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Probabilistic ML algorithm

Naïve Bayes and Maximum 
Likelyhood  



There is uncertainty in the world

• Many machine learning problems can be formulated in 
probabilistic terms. A probabilistic formulation is the 
following: 
– the target of a ML system is to learn a classification

function
f(x): xèy

– Given an unseen instance x, assign a category label y to    
this instance using the learned function f().

– The corresponding probability formulation is: learn a 
probability density function p(y/x) which is the 
conditioned probability of class label y given the 
observation of x.

– A label can be selected based on argmaxyp(y/x)
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Example: handwriting recognition
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Is this “a” or “9”?? 

The classifier may return non-zero probabilities for all options 



BASIC PROBABILITY
NOTIONS YOU NEED
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Axioms of Probability Theory

• All probabilities between 0 and 1

• True proposition has probability 1, false has 
probability 0. 

P(true) = 1        P(false) = 0.
• The probability of  disjunction is:
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Conditional Probability 

• P(A | B) is the probability of A given B
• Assumes that B is all and only information 

known.
• Defined by:
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Statistical Independence

• A and B are independent iff:

• Therefore, if A and B are independent:
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These two constraints are logically equivalent



Univariate and Multivariate distributions

• Univariate distribution is when there is
only one random variable, e.g. if instance
vectors x in X are described by just one
feature, or when there is one classification
function C(x)=Y

• Multivariate if many random variables are 
involved: e.g. x:(x1…xd). Now any feature
of x can be described by a random variable
and we can estimate P(xj=vjk)) where vjk
k=1..mj are the possible values for feature j
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Probabilistic Classification

• Let Y be the random variable for the class C which takes values 
{y1,y2,…ym} (|C|=m possible classifications for our instances).

• Let X be a random variable describing an instance consisting of a 
vector of values for d features <x1,x2…xd>, let vjk be a possible value 
for feature xj (j=1…d)

• For our classification task, we need to compute the (multivariate) 
conditional probabilities:
P(Y=yi | X=x(x1,…xd)) for i=1…m 

(e.g. P(Y=positive/x=<color=blue,shape=circle>) )

• E.g. the objective is to classify a new unseen x by estimating the 
probability of  each possible classification  yi , given the observation 
of feature values of the instance to be classified

• To estimate  P(Y=yi | X=x) we use a learning set D of pairs (x,C(x))
• Remember: i is index of  class values, j is index of features, k is 

index of feature values



How can we compute P(Y=yi/X=x)??

• Example: x:(color=red,shape=circle) C: y1=positive, 
y2=negative

• We need to compute:

• So we need to compute joint probabilities
• The joint probability distribution for a set of random 

INDEPENDENT variables, x1,…,xd gives the probability 
of every combination of values (a d-dimensional array with 
k values if all d features are discrete with k values, and 
furthermore Σj=1..d P(xj=vjk)=1 ) 10

P( positive | red ∧circle) = P( positive∧red ∧circle)
P(red ∧circle)

P(negative | red ∧circle) = P( positive∧red ∧circle)
P(red ∧circle)
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Joint probability tables

• The probability of all possible conjunctions (= assignments of values to some 
subset of features) can be estimated from the learning set, by summing the 
appropriate subset of values from the joint distribution.

• If all joint probabilities can be estimated, all conditional probabilities can 
be calculated.

circle square

red 0.20 0.02

blue 0.02 0.01

circle square

red 0.05 0.30

blue 0.20 0.20

Class=positive Class=negative

P(red ∧circle) = P(red ∧circle∧ positive)+ P(red ∧circle∧negative) = 0.20+0.05= 0.25

80.0
25.0
20.0

)(
)()|( ==

Ù
ÙÙ

=Ù
circleredP

circleredpositiveP
circleredpositiveP

Pr(shape=circle,
color=blue, C=+)



Example

• Consider this learning set D of annotated
instances:

• x1 (red, circle), positive
• x2(red,square),negative
• x3(blue,circle),positive
• x4(red, circle),negative
• x5(red, circle), positive
Pr(positive/red&circle)=Pr(positive&red&circle)/Pr(red&circle) =
(2/5)/(3/5)=2/3
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Probabilistic Classification (2)

• However, given no other assumptions, this requires tables 
giving the probability of each category for each possible 
instance (combination of feature values) in the instance 
space, which is impossible to accurately estimate from a 
reasonably-sized training set D.

