17 Gennaio 2017

FILA A

Esercizio 1 (5 punti). Si considerino tre registri sorgente S_1 , S_2 e S_3 e quattro registri destinazione D_1 , D_2 , D_3 e D_4 . Si progetti una rete di interconnessione tale che:

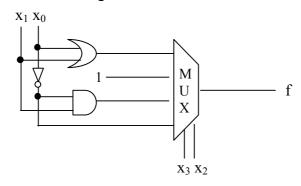
- Copia S_1 in D_2 e S_2 in D_1 , se $S_1 > S_2$; altrimenti, copia $S_1 + S_2$ in D_2 e $S_2 S_1$ in D_1 .
- Copia S₃ in D₃, se S₂ è multiplo di 4, o in D₄, altrimenti.

I trasferimenti sono abilitati se S₂ è pari.

Esercizio 2 (3+2 punti) Si disegni un automa che accetti le sequenze di caratteri AB, ABB e ABC, anche con sovrapposizioni. Si disegni poi il diagramma temporale per la sequenza di input AABBABC.

Esercizio 3 (6 punti) Minimizzare il seguente automa di stato iniziale S0 e progettare poi la rete sequenziale corrispondente all'automa minimo usando un FF di tipo JK per il bit più significativo e FF di tipo T per gli eventuali altri bit di stato (N.B.: non è richiesto il disegno del circuito finale).

	00	01	10
S0	S0/0	S4/0	S1/1
S1	S1/1	S3/1	S4/0
S2	S1/1	S2/1	S6/0
S3	S0/0	S6/0	S1/1
S4	S3/1	S6/0	S2/0
S5	S5/0	S6/0	S1/1
S6	S5/1	S6/0	S2/0


Esercizio 4 (3 punti) Usando gli assiomi dell'algebra di Boole, verificare la seguente identità:

$$\overline{a \oplus b} + \overline{(a+bc)}(\overline{a}c+b) = ab + \overline{a}\overline{b} + b\overline{c}$$

Esercizio 5 (3 punti) Dati A=42,125 e B=51,375 rappresentarli in virgola mobile in base 2, usando 10 bit di mantissa e 4 di esponente. Eseguire poi la somma tra A e B e rappresentare il risultato in virgola mobile.

Esercizio 6 (3 punti) Si consideri X = 110111. Si converta X in base 10 sia nel caso in cui X sia rappresentato in binario, cioè $X_{(2)}$, che nel caso in cui X sia rappresentato in complemento a 2, cioè $X_{(Ca2)}$. Si consideri poi Y=29. Si rappresenti Y in complemento a 2, $Y_{(Ca2)}$; si esegua la differenza $X_{(Ca2)} - Y_{(Ca2)}$, (cioè usando le rappresentazioni in complemento a 2) e si verifichi il risultato usando la conversione in base 10.

Esercizio 7 (5 punti) Si consideri il seguente circuito combinatorio:

Si scriva l'espressione di f e si stenda la tavola di verità Si scriva f in forma minimale POS.

FILA B

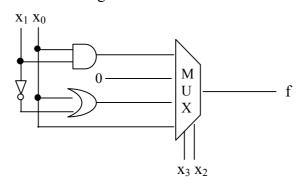
Esercizio 1 (5 punti). Si considerino i registri R_0 , R_1 R_2 , R_3 , R_4 , R_5 e R_6 . Si progetti una rete di interconnessione tale che:

- copia R₅ in uno dei registri R₀, R₁ R₂ e R₃ scelto usando i due bit meno significativi di R₀;
- se R_1 è negativo, in R_6 viene copiato:
 - R_1 , se R_2 e R_3 sono entrambi pari;
 - R₂, se R₂ è pari e R₃ è dispari;
 - R₃, se R₂ è dispari e R₃ è pari;
 - R₄, se R₂ e R₃ sono entrambi dispari.

Esercizio 2 (3+2 punti) Si disegni un automa che accetti le sequenze di caratteri TIC, TII e TIT, anche con sovrapposizioni. Si disegni poi il diagramma temporale per la sequenza di input T I T I I T I C.

Esercizio 3 (6 punti) Minimizzare il seguente automa e progettare la rete sequenziale corrispondente all'automa minimo seguendo il procedimento di sintesi (N.B.: non è richiesto il disegno del circuito finale). Si usino un FF di tipo JK per il bit più significativo e FF di tipo SR per gli eventuali altri bit.

	0	1
A	B/0	C/0
В	A/0	C/1
C	B/1	A/1
D	B/0	M/0
E	N/1	D/1
F	G/0	E/1
G	F/0	C/0
M	F/1	G/1
N	D/0	M/1


Esercizio 4 (3 punti) Usando gli assiomi dell'algebra di Boole, verificare la seguente identità:

$$\overline{a \oplus b} + \overline{(\overline{a}c + b)}(a + bc) = ab + \overline{b}$$

Esercizio 5 (3 punti) Dati A=53,125 e B=40,375 rappresentarli in virgola mobile in base 2, usando 10 bit di mantissa e 4 di esponente. Eseguire poi la differenza tra A e B e rappresentare il risultato in virgola mobile.

Esercizio 6 (3 punti) Si consideri X = 100111. Si converta X in base 10 sia nel caso in cui X sia rappresentato in binario, cioè $X_{(2)}$, che nel caso in cui X sia rappresentato in complemento a 2, cioè $X_{(Ca2)}$. Si consideri poi Y=24. Si rappresenti Y in complemento a 2, $Y_{(Ca2)}$; si esegua la differenza $Y_{(Ca2)} - X_{(Ca2)}$, (cioè usando le rappresentazioni in complemento a 2) e si verifichi il risultato usando la conversione in base 10.

Esercizio 7 (5 punti) Si consideri il seguente circuito combinatorio:

Si scriva l'espressione di f e si stenda la tavola di verità Si realizzi f usando un PLA.