
Unsupervised	learning:	Data	
Mining	

Associa6on	rules	and	frequent	
itemsets	mining	



Data	Mining	concepts		

•  Is	the	computa6onal	process	of	discovering	
pa<erns	in	very	large	datasets	(rules,	
correla6ons,	clusters)	

•  Untrained	process:	no	previous	knowledge	is	
provided.	Rules	are	learned	from	available	
data	

•  Will	see		two	methods:	rule	learning	and	
clustering	



Examples	

•  Profiling	buyers:	“Ninety-percent	of	transac6ons	
that	purchase	bread	and	bu<er	also	purchase	
milk”	(IF	BREAD	and	BUTTER	then	Pr(MILK)=0.9)	

•  Medical	domain:	IF	AGE>=70	and	Smoke=Yes	and	
Gender=M	then	RCA>=50	(Right	Coronary	Artery)	

•  Etc.	
•  Note	that	task	is	unsupervised:	system	provides	
SUPPORT	and	CONFIDENCE	(see	Decision	Trees)	
for	each	learned	rule,	based	on	untagged	data,	
but	precision	must	be	assessed	by	human	experts	



Associa6on	Rules	
•  Model	and	terminology	is	influenced	by	the	main	
ini6al	applica6on	domain:	analyzing	buyers	
transac6ons		

•  Input	to	the	learner	is	a	set	of	“transac6ons”	
consis6ng	in	a	list	of	“purchased	items”	

•  This	model	has	a	general	validity:	e.g.	in	the	
medical	domain	items	are	medical	condi6ons	and	
lifestyles	(blood	pressure,	somoking,	obesity..);	in	
web	users’	profiling	items	are	visited	web	pages,	
in	movie	recommenda6on	they	are	movies	seen	
by	users,	etc.		
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Association Rule Mining 

•  Definition 
 Finding frequent patterns, associations, correlations, or 
causal structures among sets of items or objects in 
transaction databases, relational databases, and other 
information repositories. 

•  Applications 
 Basket data analysis, medical domain, cross-marketing, 
catalog design, clustering user profiles  (e.g. Twitter 
Friends) , etc. 

•  Rule form:	
–  Rule form:  “Body à Head [support, confidence]”. 
buys(x, “diapers”) à  buys(x, “beers”) [0.5%, 60%] 
follows(x,”KatyPerry”)^follows(x,”LadyGaga”)è>follows(x,”
BritneySpears”) [0.7%,70%] 
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Overview 

•  Basic Concepts of Association Rule Mining 
•  The Apriori Algorithm (Mining single 

dimensional boolean association rules) 
•  Methods to Improve Apriori’s Efficiency 
•  Frequent-Pattern Growth (FP-Growth) Method 
•  From Association Analysis to Correlation 

Analysis 
•  Summary	



7	

Association Model: Problem Statement 

•  I ={i1, i2, ...., in}  a set of items  

•  J = P(I )= {j1, j2, ...., jN} (powerset) set of all possible subsets of 
the set of items, N=2n (e.g: jl={ikinim} ) 

•  Elements of J are called itemsets (e.g: jl={beer coke chips} ) 

•  Transaction Tk (also called tuple):  <tid,j> tid is a transaction 
identifier,  j is an element of J 

•  Data Base: D = set of transactions 

•  An association rule is an implication of the form :  X-> Y, 
where X, Y are disjoint subsets of I (elements of J ) 
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Transac6ons	Example	
	TID Purchased Product 

1   MILK, BREAD, EGGS 
2   BREAD, SUGAR 
3   BREAD, CEREAL 
4   MILK, BREAD, SUGAR 
5   MILK, CEREAL 
6   BREAD, CEREAL 
7   MILK, CEREAL 
8   MILK, BREAD, CEREAL, EGGS 
9   MILK, BREAD, CEREAL 

 

Transac6on	ID	
Items	

Itemset	
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Another	Transac6ons	Example	
	

USER Likes 
@pippo   KatyPerry,LadyGaga,TaylorSwift 
@minny   Obama,YouTube 
@giorgio   BritneySpears,Rihanna 

@32   Instagram,Starbuks 
@yx5   Rhianna,Obama 

 

Transac6on	ID	

Items	

Itemset	
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Transac6on	database:	Example	
(neutral)		

	TID Items 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 
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Transac6on	database:	binary	
representa6on	

TID A B C D E 
1 1 1 0 0 1 
2 0 1 0 1 0 
3 0 1 1 0 0 
4 1 1 0 1 0 
5 1 0 1 0 0 

6 0 1 1 0 0 
7 1 0 1 0 0 
8 1 1 1 0 1 
9 1 1 1 0 0 

 