• E.g. P(Y=yi/X1=v1j,X2=v2j…Xd=vdj) for all yi and vkj
Assuming  that Y and all Xi are binary valued, and we have 
d features, we need 2d entries to specify      P(Y=pos | X=xk) 
for each of the 2d possible xk in D since:
– P(Y=neg | X=x) = 1 – P(Y=1 | X=x) 
– Compared to 2d+1 – 1 entries for the joint distribution 

P(Y,X1,X2…Xd)
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Example: dimension of joint probability
tables

• x:(x1,x2..x4), Xi:           Y:           (all binary values)
• # of features: d=4, # of values for the class Y:  m=2)
• Consider instance xk:(0,1,0,0)
• Need to estimate Pr(Y=0/(x1=0, x2=1, x3=0, x4=0)) 
• If P(Y=0/(0,1,0,0))>P(Y=1/(0,1,0,0))=(1-P(Y=0/(0,1,0,0))) 

then class is 0, else class is 1
• Overall, 24 estimates (2d ) are needed for our probabilistic

classifier (the number of possible combinations for feature
values)

• For large d and n this is not feasible, even with large 
learning sets. Simply, we do not have all the necessary
evidence!!
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Summary

• We are given an unclassified instance x, which is represented by m
features (boolean, multi-valued or continuous)

• We have a multi-valued classification function C(x) with possible values
y1..ym

• Target of the probabilistic classifier is to classify x based on: 
y*=argmaxyi Pr(yi/x)  (the most likely classification, given the specific
combination of feature values in x)

• To do so, we need to estimate Pr(yi/x) for all yi, using evidence
provided by previously seen examples <xi,yi> in D

• Quite likely, the specific combination of feature values of x has not seen
in the learning set: even if values are boolean, there are 2d possible
combinations! So how do we go about?
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Solution: Maximum Likelihood
Learning

• Let M be a probabilistic formulation (MODEL) of our 
classification task p(yi/x)

• Suppose that we know exactly the structure of M: 
(e.g., M is the softmax function:

!" = $%&'()*" +,- = ./010
∑ ./313 )

means that we are able to express our conditional probabilities p(y/x) in some 
precise mathematical form, (e.g. a softmax), but the values of its probabilistic 
parameters, Q (e.g. in the softmax example,  the coefficients wj), are 
unknown. 

• We can consider our observations, (x,yi), as “generated” by the 
(unknown) distribution induced by M.

◆ Goal: After observing several examples 
x1..xN , estimate the model parameters, Q, that 
generated the observed data.  

Stated more intuitively: learn the values of
model parameters that MAXIMIZE the

likelihood of observing the evidence provided by
the learning set 
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Maximum Likelihood Estimation (MLE)

◆The likelihood of the observed data, given the    
model parameters Q, is the conditional  
probability that the probabilistic model, M, with parameters  
Q, “generates” the observations  x1 ,…, x|D| of our dataset D

L(Q)=P (x1..x|D|| Q, M)=P(D|Q, M)
◆ In MLE we seek the model parameters, Q, that  
maximize the likelihood of observing our 
EVIDENCE E, represented by the learning set D.



Reversing the problem..

• Rather than finding the class value y* that
maximizes the conditional probability of 
any class value given an observed instance
x (the argmaxyP(y/x)) we try to find the 
model parameters Θ that maximize the 
probability of having observed a 
particular dataset D (=our evidence):

argmaxΘ(P(D/Θ))
• P(D/Θ) is called likelyhood function and is

also denoted as LD(D/Θ)
18



What are these “parameters”?

