
CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS

EECS 545 FINAL PROJECT, FALL, 2011

DOLAN ANTENUCCI, GREGORY HANDY, AKSHAY MODI, MILLER TINKERHESS

Abstract. We present two techniques to aid in the retrieval of information from Twit-
ter. First we present a technique to cluster hashtags in meaningful topic groups using a
combination of co-occurrence frequency, graph clustering and textual similarity. Second, we
present a technique to classify a tweet in terms of these topic groups based on their word
content using a combination of PCA dimensionality reduction and a variety of multi-class
classification algorithms. We examine the relationship between the clustering step and the
classification step to evaluate the performance of each.

Keywords: Twitter, hashtag, machine learning, clustering, classification

1. Introduction

Twitter is the leading microblogging social network. It is the ninth most popular site on
the Internet with over 200 million registered users producing over 200 million tweets every
day [1, 2, 3]. Users post publicly viewable tweets of up to 140 characters in length, and follow
other users whose tweets they are interested in receiving. The sheer volume of data produced
by Twitter makes it an attractive area of study for machine learning. Unfortunately, many
standard algorithms for extracting information from a body of text assume correct English.
As a result, they are ineffective at analyzing tweets, which often contain slang, acronyms, or
incorrect spelling or grammar.

Some words within a tweet are prefixed with punctuation symbols to indicate special
meaning. For example, a word prefixed by “#” is a hashtag. Hashtags are a way for a user
to indicate the subject of a tweet in a way that is easy to search for; hashtags are deliberate
metadata. We make the simplifying assumption that a tweet’s hashtag content is a good
approximation of its total content [4]. It follows that when multiple hashtags occur in the
same tweet, they represent a similar approximation of content; the more often two hashtags
co-occur, the more similar their meanings are.

In this paper we present an algorithm to learn the relationships between the literal
content of a tweet and the types of hashtags that could accurately describe that content. As
a classification problem, each tweet is represented as a frequency list of the non-stopword,
non-hashtag words that appear in the tweet; its categories are the hashtags that are used in
the tweet. In order to successfully classify tweets, we overcome problems of co-occurrence
based graph clustering, dimensionality reduction, and multi-class categorization. We show

Date: December 16, 2011.
1



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 2

that clustering algorithms and dimensionality reduction allow us to perform supervised clas-
sification on an otherwise intractable problem; that textual similarity measures may be used
to expand graph-based clustering techniques without a resulting loss of precision; and that
multi-class classification performs better than naive approaches on heavily compressed data.

Hashtag assignment could be used to suggest a tag to a user while they are composing
a tweet, or to categorize untagged tweets as in semi-supervised learning. Hashtag clustering
could also be used independently of classification, for example by inferring a user’s topics of
interest from the clusters to which their most frequently used hashtags belong; users could
be shown other tweets, user profiles or advertisements that correspond to those interests.

2. Related Work

In his work on clustering hashtags, Poschko argues that two hashtags are similar if
they co-occur in a tweet[5]. He creates a clustered graph with co-occurrence frequency
as the distance measure. We expand upon his work by introducing a novel method for
measuring the similarity between two hashtags. We use a larger set of hashtags and test
several clustering methods instead of focusing on only one.

Other work on clustering text-related entities typically focuses on a bag-of-words model
that takes all the words of the entity followed by dimensionality reduction to make clustering
computationally feasible [6, 7]. We perform a similar dimensionality reduction to make
classification feasible.

Davidov et al. attempt to classify the sentiment of a tweet in terms of its mood or
opinion [8]. This requires a considerable amount of linguistic analysis. Our focus on classi-
fying the topic of the tweet instead of the sentiment will not require this analysis, providing
a simpler tool for classification.

Mazzia and Juett investigate the recommendation of hashtags based on a tweet’s content
using naive Bayes classification [9]. We expand on this work by classifying a tweet into
broader hashtag-cluster categories.