TID Items 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 

 

A<ributes	converted	to	binary	flags	

“1”	in	cell	(i,j)	means	that	the	a<ribute	j	is	included	in	the	itemset	of	transac6on	i		



Simpler	ways	to	express	rules	

•  First Order Logic: 
follows(x,”KatyPerry”)^follows(x,”LadyGag
a”)èfollows(x,”BritneySpears”) 
•  Synthetic representation: 
KatyPerry,LadyGagaèBritneySpears 
•  Formally: 
XèY	 X,Y ⊆ J



13	

Rules accuracy estimates: Support & 
Confidence 

•  	Simple Formulas: 
– Confidence (XàY) = #tuples (transactions)  

containing both X & Y / #tuples containing 
only X  , e.g,:  Pr(Y|X) = Pr(X U Y ) / Pr (X) 

–  Support (XàY) = #tuples containing both 
X & Y/ total number of tuples  in the DB  
Pr(X U Y) (you can also specify absolute 
support, only denominator) 

– Note X, Y either items or itemsets (an item 
is a 1-dimensional itemset) 

– Note same definitions as for Dtrees 



Support & Confidence	
•  How do we use support and confidence? 
•  Contrary to Dtrees, they are used for seaching a 

solution, rather than for evaluation: 
 Find all the rules X à  Y with confidence and support 
>= threshold 
–  support, s, is the probability that a transaction 

contains {X, Y} 
–  confidence, c, is the conditional probability that a 

transaction having {X} also contains Y 
–  Rules with support and confidence over a given 

threshold θ are called strong rules 
–  θ is a parameter  
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Associa6on	Rules:	finding	“strong”	
rules	

Q:	Given	a	set	of	transac0ons,	what	
associa0on	rules	have	min_sup	=	2	and	
min_conf=	50%	?	
	
A,	B	=>	E		supp=2		(or	2/9)	
There	are	2	transac6ons	(support)	with	A	

and	B		and	E		(transac6ons	1	and	8)	
A,	B	=>	E		:	conf=2/4	=	50%	
(4	transac6ons	include	A,B:	1,4,8,9,		of	

which	only	2	also	include	E)	
	
											

TID List of items 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 
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Associa6on	Rules	Example	(2)	
•  There	are	several	rules	that	can	be	derived	

from	itemset	{A,B,E},	but	only	few	meet	the	
requirement	minconf=50%	

					A,	B	=>	E		:	conf=2/4	=	50%		(A,B:	1,4,8,9)	
					A,	E	=>	B		:	conf=2/2	=	100%	(A,E:1,8)	
					B,	E	=>	A		:	conf=2/2	=	100%		(B,E:1,8)	
					E	=>	A,	B		:	conf=2/2	=	100%			(E:1,8)	
Other	rules	don’t	qualify	(since	confidence	<50%)	
			A	=>B,	E	:	conf=2/6	=33%<	50%		(A:1,4,5,7,8,9)	
				B	=>	A,	E	:	conf=2/7	=	28%	<	50%		(B:1,2,3,4,6,8,9)	

	!=>	A,B,E	:	conf:	2/9	=	22%	<	50%	({} :
1,2,3,4,5,6,7,8,9)	

						

TID List of items 
1   A, B, E 
2   B, D 
3   B, C 
4   A, B, D 
5   A, C 
6   B, C 
7   A, C 
8   A, B, C, E 
9   A, B, C 

 



Genera6ng	associa6on	rules	from	a	
set	of	transac6ons	T		

Usually	consists	of	two	subproblems	:	
	

1)  Finding	frequent	itemsets	whose	occurences	exceed	a	
predefined	minimum	support	threshold	

2)  Deriving	associa6on	rules	from	those	frequent	itemsets	(with	
the	constrains	of	minimum	confidence	threshold)	

•  These	two	sub-problems	are	soleved	itera6vely	un6l	new	rules	
no	more	emerge	

•  The	second	subproblem	is	quite	straight-	forward	and	most	of	
the	research	focus	is	on	the	first	subproblem	

•  Note	that	in	real	domains	the	main	problem	is	computability	over	
very	large	(big)	data	–	parallelizable	algorithms	are	preferred		
(e.g.	h<p://dmkd.cs.vt.edu/papers/ICDMW10.pdf	presents	a	
MapReduce	implementa6on)	
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Overview 

•  Basic Concepts of Association Rule Mining 
•  The Apriori Algorithm (Mining single 

dimensional boolean association rules) 
•  Methods to Improve Apriori’s Efficiency 
•  Frequent-Pattern Growth (FP-Growth) Method 
•  From Association Analysis to Correlation 

Analysis 
•  Summary	
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The Apriori Algorithm: Basics 
 The Apriori Algorithm is an influential algorithm for mining 
frequent itemsets for boolean association rules. 

