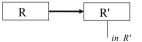


Per venir elaborate o memorizzate, le informazioni devono essere trasferite da un registro all'altro all'interno di un elaboratore.

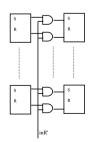
Il trasferimento di informazioni tra registri viene realizzato tramite **reti di interconnessione.**

N.B.: Se i registri sono a scaricamento parallelo (PIPO/SIPO), l'informazione in realtà viene *copiata* dal registro sorgente a quello destinazione.

Non ci interessa la modalità di caricamento/scaricamento; assumiamo che un registro è



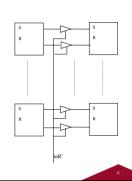
dove le linee spesse denotano *n* bit (se il registro è formato da *n* FF) e la linea *in R* abilita il registro alla scrittura (come la linea *load* per il PIPO)


Sorgente e destinazione prefissata: porte logiche

Per trasferire il contenuto di R in R', basta collegare l'output di R all'input di R' e settare *in R'* ogni volta che si vuole effettuare il trasferimento:

Ciò in realtà rappresenta in maniera schematica la seguente interconnessione, assumendo che i registri siano sequenze di FF di tipo SR:

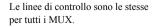
Sorgente e destinazione prefissata: Buffer tri-states

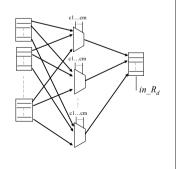

Il buffer tri-states è un interruttore elettronico, schematicamente rappresentato come

che può assumere tre stati (da cui il nome):

- circuito aperto: s = 0;
- circuito chiuso e uscita 0: se s=1 e a=0;
- circuito chiuso e uscita 1: se s=1 e a=1.

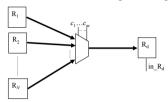
Invece che usare porte AND, nella realizzazione precedente possiamo usare buffer tri-states con segnale di controllo il bit in_R' :


Interconnessione tramite MUX: dettaglio (a linee singole)



Nella rappresentazione precedente, le frecce marcate rappresentano *n* linee; quindi, anche i MUX sono in realtà *n*!!

- Il primo FF di ogni registro sorgente è connesso con il primo MUX, la cui uscita va al primo FF di R₄;
- il secondo FF di ogni registro sorgente è connesso con il secondo MUX, la cui uscita va al secondo FF di R_d;



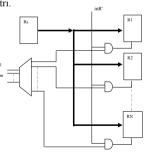
Sorgente variabile e destinazione prefissata: interconnessione con multiplexer

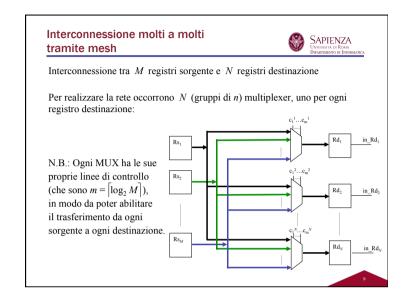
Il registro sorgente può essere un qualsiasi registro R_i di un insieme di N registri, mentre il registro destinazione R_d è fissato.

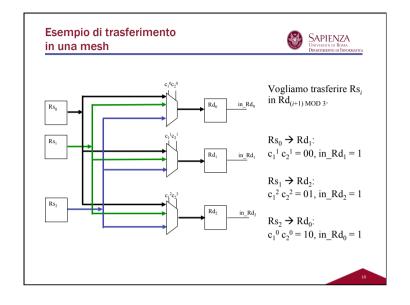
Questo può essere fatto usando un MUX le cui entrate sono gli output degli *N* registri sorgente e la cui uscita viene data in ingresso al registro destinazione:

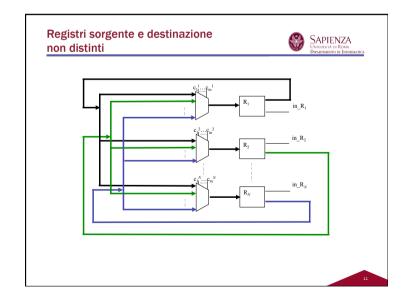
I segnali di selezione del multiplexer $c_1, ... c_m$ sono $m = \lceil \log_2 N \rceil$ e forniscono la codifica binaria dell'indice i del registro R_i il cui contenuto deve essere copiato in R_d .

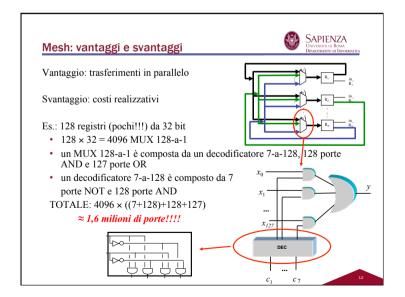
Sorgente prefissata e destinazione variabile: interconnessione con decodificatore

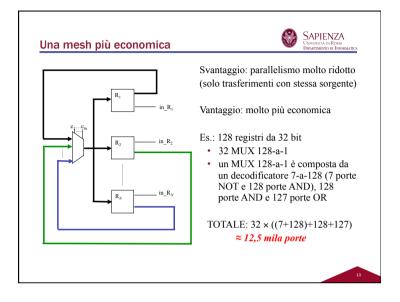



Il registro sorgente R_s è fissato, mentre il registro destinazione può essere un qualsiasi registro R_s di un insieme di N registri.


Questo può essere fatto mandando in input a ogni registro destinazione l'output del registro sorgente e usando un decodificatore per abilitare la scrittura sul registro destinazione desiderato:

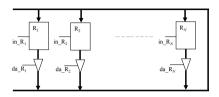

Gli ingressi del decodificatore $c_1, ..., c_m$ sono $m = \lceil \log_2 N \rceil$ e forniscono la codifica binaria dell'indice i del registro R_i dove copiare l'informazione contenuta in R_s .


Le uscite del decodificatore vengono messe in AND con un segnale "globale" di scrittura (in_R') e forniscono i segnali in_R_i per i registri destinazione.



2 tipi di memoria:

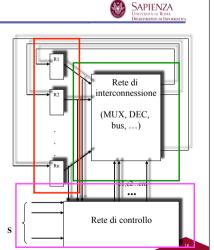
- centrale (nel microprocessore): poche decine di registri veloci
- di massa: milioni di registri realizzati con tecnologia più economica


2 tipi di interconnessione:

- mesh tra i registri del microprocessore
- bus per trasferire informazioni dalla memoria di massa a quella centrale

Interconnessione molti-a-molti tramite bus

Riducendo il parallelismo, si può realizzare l'interconnessione di prima in maniera ancora più economica tramite un *bus*, cioè un fascio di *n* linee che interconnettono tutti i registri, sia in entrata che in uscita.


N.B.: per evitare conflitti nell'uso del bus, ogni uscita è controllata da un (insieme di n) buffer tri-states, ognuno regolato dal segnale di controllo da_R^i , che vale 1 se il registro sorgente è R_i . Ovviamente, bisognerà garantire che al più uno di tali segnali valga "1" ad ogni istante.

Es. (128 registri da 32 bit): $128 \times 32 \approx 4100$ buffer tri-states

Progettare una rete di interconnessione

Si distinguono 3 parti:

- i registri coinvolti (R₁...R_N)
- la rete di interconnessione che, nel caso più generale, consente di trasferire il contenuto di ogni registro in ogni altro registro
- la rete combinatoria di controllo che analizza alcune condizioni interne (contenuto dei registri) o esterne (segnali S) e genera gli opportuni comandi per i circuiti che costituiscono la rete di interconnessione