3. Our Approach

3.1. Data Description. Our data set is a collection of 476 million tweets from 17 million
unique users spanning from June 2009 to December 2009 collected by Stanford University
through their partnership with Twitter. We limit this data set to 178 million tweets during
July and August in order to save on computation costs for our clustering and classification.

We first perform several preprocessing steps to prepare the data for clustering. We
remove all tweets containing non-ASCII characters in order to focus on English-language
content. From the resulting set, we remove the tweets that contain no hashtags, which
leaves around 16 million tweets. Following Rosa et al., we remove all non-alphanumeric
characters, resulting in a list of hashtags and non-hashtag terms (i.e. words, numbers) used
in each tweet. The resulting data set contains 872,402 hashtags [4].

It may seem worrisome that less than ten percent of the tweets in our subset contain a
hashtag, and that we are basing much of our learning on the presence of hashtags. However,
we still have more than enough data to detect patterns in. Furthermore, we see this as a
potential application area for semi-supervised learning. Once a reliable method of predicting



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 3

the hashtag content of a tweet is developed, the remaining 90 percent of tweets could be
assigned hashtag labels to summarize their subject matter.

The final preprocessing step is to remove certain hashtags that are either auto-generated
by external systems or are overly-general hashtags, i.e. those whose usage is too broad to
consider their co-occurence with other tags to be meaningful. For example, the hashtag #fb
is automatically appended by a particular Facebook application that shares Facebook posts
on Twitter. An example of an overly-general hashtag is #followfriday, which is a hashtag
used on Fridays to recommend other users to follow.

From this preprocessed data, we generate a list of the most frequently used hashtags,
along with the co-occurrence frequencies of all hashtags with each other. We limit our data
set to the most frequently occurring hashtags and the hashtags that they co-occur with in
order to simplify the clustering problem.

3.2. Clustering Hashtags.

3.2.1. Difficulties of Clustering. There are a number of variables that make it difficult to
cluster hashtags. The first major difficulty is that hashtags are not required to be well-defined
words. For example, the hashtag #p2 is often used in tweets with politically progressive
content. In many cases, hashtags are a concatenation of words like #iamthemob.

Some similarity measures like the Wu-Palmer distance [10] and path distance are based
on the synonyms of the words being examined, which means that they can’t be used as the
central component in a clustering algorithm such as k-means. However, our algorithm will
still use this concept in a more limited scope.

The fact that hashtags are often concatenations of words makes it difficult to apply
the Levenshtein distance [11] or other edit distances. For example, under edit distance
the hashtags #iamblessed and #iamthemob are close to one another when in fact their
semantic meanings are very different. We tried to implement a method using this distance,
but it resulted in poor results.

The set of hashtags is constantly increasing in size, with new, “trendy” hashtags ap-
pearing everyday. Therefore we want to use an algorithm that captures the essence of the
most-used hashtags, while remaining computationally tractable. We decided to focus clus-
tering on the 2,000 most frequently used hashtags. However, our algorithm does not discard
the lesser-used hashtags; instead, it focuses its efforts on the most-used hashtags.

3.2.2. Co-Occurrence Relation. Poschko proposes that two hashtags are similar if they co-
occur in a tweet [5]. Two hashtags may be considered similar to each other if they appear
in tweets that discuss the same topic, and are therefore even more similar if they appear
within the same tweet. Poschko calculates the Wu-Palmer distance between hashtags that
co-occur and shows that this value is higher than the distance between two randomly chosen
words. Although the Wu-Palmer distance is a poor distance for hashtags as a whole because
they often are not single words, it does provide a good measure over the set of hashtags
only containing single words. We propose that because the Wu-Palmer distance is high for
reoccurring hashtags that are real words, then the set of all reoccurring hashtags can be used
as baseline for a similarity measure.