 
Key Concepts : 
•  Frequent Itemsets: The sets of items which meet the minimum 

support requirement (denoted by Lk for itemsets of k 
elements). 

•  Apriori Property: Any subset of a frequent itemset must be 
frequent.  (if ABC is “frequent” according to a given min-
supp constraint, clearly also AB, BC, AC, A, B and C must be) 

•  Join Operation: To find Lk , a set of candidate k-itemsets is 
generated by joining Lk-1 with itself (e.g. if L2 includes all and 
only  item pairs with freq>=min-supp, then L3 – because of the 
Apriori property- can only include triples generated by 
joining elements of L2).  
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The Apriori Algorithm: 2 phases 

1.  Find the frequent itemsets: the sets of items that have 
minimum support 

–  Sice a subset of a frequent itemset must also be a 
frequent itemset  (Apriori property), iteratively find 
frequent itemsets with cardinality from 1 to k (k-
itemset) 

2.  Use the frequent itemsets to generate association rules. 
 



Found	to	be	
Infrequent	

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustra6ng	Apriori	Principle	
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned	
supersets	

If	AB	is	infrequent,	by	the	
Apriori	rule,	all	its	supersets	
are	infrequent	and	must	be	pruned	



The	Apriori	algorithm:	why	the	name	

•  Ini6al	informa6on:	transac6on	database	D	and	
user-defined	numeric	minimun	support	
threshold	min_sup	

•  Algorithm	uses	knowledge	from	previous	
itera6on	phase	to	produce	frequent	itemsets		

•  This	is	reflected	in	the	La6n	origin	of	the	word	
apriori	that	means	”from	what	comes	before”	



The	Apriori	Algorithm:	Find	phase	
•  Let’s	define:	
	 	Ck	as	a	candidate	itemset	of	size	k	
	 	Lk	as	a	frequent	itemset	of	size	k	

•  Main	steps	of	itera6on	are:	
To	Find	frequent	itemset	Lk-1	(star6ng	from	L1)	
1) Join	step:	Ck	is	generated	by	joining	Lk-1	with	itself	
(cartesian	product	Lk-1	x	Lk-1)	

2) Filter	(Prune)	step	(Apriori	property):	Any	(k	−	1)	size	
itemset	that	is	not	frequent	cannot	be	a	subset	of	a	
frequent	k	size	itemset,	hence	should	be	removed	from	Ck	

Iterate:	Frequent	set	Lk	has	been	achieved,	k:=k+1	



The	Apriori	Algorithm:	Find	phase	(2)	

•  Algorithm	uses	breadth-first	search	and	a	
hash	tree	structure	to	handle	candidate	
itemsets	efficiently	

•  Then	frequency	for	each	candidate	itemset	is	
counted	

•  Those	candidate	itemsets	that	have	frequency	
higher	than	minimum	support	threshold	are	
qualified	to	be	frequent	itemsets	



Apriori	algorithm	in	pseudocode	(Find	phase)	

ç	Join	step:	create	candidates	
from	Lk-1		

ç	Filter	(prune)	step:	
check	min_supp	
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The Apriori Algorithm: Example 

•  Consider a database, D , consisting 
of 9 transactions. 

•  Suppose min. support count 
required is 2 (i.e. min_sup =ε= 2/9 
= 22 % ) 

•  Let minimum confidence required 
be 70%. 

•  We have first to find out the 
frequent itemsets using Apriori 
algorithm (find phase). 

•  Then, Association rules will be 
generated using min. support & 
min. confidence.  (use phase) 

TID List of Items 

T100 I1, I2, I5 

T101 I2, I4 

T102 I2, I3 

T103 I1, I2, I4 

T104 I1, I3 

T105 I2, I3 

T106 I1, I3 

T107 I1, I2 ,I3, I5 

T108 I1, I2, I3 
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FIND: Iteration 1- Generating 1-itemset 
Frequent Pattern 

Itemset Sup.Count 

{I1} 6 

{I2} 7 

{I3} 6 

{I4} 2 

{I5} 2 

Itemset Sup.Count 

{I1} 6 

{I2} 7 

{I3} 6 

{I4} 2 

{I5} 2 

• 	 According to the algorithm, the set of frequent 1-itemsets, L1 , 
consists of the candidate 1-itemsets satisfying minimum support.	

