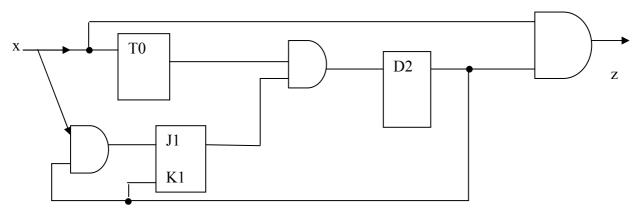
Appello di Progettazione di Sistemi Digitali 2 Luglio 2013 - Docenti: Proff. Gorla e Massini

Esercizio 1 (5 punti): Analizzare il seguente circuito sequenziale fino alla descrizione verbale del circuito, assumendo che all'inizio i flip flop siano impostati a $q2 \ q1 \ q0 = 110$.



SOLUZIONE:

Le espressioni booleana associate alle entrate dei FF e all'uscita del circuito sono:

$$T0 = x$$

$$J1 = x Q2$$

$$K1 = Q2$$

$$D2 = Q0 Q1$$

$$z = x Q2$$

Da esse si può costruire la tabella degli stati futuri

x	$\overline{Q2}$	Q1	Qθ	<i>T0</i>	<i>J1</i>	<i>K1</i>	D 2	<i>Q2</i> '	<u>Q</u> 1'	Qθ'	z
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	1	1	1	1	0
0	1	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	1	0	0	0	1	0
0	1	1	0	0	0	1	0	0	0	0	0
0	1	1	1	0	0	1	1	1	0	1	0
1	0	0	0	1	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	0	0	0	0
1	0	1	0	1	0	0	0	0	1	1	0
1	0	1	1	1	0	0	1	1	1	0	0
1	1	0	0	1	1	1	0	0	1	1	1
1	1	0	1	1	1	1	0	0	1	0	1
1	1	1	0	1	1	1	0	0	0	1	1
1	1	1	1	1	1	1	1	1	0	0	1

Prendendo come configurazione iniziale quella per cui Q2 Q1 Q0 = 110, si ottiene il seguente automa che descrive il funzionamento del circuito (N.B.: alcuni stati sono irraggiungibili partendo da 110, pertanto sono omessi nell'automa):

	0	1
110	000/0	001/1
000	000/0	001/0
001	001/0	000/0

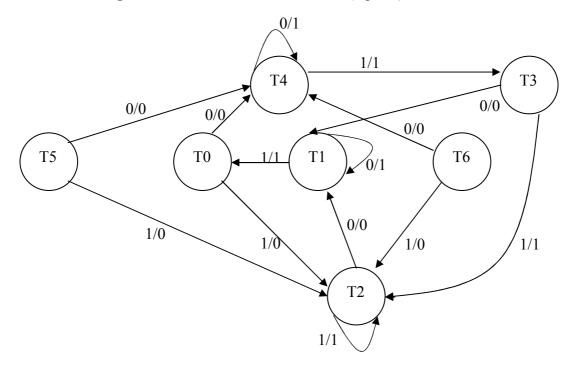
Si può notare che l'automa non è minimo, e fondere gli stati 000 e 001, ottenendo

	0	1
SO	S1/0	S1/1
S1	S1/0	S1/0

Cioè, questo circuito da 1 solo quando riceve in ingresso sequenze di bit del tipo 1000...000...

Esercizio 2 (12 punti)

a) Minimizzare il seguente automa con stato iniziale T0 (4 punti):



SOLUZIONE:

Si può osservare che da T0 gli stati T5 e T6 non sono raggiungibili e quindi rimuoverli subito. All'automa così ottenuto si applica l'algoritmo di minimizzazione (richiesto in sede d'esame, qui omesso per brevità), ottenendo che gli stati T2 e T3 sono equivalenti, da cui l'automa minimo è

	0	1
S0 (T0)	S3/0	S2/0
S1 (T1)	S1/1	S0/1
S2 (T2+T3)	S1/0	S2/1
S3 (T4)	S3/1	S2/1

b) Realizzare la rete sequenziale relativa all'automa minimo con flip flop di tipo SR (5 punti).

SOLUZIONE:

Anzitutto codifichiamo gli stati nel modo seguente:

 $S0 \rightarrow 00$

 $S1 \rightarrow 01$

S2 → 10

S3 → 11

Dalla tabella dell'automa minimo, scriviamo ora la tabella degli stati futuri insieme alle funzioni di eccitazione dei FF:

x Q1 Q0	Q1' Q0'	z	S1 R1	SO RO
0 0 0	1 1	0	1 0	1 0
0 0 1	0 1	1	0 -	- 0
0 1 0	0 1	0	0 1	1 0
0 1 1	1 1	1	- 0	- 0
1 0 0	1 0	0	1 0	0 -
1 0 1	0 0	1	0 -	0 1
1 1 0	1 0	1	- 0	0 -
1 1 1	1 0	1	- 0	0 1