• The definition of Q is quite general.
• It can be a set of coefficients in a probabilistic

formulation (the coefficients of a softmax
function, or the ! of a gaussian function): 
p(y/x)=f(w1, w2,.. wm,x) Q =(w1, w2,.. wm)

• Or a set of «simpler» probabilities in which I can 
decompose the original model M:
P(y/x)=P(y)�P(x1=v1)�P(x2=v2)�.. P(xm=vm)
Q =(P(x1=v1), P(x2=v2),.. P(xm=vm))
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Notation: p is a probability distribution and is a general formulation since it applies
also to continuous random variables. P is the probability of observing specific values. 
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Statistical Parameter Fitting (general 
definition for multivariate case)

• Consider instances in dataset D: x1, x2, …, x|D|

such that:
– The set of values that C(x) can take is known
– Each xi is sampled from the same distribution
– Each xi is sampled independently of the rest

i.i.d.
Samples

The task is to find a vector of parameters  
Q that have generated the given data D.  
This  vector parameter Q can be used to 
(probabilistically) predict   the class of future 
data.
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Maximum Likelihood Estimation (MLE)
◆ In MLE we seek the model parameters, Q, that  

maximize the likelihood: it is thus an  
OPTIMIZATION problem (as for all ML algorithms!)
◆ The MLE principle is applicable in a wide 

variety of ML problems, from speech    
recognition,  to natural language processing, 
computational biology, etc.

◆ We will start with the simplest example:  
Estimating the bias of a thumbtack (we got boared

with coins!).
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Example: Binomial Experiment

• When tossing the thumbtack, it can land in one of two 
positions: Head (H) or Tail (T)

Head Tail

◆We denote by q the (unknown) probability P(H).
Estimation task:
◆ Given a sequence of m toss samples x1..xm(our 
evidence dataset) we want to estimate the probabilities 
P(H)=q and P(T) = 1 - q
◆q is the model parameter 
◆In this case the problem is univariate (only one 
stocastic variable)
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The Likelihood Function
• How good is a particular q? It depends on how likely the related 

model  is to generate the observed sequence of outcomes (our 
data)

• Where are the observed data? In the thumbtack example, we can 
toss the thumbtack several times and observe a sequence of 
results

• Ex: the likelihood for the sequence H,T, T, H, H is:

LD (θ ) = P(D |θ ) = P((xj, yi) |θ )
j=1..m
∏

( ) (1 ) (1 )DL q q q q q q= × - × - × ×

0 0.2 0.4 0.6 0.8 1q

L(
q)
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Sufficient Statistics

• To compute the likelihood in the thumbtack example 
we only require NH and NT
(the number of heads and the number of tails in a 
sequence of tosses)

• NH and NT are sufficient statistics for the binomial 
distribution

• A sufficient statistic is a function whose value 
contains all the information needed to compute any 
estimate of the parameter

LD (θ ) =θ ⋅ (1−θ ) ⋅ (1−θ ) ⋅θ ⋅θ =θ
NH ⋅ (1−θ )NT
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Maximum Likelihood Estimation

MLE Principle:
Given sufficient statistics, choose parameters that maximize the 

likelihood function (the likelihood of observing data)
• Θ=α1…αn
• Θoptimal=argmaxΘ(P(D/Θ))
• In our example, we maximize
• MLE is one of the most commonly used estimators in 

statistics
• One usually maximizes the log-likelihood function, defined 

as  lD(q) = ln LD(q)

LD (θ ) = P(D |θ ) =θ
NH ⋅ (1−θ )NT
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Example: MLE in Binomial Data (i.e., Y is boolean so we 

only need P(Y=1/X) since P(Y=0/X)=1-P (Y=1/X))

Taking derivative and equating it to 0 we get
( ) ( )log log 1D H Tl N Nq q q+= -

1
H TN N
q q

=
-

0 0.2 0.4 0.6 0.8 1

L(
q)

Example:
(NH,NT ) = (3,2)