• In this first iteration, all items in D are members of the set of 
candidate (they all meet the min-supp). 

Scan D for 
count of each 
candidate 

Compare candidate 
support count with 
minimum support 
count 

C1 L1 
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It 2: Generating 2-itemset Frequent Pattern 

Itemset 

{I1, I2} 

{I1, I3} 

{I1, I4} 

{I1, I5} 

{I2, I3} 

{I2, I4} 

{I2, I5} 

{I3, I4} 

{I3, I5} 

{I4, I5} 

Itemset Sup. 
Count 

{I1, I2} 4 

{I1, I3} 4 

{I1, I4} 1 

{I1, I5} 2 

{I2, I3} 4 

{I2, I4} 2 

{I2, I5} 2 

{I3, I4} 0 

{I3, I5} 1 

{I4, I5} 0 

Itemset Sup 
Count 

{I1, I2} 4 

{I1, I3} 4 

{I1, I5} 2 

{I2, I3} 4 

{I2, I4} 2 

{I2, I5} 2 

Generate 
C2 
candidates 
from L1 

(L1xL1) 

C2 

C2 

L2 

Scan D for 
count of 
each 
candidate 

Compare 
candidate 
support count 
with 
minimum 
support count 

TID List of 
Items 

T100 I1, I2, I5 

T101 I2, I4 

T102 I2, I3 

T103 I1, I2, I4 

T104 I1, I3 

T105 I2, I3 

T106 I1, I3 

T107 I1, I2 ,I3, I5 

T108 I1, I2, I3 
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It 2: Generating 2-itemset Frequent Pattern [Cont.] 

•  To discover the set of frequent 2-itemsets, L2 , the 
algorithm uses L1 Join L1 to generate a candidate set of 2-
itemsets, C2. 

•  Next, the transactions in D are scanned and the support 
count for each candidate itemset in C2 is accumulated (as 
shown in the middle table). 

•  The set of frequent 2-itemsets, L2 , is then determined, 
consisting of those candidate 2-itemsets in C2 having 
minimum support. 

•  Note: We haven’t used Apriori Property yet. 
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It 3: Generating 3-itemset Frequent Pattern 

Itemset 

{I1, I2, I3} 

{I1, I2, I5} 
…. 

Itemset Sup. 
Count 

{I1, I2, I3} 2 

{I1, I2, I5} 
…. 

2 
 

Itemset Sup 
Count 

{I1, I2, I3} 2 

{I1, I2, I5} 2 

C3 C3 

L3 

Scan T for 
count of 
each 
candidate 

Compare 
candidate 
support count 
with min 
support count 

Scan D for 
count of 
each 
candidate 

L2xL2 

•  The generation of the set of candidate 3-itemsets, C3 , involves use of 
the Apriori Property (see next slide). 

•  In order to find candidates C3, we first compute L2 Join L2. 

•  C3 = L2 Join L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, 
{I2, I4, I5}}. 

•  Then, Join step is complete and Prune step will be used to reduce the 
size of C3. Prune step helps to avoid heavy computation due to large Ck. 
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It 3: Generating 3-itemset Frequent Pattern [Cont.] 

•  Based on the Apriori property that all subsets of a frequent itemset must 
also be frequent, we can determine that four candidates in C3 cannot 
possibly be frequent. How ? 

•  For example , lets take {I1, I2, I3}. The 2-item subsets of it are {I1, I2}, {I1, I3} 
& {I2, I3}. Since all 2-item subsets of {I1, I2, I3} are members of L2, we will 
keep {I1, I2, I3} in C3. 

•  Lets take another example of {I2, I3, I5} which shows how the pruning is 
performed. The 2-item subsets are {I2, I3}, {I2, I5} & {I3,I5}.  

•  BUT, {I3, I5} is not a member of L2 and hence it is not frequent violating 
Apriori Property. Thus we will have to remove {I2, I3, I5} from C3. 

•  Eventually, we get C3 = {{I1, I2, I3}, {I1, I2, I5}} after checking for all members  
of result of Join operation for Pruning. 

•  Finally, the transactions in D are scanned again in order to determine L3 
from C3,  consisting of those (survived) candidates 3-itemsets in C3 having 
minimum support. 

C3= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.	
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It 4: Generating 4-itemset Frequent Pattern 

•  The algorithm uses L3 Join L3 to generate a candidate set 
of 4-itemsets, C4. Although the join results is {{I1, I2, I3, 
I5}}, this itemset is pruned since its subset {{I2, I3, I5}} is 
not frequent, thus violating the Apriori property.  