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 4

After creating the co-occurrence lists for the 2,000 most used hashtags, we used the
Natural Language Toolkit (NLTK) Python library to find the Wu-Palmer distance for each
hashtag in each list, then took the average over all of the lists. For hashtags that co-occur,
this value was .40, and for random words it was .16. These results verify that the claim by
Poschko applies to our data set: that the hashtags found in the co-occurrence list are much
more similar to each other than random words are.

3.2.3. Minimizing the Level of Noise. Even though the list as a whole exhibits similarity,
there is still noise in the data. For example, #photography is a popular hashtag used to
denote a photograph, and another hashtag is often used within the same tweet to describe
the place the picture was taken, such as #iran. In this case, the fact that these hashtags
co-occur does not mean that they are similar by our definition of similarity. To help minimize
this problem, let nij be the total number of co-occurrences between hashtag i and hashtag
j. Hashtags A and B are kept on the co-occurring list if and only if

min(
nAB∑
nAj

,
nBA∑
nBj

) > 0.05.

This means that hashtags A and B account for at least 5% of each others co-occurring
hashtags. Several different percentages were tested and this one provided the best results.

Noisy relationships still exists after this step. Therefore, we perform another round of
filtering by comparing the contents of the hashtags’ respective co-occurrence lists. Let m be
the total number of hashtags that occur in both hashtag A’s and hashtag B’s co-occurrence
lists. Further, let mA be the total number of occurrences of these hashtags in list A, and mB

be the total number of occurrences in list B. Then the relationship between hashtag A and
hashtag B is maintained if an only if

min(
mA∑
nAj

,
mB∑
nBj

) > 0.2.

Note that by the first level of filtering, this minimum is at least 0.05. Comparing each list
takes a considerable amount of time to run, and this bottleneck was a motivating factor in our
decision to constrain our focus to only 2,000 hashtags. However, it is easily parallelizable,
and when programmed efficiently could allow a much greater number of hashtags to be
considered; we leave such optimizations for future work.

3.2.4. Defining the Similarity Measure. We define the following similarity measure between
hashtags A and hashtags B:

S(A,B) = (
nAB∑
nAj

+
nBA∑
nBj

)/2.

It should be noted that several similarity measures were tested, such as multiplying the two
ratios together, but this proved to be the best measure.

3.2.5. Spectral Clustering and METIS. With our well-defined similarity measure, and there-
fore a similarity matrix, spectral clustering was the ideal candidate to perform clustering
over our list of hashtags. For comparison purposes, we performed spectral clustering and
normalized spectral clustering. We also examined the graph program METIS that claimed
to perform 10% to 50% better than spectral algorithms [12]. This algorithm is based on



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 5

(a) (b) (c)

(d) (e) (f)

Figure 1. Subfigure (a) represents the original undirected graph proposed
by the co-occurring lists. Subfigures (b) and (c) consist only of the neighbors
of apple and iphone respectively (the graph remains undirected). Subfigures
(d) and (e) convert the undirected graphs into an directed graph by weighing
the edges. The filter process examines these directed graphs, and after passing
the final undirected graph with the similarity measure is created (f).

multilevel recursive-bisection and multilevel k-way partitioning schemes. Instead of using an
Laplacian matrix like the spectral methods, METIS takes in the similarity matrix, and uses
the similarity measures to define a weighted graph.

Even though these methods cluster over the 2,000 most used hashtags, we maintain
the co-occurring lists with each of these hashtags. As a result, even the hashtags which are
not in the top 2,000 are then assigned to a cluster. Referring back to Figure 1, if apple and
iphone are clustered together, then mac, google, and app will appear in the same cluster. If a
hashtag appears in more than one cluster, it is assigned to the one it occurs most frequently
in. In all, 26,028 hashtags are clustered using the spectral methods and 26,006 are clustered
using METIS.

3.2.6. Expanding Clusters with Cosine Similarity Measure. In order to expand the breadth
of our clustering techniques, we optionally find unclustered tags that are textually very
similar to a tag in an existing cluster, and then expand the cluster to include the previously-
unclassified tag.