MLE estimate is 3/5 = 0.6

ˆ H

H T

N
N N

qÞ =
+

(which coincides with what one would expect)

Remember, to maximize
minimize a function
you need to take the 

derivative



From Binomial to Multinomial

• Now suppose Y can take the values: 1,2,…,k
(For example tossing a die has 6 values, 1..6)

• We want to learn the parameters q1, q2. …,qn(the 
vector Q of probabilities qi =P(Y=yi))

Sufficient statistics:
◆N1, N2, …, NK - the number of times each outcome 
is observed
◆The optimization problem is: maximize the log 
of: LD (θ ) = θi

Nk

i=1

K

∏ such that : θi
i
∑ =1 and θi ≥ 0 ∀i

Remember that qi are probabilities,
so they must sum 1



Maximizing log-likelihood with 
constraints
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θ̂i =
Ni
Nj
j
∑

We consider the log-likelihood (so we get sums rather than products) 
and we represent the optimization

problem with a Lagrangian (again!! Remember SVM)

 
Remember: !(!∙!"# ! )

!" = !
!  
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Another example: proteine sequences

• Let   be a protein sequence 
• We want to learn the parameters θ1, θ2,…, θ20

corresponding to the probabilities of the 20 
amino acids 

• N1, N2, …, N20 - the number of times each 
amino acid is observed in the sequence

Likelihood function: LD (q) = θi
Ni

i=1

20

∏

1 2.... nx x x

θi =
Ni
n
n = Ni

i=1

20

∑MLE:



NAIVE BAYES CLASSIFIER: A 
ML ALGORITHM BASED ON 
MLE PRINCIPLE

30



Naive bayes

• We are given an evidence represented by an 
annotated learning set D of classified
instances (xi,yi). 

• We would like to estimate the probabilities
p(Y=yi/x)  for unobserved instances, given
the evidence D

• In probability calculus, often estimating
P(a/b) is easier that estimating P(b/a) so we
need the Bayes theorem to invert
conditional probabilities

31
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Bayes Theorem

• Y=classification 
• E= evidence of data
Simple proof from definition of conditional probability:

P(Y | E) = P(E |Y )P(Y )
P(E)

P(Y | E) = P(Y ∧E)
P(E)

P(E |Y ) = P(Y ∧E)
P(Y )

P(Y ∧E) = P(E |Y )P(Y )

QED:

(Def. cond. prob.)

(Def. cond. prob.)

P(Y | E) = P(E |Y )P(Y )
P(E)

Y E
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Naïve Bayes Model (1)

For each classification value yi we first apply Bayes:

• P(Y=yi) and P(X=x) are called priors and can be 
estimated from the learning set D since categories are 
complete and disjoint

P(Y = yi | X = x ) =
P(Y = yi )P(X = x |Y = yi )

P(X = x )



Example (estimation of priors)

• Given the following dataset:
X1 (red, circle), positive
X2(red,square),negative
X3(blue,circle),positive
X4(red, circle),negative
X5(red, circle), positive

• We have: 
– P(positive)=3/5 ; P(negative)=1-P(positive)
– P(red, circle)=3/5
– P(red,square)=1/5
– P(blue,circle)=1/5

34



Naive Bayes Model (2)
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P(Y = yi | X = x ) =
P(Y = yi )P(X1 = v1,X2 = v2 ,!Xd = vd |Y = yi )

P(X = x )
=

P(Y = yi )
P(X j = v jk |Y = yi

j=1

d
∏ )

P(X = x )

The basic assumption of NB is that feature values vjk of different 
features Xj are statistically independent. 

vjk is the k-th value of feature j where j=1,2..d
and k=1…Kj (if binary features, k=0 or 1)

e.g. P(x(color=blue, shape=circle, dimension=big))=
P(color=blue)P(shape=circle)P(dimension=big)

and furthermore  

!(!! = !!" ! = !!) = 1 



Estimating model parameters Θ

• We have two sets of parameters θ1 and θ2 : 