•  Thus, C4 = φ , and algorithm terminates, having found 
all of the frequent items. This completes our Apriori 
Algorithm. 

•  What’s Next ?  
 Phase 2 (use): These frequent itemsets will be used to 
generate strong association rules ( where strong 
association rules satisfy both minimum support & 
minimum confidence). 
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USE phase: Generating Association Rules from 
Frequent Itemsets 

•  Procedure: 
•  Let L=ULk be the set of frequent itemsets derived by 

Apriori during iterations k=1..n  
•  For each frequent itemset “l” in L , generate all nonempty 

subsets of l. 
•  For every nonempty subset s of l, output the rule “s à (l-s)” 

for all subsets l and s such that: 
 support_count(l) / support_count(s) >= min_confidence  

 
•  Back To Example: 

 After phase 1 of the algorithm we obtain: L = {{I1}, {I2}, {I3}, {I4}, {I5}, 
{I1,I2}, {I1,I3}, {I1,I5}, {I2,I3}, {I2,I4}, {I2,I5}, {I1,I2,I3}, {I1,I2,I5}}. 
–  Lets consider l = {I1,I2,I5}.  
–  All its non-empty subsets are {I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, {I5}. 
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USE phase: Generating Association Rules from 
Frequent Itemsets [Cont.] 

•  Let minimum confidence threshold is , say 70% (means 
that, given rule s->(l-s)  sc(l)/sc(s)>=0.7  where 
sc=support-count) 

•  The resulting association rules are shown below, each 
listed with its confidence. 
–  R1: I1 ^ I2 à I5  s à (l-s) 

•  Confidence = sc{I1,I2,I5}/sc{I1,I2} = 2/4 = 50% 
•  R1 is Rejected. 

–  R2: I1 ^ I5 à I2  
•  Confidence = sc{I1,I2,I5}/sc{I1,I5} = 2/2 = 100% 
•  R2 is Selected. 

–  R3: I2 ^ I5 à I1 
•  Confidence = sc{I1,I2,I5}/sc{I2,I5} = 2/2 = 100% 
•  R3 is Selected. 

l = {I1,I2,I5}, s: {I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, {I5}	
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Use phase: Generating Association Rules from 
Frequent Itemsets [Cont.] 

–   R4: I1 à I2 ^ I5 
• Confidence = sc{I1,I2,I5}/sc{I1} = 2/6 = 33% 
• R4 is Rejected. 

–   R5: I2 à I1 ^ I5 
• Confidence = sc{I1,I2,I5}/{I2} = 2/7 = 29% 
• R5 is Rejected. 

–   R6: I5 à I1 ^ I2 
• Confidence = sc{I1,I2,I5}/ {I5} = 2/2 = 100% 
• R6 is Selected. 
    In this way, we have found three strong 

association rules: R2, R3 and R6 
The process is repeated for all elements in L 
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Overview 

•  Basic Concepts of Association Rule Mining 
•  The Apriori Algorithm (Mining single 

dimensional boolean association rules) 
•  Methods to Improve Apriori’s Efficiency 
•  Frequent-Pattern Growth (FP-Growth) Method 
•  From Association Analysis to Correlation 

Analysis 
•  Summary	



Problems	of	Apriori	

•  To	discover	a	100-itemset	

•  2100-1	candidates	have	to	be	generated	

														2100-1=1.27*1030		
	

(Do	you	know	how	big	this	number	is?)	
To	improve	efficiency:	

–  	 paralleliza6on	techniques	(your	Big	Data	course!)	
–  		more	efficient	algorithms	(next) 		



38	

Efficiently Mining Frequent Patterns Without 
Candidate Generation: FP Growth 

•  Compress	a	large	database	into	a	compact,		Frequent-Pa<ern	
tree	(FP-tree)	structure	
–  highly	condensed,	but	complete	for	frequent	pa<ern	
mining	

–  avoid	costly	database	scans	
•  	FP-Growth:	allows	frequent	itemset	discovery	without	

candidate	itemset	genera6on.	Two-phase	approach:	
–  Phase	1:	Build	a	compact	data	structure	called	the	FP-tree	

•  	Built	using	2	passes	over	the	data-set.	
–  Phase	2:	Extracts	frequent	itemsets	directly	from	the	FP-
tree	
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FP-Growth Method: Construction of FP-Tree 

•  First, create the root of the tree, labeled with “null”. 
•  Scan D to create 1-itemsets and then L1 (list of  single items ordered by 

frequency) 
•  Scan the database D a second time.  
•  Re-order the  items in each transaction according to their frequency in D.  E.g., 

if tj=abc and freq(b)>freq(c)>freq(a) then re-order as tj=bca 
•  A branch of the tree is created for each (re-ordered) transaction: nodes in the 

branch are in decreasing frequency order, as for the transaction string,   and each 
node of the branch  is labeled with an item having its support count separated 
by colon (e.g.: b:6èc:4èa:3).  