To determine the textual similarity of two tags, we first vectorize the tags and then take
their cosine similarity. Our vectorization technique is similar to taking the character-wise



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 6

trigram of a word, with a simplification in order to reduce the cost of computing the cosine
of two vectors.

We represent each tag t as a list of tokens with one token for each letter in the tag, plus
an additional dummy token at the beginning of the list and one at the end of the list. The
binary high-dimensional sparse representation b of a tag, indexed using i, j, k ∈ [1− 38], is

b(tag)i,j,k = 1{subseq(i,j,k)∈tag}

In other words, each dimension in b corresponds to a possible sequence of three charac-
ters; the corresponding value in b is 1 if that sequence of characters is in the list of tokens
l, or 0 otherwise. Restricting these values to 0 or 1 allows us to find the dot product of two
vectors more quickly than allowing each dimension to take on larger range of values. The
cosine similarity between two binary vectors is the dot product of the two vectors divided
by the product of the magnitudes of the vectors:

cos(x, y) =

∑
i,j,k 1{xi,j,k=yi,j,k=1}√∑

j x
2
j +

√∑
j y

2
j

In order to pair an unclassified tag with an existing cluster, we find the clustered tag
from the top 2,000 tags that it is most similar to. If their similarity is above the threshold
0.5, we add the tag to the cluster. Otherwise, we leave the tag unclustered. Performing
this additional hashtag-class assignment increases the number of tags assigned to any cluster
from 26,028 to 52,146 under the spectral clustering methods, and from 26,006 to 52,032
under METIS.

3.3. Classification. In the classification step, we attempt to classify tweets into classes
defined by the hashtag clusters. Intuitively, the idea is that given the text of a tweet, the
classification algorithms will be able to suggest what hashtags it should contain. Since we
have actually clustered the hashtags, we will not be suggesting what hashtags the tweet will
contain, but will suggest which cluster the hashtag is most likely to fall into.

3.3.1. Description of feature vectors and classes. For classification, we have a corpus of text
tweets that we will map to clusters of hashtags. We can consider each tweet a document and
use standard document classification techniques in this step. We create a set of all unique
words (removing common stopwords and all hashtags) that occur in all the tweets. Let
us assume that there are d words in the dictionary. The feature vector is a d-dimensional
integer-valued vector where the ith entry in the vector represents the frequency in the tweet
of the ith word in the set.

The classes that each feature vector is classified into is represented by the hashtag
clusters. A tweet belongs to a class if a hashtag appearing in the tweet is part of a certain
cluster. When generating the training data, if a tweet has multiple hashtags, we consider
that tweet to be a part of multiple classes so we add the same training point multiple times
with different classes as the target. We do this since the text of a tweet is related to all the
hashtags in the tweet.

Due to the size of our training sets, each feature vector was an extremely-sparse high-
dimensional vector. Due to the number of training samples and the high dimensionality of



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 7

the vector, attempting to classify over the complete data was intractable on any machines
that we had access to. To get around this problem, we used two solutions.

3.3.2. Classification using Dimensionality Reduction. We used the PCA tools from the Python
libraryscikit-learn to reduce the dimensionality in our data. For our data set containing
100,000 tweets, we had approximately 46,000 dimensions. We reduced this to 100 dimen-
sions using PCA. Once we reduced the number of dimensions, it was possible to apply stan-
dard classification algorithms to the data. We applied naive Bayes and Linear Discriminant
Analysis the to the reduced-dimension data.

Naive Bayes initially performed poorly because PCA creates real-valued feature vectors
whose values don’t always mean much. Instead, we used scikit-learn’s implementation of
Bernoulli naive Bayes, which binarizes the data by replacing all positive values in the feature
vector with the value 1 and all negative values with the value 0. This performed much
better than the other naive Bayes implementations. LDA performed acceptably well on the
dimension-reduced data without the need to create a binary representation of the data.