Mediante le mappe di Karnaugh (richieste nello svolgimento, ma non riportate per motivi di spazio), ci calcoliamo le espressioni booleane in forma SOP minimale per le entrate dei FF e per l'uscita del circuito:

$$z = Q0 + x Q1$$

$$S1 = \underline{Q0} \underline{Q1}$$

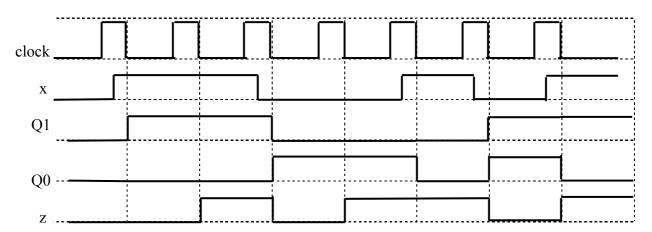
$$R1 = \underline{x} Q1 \underline{Q0}$$

$$S0 = \underline{x}$$

$$R0 = x$$

e da queste bisogna disegnare il circuito (omesso perché banale, ma richiesto all'esame).

c) Mostrare il diagramma temporale in corrispondenza della stringa di input 1100101 (3 punti).



Esercizio 3 (8 punti):

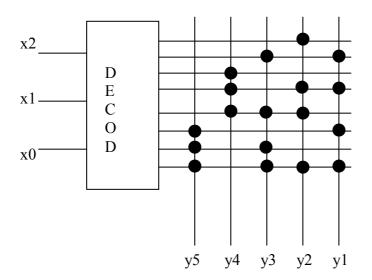
a) Progettare la rete combinatoria che ha sulle linee di ingresso la codifica binaria di un intero x, $0 \le x \le 7$, e sulle linee di uscita la codifica binaria di $y = y_4y_3y_2y_1y_0 = 3x + 2$, usando una ROM. (3 punti)

SOLUZIONE:

La tabella che descrive la funzione richiesta è:

x2 x1 x0	<i>y5</i>	<i>y4</i>	у3	<i>y</i> 2	<i>y1</i>	
0 0 0	0	0	0	1	0	
0 0 1	0	0	1	0	1	
0 1 0	0	1	0	0	0	
0 1 1	0	1	0	1	1	
1 0 0	0	1	1	1	0	
1 0 1	1	0	0	0	1	
1 1 0	1	0	1	0	0	
1 1 1	1	0	1	1	1	

Da essa si ottiene la seguente ROM (con decodificatore):



b) scrivere la forma canonica POS di y2 (1 punto)

M0 M2 M3 M5 =
$$(x^2 + x^1 + x^0)(x^2 + x^1 + x^0)(x^2 + x^1 + x^0)(x^2 + x^1 + x^0)$$

c) scrivere la forma canonica SOP di y3 (1 punto)

$$m2 + m3 + m4 = \underline{x2} \times 1 \times \underline{x0} + \underline{x2} \times 1 \times 0 + x2 \times \underline{x1} \times \underline{x0}$$

d) realizzare y1 con sole porte NAND (3 punti)

Dalle mappe di Karnaugh, si ottiene che $y1 = x1 x0 + \underline{x1} \underline{x0}$

A questo punto si lavora usando De Morgan e la definizione della negazione con porte NAND

$$x1 x0 + \underline{x1} \underline{x0} = x1 x0 + (\underline{x1 + x0})$$

$$= (\underline{x1 x0}) \text{ NAND } (x1 + x0)$$

$$= (x1 \text{ NAND } x0) \text{ NAND } (\underline{x1} \text{ NAND } \underline{x0})$$

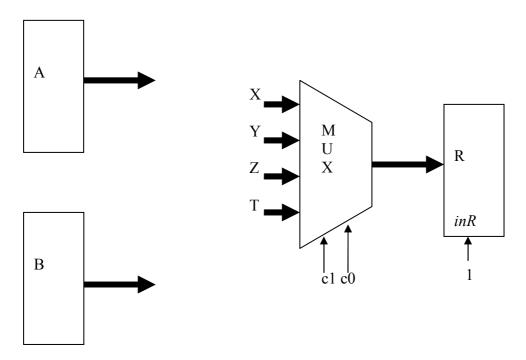
$$= (x1 \text{ NAND } x0) \text{ NAND } ((x1 \text{ NAND } x1) \text{ NAND } (x0 \text{ NAND } x0))$$

Esercizio 4 (6 punti) Dati i registri sorgente A e B contenenti valori nella rappresentazione in complemento a 2, il registro destinazione R e due segnali di controllo, c1c0, progettare il circuito tale che:

- se c1c0=(0,0) trasferisce in R il successore di B
- se c1c0=(0,1) trasferisce in R il massimo tra A e B
- se c1c0=(1,0) trasferisce in R il risultato della somma aritmetica tra A e B
- se c1c0=(1,1) trasferisce in R il predecessore di A

SOLUZIONE:

L'interconnessione richiesta è:



dove i quattro ingressi al MUX (con X selezionato se c1 c0 = 00, Y se 01, Z se 10 e T se 11) sono dati dai seguenti circuiti più elementari:

