SOLUZIONI DEL PRIMO ESONERO di PROGETTAZIONE di SISTEMI DIGITALI CANALE AL prof. Gorla FILA B

Esercizio 1. Siano dati i seguenti numeri naturali rappresentati in base 2: 10010 e 1101.

a)Si convertano i due numeri in base 4 (1 punto):

Essendo $4 = 2^2$, basta raggruppare i bit in gruppi da 2 (partendo dal meno significativo) e convertire le stringhe binarie così ottenute in base 4. Pertanto

$$10010_{(2)} = 1 \ 00 \ 10 = 102_{(4)}$$

 $1101_{(2)} = 11 \ 01 = 31_{(4)}$

b)Si sommino in base 4 i due numeri così ottenuti (2 punti):

Procedimento:

	102
	31
	133

Risultato: 133₍₄₎

c) Si converta il numero così ottenuto in base 10, lo si divida (in base 10) per 3 e se ne converta in base 2 il risultato ottenuto, usando una rappresentazione in virgola mobile normalizzata con 1 bit di segno, 8 bit di mantissa e 4 bit di esponente (3 punti):

Procedimento:

$$133_{(4)} = 14^2 + 34^1 + 34^0 = 16 + 12 + 3 = 31_{(10)}$$

 $31/3 = 10,3333....$
Converto 10 in base 2.
 $10: 2 = 5 \text{ (resto 0)}$
 $5: 2 = 2 \text{ (resto 1)}$
 $2: 2 = 1 \text{ (resto 0)}$

1:2=0 (resto 1)

Pertanto, $10_{(10)} = 1010_{(2)}$

Siccome mi serviranno 8 bit di precisione per la mantissa e già con la conversione della parte intera ne uso 4, farò la conversione di 1/3 in base 2 considerando al più 4 cifre dopo la virgola.

Operazione	Parte Intera	Parte Decimale
2 x 0,333 = 0,666	0	0,666
2 x 0,666 = 1,333	1	0,333
2 x 0,333 = 0,666	0	0,666
2 x 0,666 = 1,333	1	0,333

Quindi $31/3 \approx 1010,0101_{(2)}$

Normalizzando si ottiene < 0, 10100101, 0100 >

Esercizio 2. Si consideri la seguente stringa binaria: 0110.

a)Se ne calcoli il bit di parità pari (1 punto): Risposta: 0

b)Si scriva la stringa come una matrice 2x2 e se ne calcolino i bit di parità pari longitudinale e trasversale (1 punto):

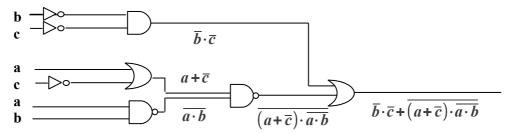
0	1	1
1	0	1
1	1	

c)Si scriva la parola di codice di Hamming associata alla stringa di bit data (2 punti): Procedimento:

La parola sarà XX0X110, il primo bit controlla la parità dei bit 1, 3, 5, 7, il secondo quella dei bit 2, 3, 6, 7, il quarto quella dei bit 4, 5, 6, 7.

Risultato: 1100110

Esercizio 3. Si consideri il seguente circuito combinatorio:



a)Si scriva sul disegno, in corrispondenza di ogni linea di uscita di ogni porta, l'espressione booleana calcolata dalla porta (1 punto)

b)Si semplifichi l'espressione booleana associata all'uscita del circuito usando assiomi e regole derivate dell'algebra di Boole (si specifichi quali assiomi/regole si stanno usando) (3 punti)

Procedimento:

$$\overline{b} \cdot \overline{c} + \overline{(a+\overline{c}) \cdot \overline{a} \cdot b} =$$
 si applica De Morgan e involuzione
= $\overline{b} \cdot \overline{c} + \overline{(a+\overline{c})} + a \cdot b =$ ancora De Morgan e involuzione
= $\overline{b} \cdot \overline{c} + \overline{a} \cdot c + a \cdot b$

c)Si scrivano l'espressione duale e complementare dell'espressione ottenuta (2 punti)

Espressione duale: $(\overline{b} + \overline{c}) \cdot (\overline{a} + c) \cdot (a + b)$

Espressione complementare: $\overline{b} \cdot \overline{c} + \overline{a} \cdot c + a \cdot b = (b + c) \cdot (a + \overline{c}) \cdot (\overline{a} + \overline{b})$

d)Si stenda la tavola di verità e si scriva la forma canonica POS (2 punti) Tavola:

а	b	с	f(a, b, c)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

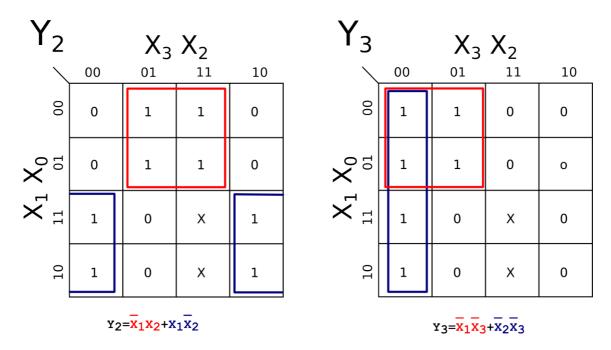
Forma canonica POS: $(\overline{a}+b+\overline{c})\cdot(a+\overline{b}+c)$

Esercizio 4. Si vuole realizzare un circuito combinatorio che realizza la funzione y = x - 6, con x un numero naturale nell'intervallo [0,15] e y espresso nella rappresentazione in complemento a 2 con 4 bit. Si considerino "don't care" i casi in cui la y non è rappresentabile.