3.3.3. Classification using SVM algorithm optimized for sparse vectors. An alternative ap-
proach to deal with the high dimensionality of our feature vectors is to use an algorithm that
was designed to use the sparse representation of a vector. By representing the feature vectors
as a sparse vector, the problem becomes tractable and we don’t need to do any dimensional-
ity reduction. We used scikit-learn’s implementation of a radial basis SVM classifier, which
supports sparse data represenatations. We use a one-versus-all strategy to make SVM a
multi-class classifier. We also perform SVM classification on the PCA-reduced data.

3.3.4. Majority Vote classification. We determine the majority vote classification accuracy
to use as a baseline measure. The majority vote accuracy is defined as the percentage of
data points whose class label is the most common class label.

4. Experiments and Results

4.1. Clustering. We focused on clustering the top 2,000 most used hashtags. Decreasing
this number would reduce the breadth of our clusters coverage; on the other hand, increasing
this number made the similiarity filtering step intractable. We performed several trials on
the 5,000 most frequently used hashtags without running the step, but most of the hashtags
ended up in one large cluster while the rest of the clusters consisted of single hashtags. We
believe that this was caused by noisy connections, which inadvertently linked most of the
hashtags closely together. This issue is removed during the filtering described earlier.

Only 1,557 hashtags remained after filtering. Unfortunately, there is no intuitive way to
pick the correct number of clusters to generate. Spectral clustering does use k-means on the
eigenvectors of the Laplacian matrix, which suggests that we could graph the within-cluster
scatter and find the knee. Unfortunately, for spectral clustering, increasing k increases the
dimension of the eigenvectors that are evaluated in k-means. As a result, an increase in k
leads to an increase in within-cluster scatter. We tested several different values for k, and
evaluated the size of the clusters that were formed. A small value for k resulted in hashtag
clusters that were not indicative of one single topic. Picking a large value of k separated



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 8

clusters that should actually be in the same group. We decided that k=300 provided the
best trade-off between these two problems.

In order to evaluate the clustering techniques we randomly selected 100 of the 300
clusters and score them manually on a scale of 1 to 5, with 1 representing a cluster that
makes no sense and 5 being a perfect cluster. Factors that go into this rating include size of
the cluster, number of matching hashtags that relate to the topics, and relation of topics if
more than one topic arises. Some examples of clusters and their ratings are given below:

bears beatles chargers cowboys fantasyfootball jets nyg packers panthers

patriots raiders steelers vick vikings

Score: 5 (collection of all football teams)

amazing comic comics cool funny humor strange voss webcomic webcomics weird

Score: 3 (clearly comics are represented, but there are random words such as

amazing and weird)

crnc failedchildrensbooktitles fishy grizzly obamacare waterloo

Score: 1 (list looks simply random)

Table 1. Ratings for the Clusters

Method 1 2 3 4 5 Average

Spectral 21 6 10 21 35 3.23
Normalized Spectral 36 7 8 15 34 3.04

METIS 30 13 13 13 15 2.22

It is clear from Table 1 that spectral clusters performs the best, with normalized spectral
close behind. Notably, normalized spectral tended to score around the two extremes, with
not many scores in the middle values. METIS contained many clusters that should have been
clustered together. For example, it contained five clusters of baseball teams, whereas the
spectral methods grouped these teams into the same cluster. This implies that the clusters
created by the spectral method would be more useful in identifying topics comprising may
hashtags. It’s also possible that METIS would avoid this issue if k was chosen to be a smaller
number.

4.2. Classification. We split our data into 90% training data and 10% testing data. We
do not perform cross-validation; however, anecdotally, results did not vary by more than a
couple of percentage point over several different divisions of the data.

We use majority-vote classification accuracy as a baseline to measure our performance
against. The majority-vote accuracy is simply the percentage of the data points whose
cluster is the most common cluster among the data points.

4.3. Discussion. Over all clustering techniques, all classification techniques using PCA-
reduced data perform better than majority vote; SVM without PCA reduction performs no
better than majority vote. This shows that dimensionality reduction serves two purposes:
it makes the problem computationally feasible, and it improves performance by capturing
regularities in the data.



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 9

Table 2. Classification Performance

Bern. N.B. LDA SVM Majority SVM, no PCA

Spectral 26.5 18.3 25.1 11.7 11.8
Spectral w/ Cos. Sim. 26.5 18.6 24.1 11.1 10.8

Norm. Spectral 21.4 17.2 25.2 17.9 17.9
Norm. Spectral w/ Cos. Sim. 22.4 17.3 25.1 17.4 17.6

METIS 14.8 11.8 13.8 4.1 4.1
METIS w/ Cos. Sim. 14.9 12.1 14.1 3.9 3.9

Our data show that the classification techniques performed similarly well when given
clusters that included hashtags added via cosine-similarity measures as when they did not.
This suggests that the cosine similarity technique allows us to expand the breadth of clus-
tering without negatively affecting the semantic cohesiveness of the clusters.

Although all three classification techniques over PCA-reduced data perform better than
majority vote, the Bernoulli Naive Bayes and SVM classifiers perform better than LDA over
all clustering techniques. This suggests that when PCA reduction is applied the data points
are not easily linearly separable, but that limitation may be overcome in the case of Bernoulli
Naive Bayes due to the binarization of the data, or in the case of the SVM classifier by using
a non-linear kernel.

Under all classification techniques, data clustered by the METIS algorithm had a lower
classification success rate than all other clustering algorithms. In our manual examination
of the clusters produced by each technique, we saw that METIS produces clusters that
seem less semantically cohesive than the other techniques. We conjecture that classification
accuracy is therefore an indicator of the quality of a clustering technique. Alternatively,
METIS’s worse performance may be a result of the distribution of tags to clusters; the lower
accuracy of the majority vote classifier indicates that hashtags are more evenly spread among
clusters under METIS than under the other techniques, which may result in more difficulty
performing classification regardless of the semantic cohesiveness of the clusters.

5. Future Work

5.1. Clustering. We have shown that our clustering method has promise; we believe the
method could be further improved. During the preprocessing step illustrated in Figure 1
the undirected graph is transformed to a directed graph that has the properties of a Markov
chain. It would therefore be possible to perform a Markov Cluster Algorithm as proposed
by Dongen [13]. It is possible that this algorithm would be less affected by noise, which
would reduce the need for the preprocessing step and allow a larger number of hashtags
to be clustered. Parallelizing the preprocessing step could also allow us to cluster a larger
number of hashtags.

There may be a better way to pick the number of clusters. Increasing K was meant to
increase the number of topics the clusters represented. However, instead of splitting large
clusters apart into smaller topics, our algorithm would often pull one or two hashtags out at
a time. This was most likely because k-means was always done on the full graph. It could be



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 10

better to first apply k-means to the whole set, and have k be a small number. Then for each
of these clusters, perform localized k-means. This method could avoid the issue of creating
clusters that are too small in size.

5.2. Classification. We discovered that the performance of classification algorithms im-
proves vastly if we shorten the time frame from which the data is drawn. It would be worth
exploring the effects of introducing temporal information into our feature vectors since the
importance of some hashtags seems to be limited to specific times.

Extending the co-occurrence idea from clustering, it could be worth exploring clustering
of non-hashtag terms using a similarly defined measure and performing classification using
these clusters of terms. This would result in lower-dimensional feature vectors, possibly
making learning algorithms tractable without the use of PCA. Using this co-occurrence data
might also be useful in classification of documents from different domains.

6. Conclusion

With a growing, diverse membership and masses of new information being added daily
[14], opportunities to find useful information from Twitter will also grow. We have presented
two new approaches that help unlock this information. The first focuses on clustering hash-
tags into meaningful topics; the second uses these clusters to identify the topic of tweets
through classification. We also present two novel similarity measures that could be useful
beyond the scope of the methods we examined.