•  Any new transaction (and its related branch) is first overlapped with existing 
branches (starting from the prefix of the sequence), and if no overlapping is 
possible, a new branch is created. Whenever an overlapping is possible, we just 
increment the support count of the common nodes. 

•  To facilitate tree traversal, an item header table is built so that each item points 
to its occurrences in the tree via a chain of node-links. 

•  Now, the problem of mining frequent patterns in database is transformed to that 
of mining the FP-Tree  (step 2 of algorithm, see later). 



Kind	of	confused?	



Example	FP-Growth	(step	1)	
Suppose	min-support=3	

Step	1.	Count	item	frequency	and	order	items	by	support	

Red	numbers	are	the	order	of	items	(by	support)	
The	order	is	then	B->D->A->E->C	

Red	
numbers	
are	the	
order	



Example	(step	2)	

Step2.	Items	are	ordered	in	each	transac6on	according	to	their	support	
	
(remember	from	previous	slide:	frequency	order	is	BDAEC)	
	



Example	(step	3):	create	FP-tree	

•  The root node is a null node 
•  A branch is created for each transaction 

with items having their support count 
separated by colon. 

•  We start with T1:  every node is an item 
with its count, in order of decreasing 
support	



Example	(Step	3	sub-example)	

A1	 F1	B1	 C1	 D1	 E1	

A1	 B1	 C1	 D1	

A1	 D1	 E1	 F1	 G1	

A2	 F1	B2	 C2	 D2	 E1	

Suppose	we	have	3	ordered	transac6ons.	Each	transac6on	is	a	branch,	as	shown.		

The	orange	branch	has	been	overlapped	with	prefix	of	blue	branch,	and	counts	are	updated	

Prefix:	the	head	of	a	string		Suffix:	the	tail	of	a	string	(lenght	of	head	is	any	value	>=	than		
the	string	length)		



Example	

A2	 F1	B2	 C2	 D2	 E1	

A1	

D1	 E1	 F1	 G1	

Counts	of	overlapping	nodes	are	summed	

A3	

Now	we	try	to	overlap	the	blue	and	green	branches.	Note	that	overlapping	is	only	possible		
if	there	is	a	common	PREFIX	between	the	branches	



Back	to	previous	example	(step	4):	
create	FP-tree	

Now consider T2: 
 
First	4	items	are	in	the	
same	order	as	T1,	so	we	
can	overlap	the	prefix	
BDAE	of	T2	with	the	
exis6ng	branch,	
incremen6ng	counts,	and	
adding	C	at	the	end.	
Note:	we	check	for	prefix	
overlapping!!	E.g.	if	T2	
was	DAEC	we	could	NOT	
overlap.	



Example	(5)	:	create	FP-tree	
In	T	3	the	order	is	BAEC	
But		can't	overlap	AEC	to	
exis6ng	branch	overtaking	
D	(which	is	morte	
frequent)!	
So	the	only	prefix	overlap	
is	B	
As	a	result	we	draw	
another	branch	from	B,	
where	we	add	A	and	then	
connect	new	E	to	that	A	
and	new	C	to	new	E.		



Example	(6)	:	create	FP-tree	

T	4	(BDA)	fully	overlaps	
with	prefix	of	our	first	
created	branch,	so	we	
only	need	to	update	
counts	
With	T5	(D)	we	need	to	
add	a	third	branch	(D:1)	



Example	(7):	Final	FP-tree	

T6	,	T7	and	T8	
follow	the	same	
procedure	



FP-Tree	proper6es	
•  Note	that	we	can	generate	

itemsets	scanning	branches	
bo<om	up!	