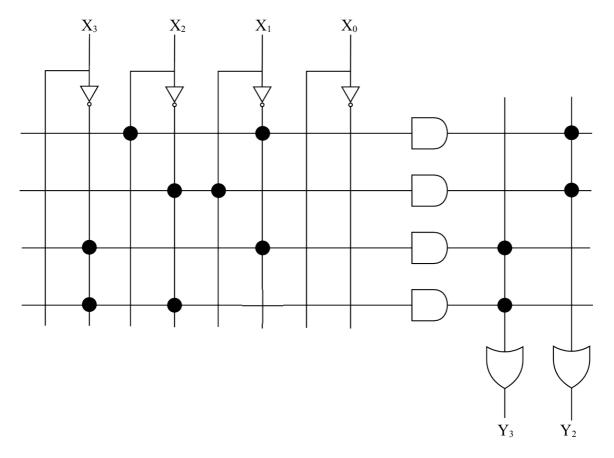
a)Si scriva la tavola di verità della funzione (2 punti)

X ₃	X_2	X_1	X_0	Y ₃	Y_2	\mathbf{Y}_{1}	Y_0
0	0	0	0	1	0	1	0
0	0	0	1	1	0	1	1
0	0	1	0	1	1	0	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	1	0
0	1	0	1	1	1	1	1
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1
1	0	0	0	0	0	1	0
1	0	0	1	0	0	1	1
1	0	1	0	0	1	0	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	1	0
1	1	0	1	0	1	1	1
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

b)Si calcoli la forma normale SOP minimale per i 2 bit più significativi della funzione (3 punti) Procedimento:



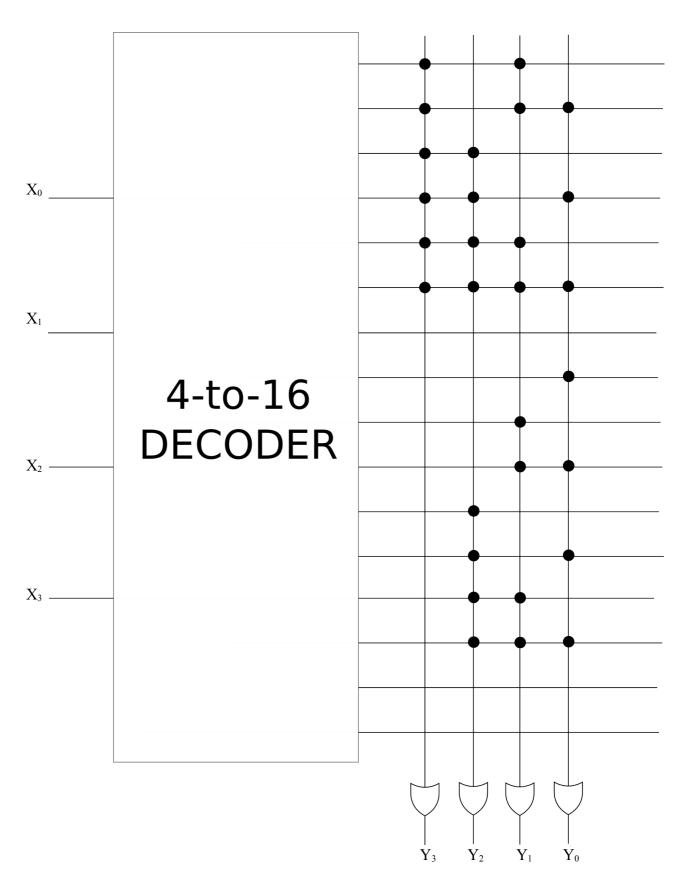
c)Si realizzino tramite PLA le espressioni ottenute al punto (b) (2 punti) (N.B.: è necessario visualizzare la matrice di AND e di OR)



d)Si scriva la forma canonica disgiuntiva (SOP) per il bit più significativo della funzione (2 punti)

$$\begin{array}{l} \text{Risultato:} \\ Y_3 = \overline{X_3} \cdot \overline{X_2} \cdot \overline{X_1} \cdot \overline{X_0} + \overline{X_1} \cdot \overline{X_0} +$$

e)Si realizzi tramite ROM (con decodificatore) la y (2 punti)



f)Si realizzi tramite un MULTIPLEXER 8-a-1 il bit meno significativo della funzione (3 punti)

Possiamo utilizzare un multiplexer 8-a-1 collegando ai 3 ingressi di controllo X_0 , X_1 e X_2 . I canali di input del multiplexer sono fissati e corrispondono ai valori di Y_0 nella prima metà della tabella di verità descritta in (a), che sono uguali a quelli della seconda metà a parte i "don't care": **01010101**. Pertanto, in questo caso, la variabile X_3 non viene usata per nulla.