• θ1: P(Y=yi)  for all i, and
• θ2:                                 for all i,j and k
• The log-likelihood function is then:

• Where Ni is the number of times we see class yi in 
dataset, and Njki is the number of times we see an 
instance with   xk=vjk and Y=yi (k-th feature is
equal to vjk and  class is yi )

P(X j = v jk |Y = yi )

Remember: i is index of  class values, j is index of features, k is index of values



Estimating model parameters (2)
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The MLE problem is therefore: maximize l(θ) subject to:

Since we have logarithms: 

l(Θ)

Parameters are
probabilities, so they

must obey
probability rules



Estimating model parameters (3)
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I.e. the  θ2 can be estimated as the ratio between the number of times feature Xj
takes value vjk when class is Y=yi , and the total number of examples in D

for which Y=yi

To maximize the likelyhood we need to find values that take to zero the derivative

For all j,k,i



How do we predict the category of an 
unseen instance with Naive Bayes?

39

Note that since the denominator is common to all conditional
probabilities, it does not affect the ranking. 

No need to compute it!
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Naïve Bayes Generative Model Example

Size          Color        Shape Size          Color        Shape 
Positive Negative

pos
neg
pos

pos
pos neg

neg

sm
med

lg
lg

med
sm

sm
med

lg

red

redred
red red

blue

blue
grn

circ
circ

circ

circ
sqr

tri tri
circ sqr

tri

sm

lg

med
sm

lg
med

lgsm
blue

red

grn
blue

grn
red

grn
blue

circ

sqr tri
circ

sqr circ
tri

Category

K=3,|C|=2,d=3
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Naïve Bayes Inference Problem

Size          Color        Shape Size          Color        Shape 
Positive Negative

pos
neg
pos

pos
pos neg

neg

sm
med

lg
lg

med
sm

sm
med

lg

red

redred
red red

blue

blue
grn

circ
circ

circ

circ
sqr

tri tri
circ sqr

tri

sm

lg

med
sm

lg
med

lgsm
blue

red

grn
blue

grn
red

grn
blue

circ

sqr tri
circ

sqr circ
tri

Category

lg  red circ 
??     ??

Let’s say we have a new unclassified instance x:<large, red, circle>. 
We need to estimate, on the learning set, the probability of extracting lg, red, circ from

the red or blue urns. Whichone is higher?

Urns represent occurrences
of feature values in learning set.

Red urns are positive, blue negative.
separate urns indicate statistical
independence of feature values



HOW?

42



We fill urns using the available dataset
D
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1 med red circ pos

2 sm blue tri pos

3 med red tri pos

4 lg grn circ pos

5 lg red circ pos

6 sm blue circ pos

7 sm red sqr pos

8 med red circ pos

9 lg red sqr neg

10 sm blue tri neg

11 med grn circ neg

12 med grn tri neg

13 lg red circ neg

14 sm blue sqr neg

15 sm blue tri neg

16 lg grn sqr neg

Note that because of independence
hypothesis, the specific combination of 

feature values does not matter!
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Now we can compute parameters

Probability Y=positive Y=negative

P(Y) 0.5 0.5

P(small | Y) 3/8 3/8

P(medium | Y) 3/8 2/8

P(large | Y) 2/8 3/8

P(red | Y) 5/8 2/8

P(blue | Y) 2/8 3/8

P(green | Y) 1/8 3/8

P(square | Y) 1/8 3/8

P(triangle | Y) 2/8 3/8

P(circle | Y) 5/8 2/8

Training set  D (evidence)
We have 3 small out of 8 instances in red “size” urn

then P(size=small/pos)=3/8=0,375 (round 4)

Si
ze

C
ol

or
   

   
Sh

ap
e



Using parameters, we can classify 
unseen instances

Probability Y=positive Y=negative

P(Y) 0.5 0.5

P(medium | Y) 3/8 2/8

P(red | Y) 5/8 2/8

P(circle | Y) 5/8 2/8

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive)/P(X)
0.5        *               3/8         *        5/8            *        5/8