•  The	frequency	of	an	itemset	is	
determined	by	its	lowest	
frequency	item	in	a	tree	
brunch	prefix	

•  E.g.	CEADB:1	EADB:2	ADB:3	
ecc	

•  Furthermore	itemset	with	
min_supp	are	easily	iden6fied	
(e.g.	min_supp	2	are	EADB,	
ADB,	DB,	B	and	D)	



Now	the	first	phase	is	concluded	

•  Remember:	in	Phase	1	we	rearrange	all	
itemsets	crea6ng	the	FP-tree	

•  We	did	this	scanning	the	itemsets	twice:		
– First,	to	compute	the	frequency	of	single	items	
and	reordering	transac6ons	

– Second,	to	create	the	FP-tree	by	incrementally	
adding	transac6ons	
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Phase 2: Mining the FP-Tree by Creating 
Conditional (sub) pattern bases 

Steps: 
1.  We now consider suffix patterns in the FPT: we start from 

frequent length-1 suffix patterns. 
2.  For any suffix of length k, construct its conditional pattern base 

CPB which consists of the set of prefix paths in the FP-Tree co-
occurring  with that suffix pattern (e.g. given branches aè bè c, 
aè dè eè c if  c is the suffix and its CPB is ab, ade.) 

3.  Build the F-list (list of all single items in CPB with their counts) 
and remove those with supp<min_supp 

4.  Use the F-list to construct a conditional F-Tree for the suffix 
pattern, using CPB and F-list, and perform mining on such a tree. 

5.  The pattern growth is achieved by concatenation of the initial 
suffix with its  F-Tree. 

6.  The union of all frequent patterns (generated by step 5) gives the 
required frequent itemset.  

7.  Repeat for all suffixes 

Prefix:	the	head	of	a	string		Suffix:	the	tail	of	a	string	



Kind	of	(even	more)	confused?	



Example	:		1.	Start from each frequent 
length-1 suffix pattern. 

	
The	L1	Items	and	their	frequency	
of	occurrences	are:	
B:6	D:6	A:5	E:4	C:3	
Minimum	support	count	is	3	(as	
previously	stated)	so	all	can	be	
considered	as	frequent	lenght-1	
suffixes;	
Start	with	the	leaves	of	tree	(ini6al	
suffix	paVerns),	eg.	C,	E	



Example	:2.	Build	Condi6onal	Pa<ern	
Bases	

We	start	with	the	first	suffix	item,	C	
C:3		There	are	3	pa<erns	with	C	(gray,	red	and	
blue)	
The	condi6onal	pa<ern	base	(CPB)	for	C	are:	
BDAE:1,	B:1	BAE:1	
(CPB	of	X	is	the set of prefix paths in the FP-
Tree with suffix X, and their frequency is 
determined by the frequency of X)	
Note	that:	
1)the	CPB	of	a	suffix	does	not	include	the	
suffix	
2)Single	items	in	CBP		are	again	listed	in	order	
of	decreasing	relevance	(support),	as	in	the	FP	
tree	



Example	:	3.	Build	condi6onal	FP-tree	
for	an	item	

	
•  (CPB)	for	C	:	BDAE:1,	B:1	BAE:1	
•  Then	we	have	to	create	the	F-

tree	for	C	using	its	Condi6onal	
Pa<ern	Base.		

•  The	F-list	(list	of	items	in	CPB	
with	counts)	is	B:3,D:1,A:2,E:2	
but	B:3	only	eligible	for	sixng	
on	the	F-tree	due	to	fulfill	the	
Minimum	Support	Count.	

•  So	the	F-tree	of	C	is		just	B:3	
•  F-tree	of	a	suffix	item	X	is	used	to	find	

the	set	of	itemsets	including	X	and	
with	min_supp>=threshold	



Example	:	4.	Extract	frequent patterns 
FP from conditional F-tree	

All frequent patterns 
corresponding to suffix C are 
generated by considering all 
possible combinations of C and 
F-Tree patterns. 
	
Now	we	can	find	the	frequent	
pa<erns	from	the	F-tree	of	suffix	C:	
they	are	only	C:3,	BC:3		since	either	
we	combine	C	with	null	node	or	
with	B	



Example	(cont’d)	:	Build	Condi6onal	
Pa<ern	Base		for	E	

Now	we	consider	the	
lenght	1	suffix	E	
	
The	condi6onal	pa<ern	
base	(CPB)	for	E	is:		
BDA:2,	BA:1	DA:1	
And	the	F-list	(item	counts	
from	CPB)	is:	
A:4	B:3	D:3	
all	have	the	
count>=min_count	

Note	that	in	F-list		the	frequency	of	items	is	determined	by	that	of	E.	Two	counts	are	taken		
from	the	red	pa<ern,	one	from	the	brown	and	one	from	the	blue.	E.g.,	A	appears	in	all	pa<erns,		
therefore	its	count	is	4;	D	appears	in	red	and	blue,	so	its	count	is	3,	etc.		



