
	1	1	1	0	0	1
	1	1	1	1	1	0

Indichiamo con mi e Mi (per i = 0, ..., 15) il mintermine ed maxtermine associati alla riga i-esima della tabella. Ad esempio

$$m2 = x \cdot y \cdot z \cdot t$$
 e $M2 = x + y + z + t$

Con questo formalismo le forme canoniche sono:

FCD(
$$f$$
) = m0 + m3 + m5 + m6 + m9 + m10 + m12 + m15
FCC(f) = M1 · M2 · M4 · M7 · M8 · M11 · M13 · M14
FCD(g) = m0 + m2 + m4 + m6 + m8 + m10 + m12 + m14

 $FCC(g) = M1 \cdot M3 \cdot M5 \cdot M7 \cdot M9 \cdot M11 \cdot M13 \cdot M15$

Passiamo alle minime forme SOP e POS. Per quanto riguarda f è facile convincersi (facendo la mappa di Karnaugh) che le minime SOP e POS corrispondono rispettivamente alla FCC e FCD. Per g invece si ha:

xy zt	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

da cui $\min SOP(g) = t$. Per la $\min POS$, si può usare la mappa di Karnaugh per g e ricoprire gli 0 oppure osservare che

$$\min POS(g) = \min POS(\neg g)$$

cioè bisogna ricoprire gli 1 della seguente mapa:

xy zt	00	01	11	10
00	0	1	1	0
00 01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

In entrambe i casi, si ottiene che minPOS(g) = t.

Infine, per quanto riguarda le minime espressioni booleane, è facile convincersi che per g l'espressione minima è la minSOP (o equivalentemente la minPOS). Per f, utilizzando porte XOR e NXOR (indicate rispettivamente \oplus e \otimes) e fattorizzando opportunamente la FCC, si ha

$$\begin{aligned} & \text{FCC}(f) = (x + y + z + \underline{t}) \ (x + y + \underline{z} + t) \ (x + y + z + \underline{t}) \ (\underline{x} + y + z + \underline{t})$$

Infatti, è facile verificare che $(a+\underline{b})(\underline{a}+b)=(a\otimes b)$ e $(a+b)(\underline{a}+\underline{b})=(a\oplus b)$. Per esempio,

$$(a+\overline{b})(\overline{a}+b) = \overline{(a+\overline{b})} + \overline{(\overline{a}+b)} = \overline{ab+a\overline{b}} = \overline{a \oplus b} = a \otimes b$$

Quindi,

$$minEB(f) = (x \oplus y) \otimes (z \oplus t)$$

Esercizi da svolgere

Es. 1. Si consideri la funzione che dà 1 solo quando il suo input (da 4 bit) rappresenta un numero intero (con segno!) in complemento a 2 che sia multiplo di 3. Non si consideri la sequenza 1000 (cioè, su tale sequenza la funzione non è definita). Si calcolino la minima SOP e POS associate a detta funzione.

Es. 2. Si trovi la minima forma SOP associata all'espressione: $(x \oplus (y \text{ NAND z})) \text{ NOR } x$