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
0.5       *              2/8               *        2/8             *     2/8

= 0,073

=0.0078

Test Instance:
X:<medium ,red, circle>

P(positive/X)>P(negative/X) è positive

Note: sum is not 1 since we ignore the denominator of original formulation  



Naive summary

Classify any new datum instance xk=(x1,…xn) as:

• To do this based on training examples, estimate the parameters from the 
training examples  in D:

– For each target value of the classification variable (hypothesis) yi

– For each attribute value vjk of each datum instance

P̂(Y = y j ) := estimate P(yi )

P̂(X j = v jk |Y = yi) := estimate P(v jk | yi )

yNaive Bayes = argmaxi
P(yi )P(x | yi )→ argmax

i
P(yi ) P(v jk | yi )j=1..d

∏
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Estimating Probabilities

• Normally, as in previous example, probabilities are 
estimated based on observed frequencies in the training 
data.

• If D contains Ni examples in category yi, and Njki of these Ni
examples have the k-th value for feature Xj, vjk, then:

• However, estimating such probabilities from small training 
sets is error-prone.  (bias in the estimate, as we have seen)

• If -due only to chance- a rare feature value, Xj=vjk is never 
observed in the training data, then P(Xj=vjk | Y=yi) = 0.

• If  Xj=vjk then occurs in a test instance, X, the result is that 
"yk: P(X | Y=yi) = 0 and "yi: P(Y=yi | X) = 0 (since 
individual probability estimates are multiplied)

P(Xj = v jk |Y = yi ) =
N jki
Ni
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Probability Estimation Example

Probability positive negative

P(Y) 0.5 0.5

P(small | Y) 0.5 0.5

P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5

P(red | Y) 1.0 0.5

P(blue | Y) 0.0 0.5

P(green | Y) 0.0 0.0

P(square | Y) 0.0 0.0

P(triangle | Y) 0.0 0.5

P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:
<medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 / P(X) = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 /  P(X) = 0
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Smoothing

• To account for estimation from small samples, 
probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
�virtual� sample of size m.

• For binary features, p is simply assumed to be 0.5, 
while it can be set to 1/k for k-valued features.

P(Xj = v jk |Y = yi ) =
N jki +mp
Ni +m
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Laplace Smothing Example

• Assume training set contains 10 positive examples, 
and feature “size” has 3 values, but 1 (medium) is 
not observed in D:
– 4: small
– 0: medium
– 6: large

• Estimate parameters as follows (if we set m=1, 
p=1/3)
– P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394
– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
– P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576
– P(small or medium or large | positive) =        1.0
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Continuous Attributes

• If Xj is a continuous feature rather than a discrete one, 
need another way to calculate P(Xj =vij| Y=yi).

• Assume that Xj has a Gaussian distribution whose mean 
and variance depends on Y.

• During training, for each combination of a continuous 
feature Xj and a class value for Y, yi, estimate a mean, µji , 
and standard deviation σji based on the observed values of 
feature Xj in class yi in the training data. µji is the mean 
value of Xj observed in instances for which Y= yi in D

• During testing, estimate P(Xj=v | Y=yi) for a given 
example, using the Gaussian distribution defined by µji and 
σji .

P(Xj = v ∈ℜ |Y = yi ) =
1

σ ji 2π
exp

−(X j −µ ji )
2

2σ ji
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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Comments on Naïve Bayes

• Tends to work well despite strong assumption of 
conditional independence.

• Experiments show it to be quite competitive with other 
classification methods on standard UCI datasets.

• Although it does not produce accurate probability 
estimates when its independence assumptions are violated, 
it may still pick the correct maximum-probability class in 
many cases.
– Able to learn conjunctive concepts in any case

• Does not perform any search of the hypothesis space.  
Directly constructs a hypothesis from parameter estimates 
that are easily calculated from the training data.
– Strong bias

• Not guaranteed consistency with training data.
• Typically handles noise well since it does not even focus 

on completely fitting the training data.