Example	:	Build	F-tree		for	E	
Frequency-ordered	F-list	for	E	is	then		
A:4	B:3	D:3	and	frequency	re-ordered	
CPF	pa<erns	are	ABD:2,	AB:1,	AD:1	
F-tree	is	built	from	these	pa<erns	
(same	procedure	as	for	the	FP-tree)	

Note	in	F-tree	of	E	all	branch	items	ordered	by	counts	in	F-list!!	



Example	:	Build	FPs		for	E	
All frequent pattern 
corresponding to suffix E 
are generated by 
considering all possible 
combinations of E and 
frequent itemsets extracted 
from its conditional F-Tree. 
F-list:	A:4	B:3	D:3 
FPs:	
DE:3	ABE:3,	ADE:3	
BE:3,	ABE:3	AE:4	
Note	no	ABDE	since	from	
tree	you	see	it	hasn’t	
necessary	support	(=2)	
	
		
	

Remember:	the	lowest	
frequency	item	determines	
the	support	of	an	itemset!!	



Recursion	step:	consider	length-2	
suffixes,	then	length	3..	

E	condi6onal	FP-tree	

EDB	condi6onal	FP-tree	

A=3	A=3	

ED	condi6onal	FP-tree	

A=3	A=3	

A=3	A=2	

EB	condi6onal	FP-tree	



Can	also	use	FP-tree	with	pointers	to	
build	Condi6onal	pa<erns		

•  C	:	BDAE:1,	B:1	BAE:1	
•  E:	DA:1	BDA:2	BA:1	
•  CE:	AB:1	ADB:1	

•  ecc	



Benefits	of	the	FP-tree	Structure	

•  Performance	study	shows	
–  FP-growth	is	an	order	of	

magnitude	faster	than	Apriori	
•  Reason	

–  No	candidate	genera6on,	no	
candidate	test	

–  Use	compact	data	structure	
–  Eliminate	repeated	database	

scan	
–  Basic	opera6on	is	coun6ng	

and	FP-tree	building	
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Overview 

•  Basic Concepts of Association Rule Mining 
•  The Apriori Algorithm (Mining single 

dimensional boolean association rules) 
•  Methods to Improve Apriori’s Efficiency 
•  Frequent-Pattern Growth (FP-Growth) Method 
•  From Association Analysis to Correlation 

Analysis 
•  Summary	
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Association & Correlation 

 
•  Correlation Analysis provides an alternative 

framework for finding interesting relationships, 
or to improve understanding of meaning of 
some association rules (a lift of an association 
rule). 
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Correlation Concepts 

•  Two itemsets  X and Y are independent (the 
occurrence of X is independent of the occurrence of 
item set Y) iff  
P(X ∪ Y) = P(X) ⋅ P(Y) 

•  Otherwise X and Y are dependent and correlated 

•  The measure of correlation, or correlation between X 
and Y is given by the formula: 
Corr(X,Y)= P(X U Y ) / P(X) . P(Y) 
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Correlation Concepts [Cont.] 

•  corr(X,Y) >1   means that X and Y are positively 
correlated i.e. the occurrence of one implies the 
occurrence of the other. 

•  corr(X,Y) < 1  means that the occurrence of X is  
 negatively correlated with  ( or discourages) the 
occurrence of Y. 

 
•  corr(X,Y) =1  means that X and Y are independent 

and there is no correlation between them. 
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Association & Correlation 
•  The correlation formula can be re-written as 

–  Corr(X,Y) = P(Y|X) / P(Y) 

•  We already know that 
–  Support(X àY)= P(XUY) 
–  Confidence(X à Y)= P(Y|X) 
–  That means that, Confidence(X àY)= corr(X,Y) P(Y) 
 

•  So correlation, support and confidence are all different, but the 
correlation provides an extra information about the association rule 
(X àY). 

 
•  We say that the correlation corr(X,Y) provides the LIFT of the 

association rule (X=>Y), i.e. X is said to increase (or LIFT) the 
likelihood of Y by the factor of the value returned by the formula for 
corr(X,Y). 
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Summary 
•  Association Rule Mining 

–  Finding interesting association or correlation relationships. 
•  Association rules are generated from frequent itemsets. 
•  Frequent itemsets are mined using Apriori algorithm or Frequent-

Pattern Growth method. 
•  Apriori property states that all the subsets of frequent itemsets must 

also be frequent. 
•  Apriori algorithm uses frequent itemsets, join & prune methods and 

Apriori property to derive strong association rules. 
•  Frequent-Pattern Growth method avoids repeated database 

scanning of Apriori algorithm. 
•  FP-Growth method is faster than Apriori algorithm. 