While we are pleased with the preliminary findings of our clustering and classification
methods, our project hit some bumps along the way, causing us to deviate from our initial
path. At first we attempted to cluster hashtags based on string similarity instead of semantic
similarity. We found that the clusters created using these metrics were not very meaningful.
This makes sense in hindsight becuase there are no rules of hashtag usage–they are used in a
diverse variety of ways, and there are many unique hashtags that are semantically similar but
not structurally similar. We also initially believed we would be able predict what a certain
user is going to tweet about next based on their previously used hashtags. Instead, we found
that many users preferred a very small set of unique hashtags, which made prediction more
reliable but much less meaningful. These roadblocks led us into our current project plan,
which ended up being a promising direction for future work.

7. Project Member Contributions

All team members participated in data processing early in the project. Most theory
behind our project was a team effort. Large scale data processing was handled by Dolan. Our
preliminary research into hashtag usage prediction was co-developed by Akshay and Miller,
working on naive Bayes and LDA, respectively. Classifying hashtags based on tweets was
primarily coded by Akshay and Miller, with Dolan assisting with execution. Exploration into
and coding of different clustering techniques, and the development of the similarity measure
and filtering was handled by Greg. Clustering analysis was done by Dolan and Greg. Miller
worked on the trigram cosine similarity metric. Writing the paper was a team effort.



CLASSIFICATION OF TWEETS VIA CLUSTERING OF HASHTAGS 11

References

[1] M. Shiels. Twitter co-founder jack dorsey rejoins company. BBC News, 2011.
[2] Alexa. Alexa top 500 sites on the web, 2011. URL http://www.alexa.com/topsites.
[3] Twitter.com. Your World, More Connected, 2011. URL http://blog.twitter.com/2011/08/your-

world-more-connected.html.
[4] Kevin Dela Rosa, Rushin Shah, Bo Lin, Anatole Gershman, and Robert Frederking. Topical Clustering

of Tweets. Corpus, 2011. URL http://www.cs.cmu.edu/~kdelaros/sigir-swsm-2011.pdf.
[5] Jan Poschko. Exploring twitter hashtags. Retrieved from arXiv.org; not yet published, 2011. URL http:

//arxiv.org/pdf/1111.6553v1.
[6] Anand Karandikar. Clustering short status messages : A topic model based approach. Work, 2010. URL

http://ebiquity.umbc.edu/get/a/publication/518.pdf.
[7] Marc Cheong and Vincent Lee. A Study on Detecting Patterns in Twitter Intra-topic User and Message

Clustering. IEEE, August 2010. ISBN 978-1-4244-7542-1. 3125–3128 pp. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5597282.
[8] Dmitry Davidov, Oren Tsur, and Ari Rappoport. Enhanced sentiment learning using twitter hashtags

and smileys. staffscienceuvanl, (August):241–249, 2010. URL http://eprints.pascal-network.org/

archive/00007073/.
[9] Allie Mazzia and James Juett. Suggesting hashtags on twitter. EECS 545 Project, Winter Term, 2011.

URL http://www-personal.umich.edu/~amazzia/pubs/545-final.pdf.
[10] Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. Proceedings of the 32nd Annual

Meeting of the Association for Computational Linguistics, page 6, 1994. URL http://arxiv.org/abs/

cmp-lg/9406033.
[11] V I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics

Doklady, 10(8):707–710, 1966. URL http://sascha.geekheim.de/wp-content/uploads/2006/04/

levenshtein.pdf.
[12] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998. URL http://link.aip.org/

link/SJOCE3/v20/i1/p359/s1&Agg=doi.
[13] S Van Dongen. Performance criteria for graph clustering and markov cluster experiments. TRINS R0012,

(INS-R0012), 2000. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.9783.
[14] Kris Holt. Study: 13november, 2011. URL http://www.scribbal.com/2011/06/study-13-of-us-

internet-users-are-on-twitter-up-from-8-in-november/.


