
1

Machine Learning:
Ensemble Methods

2

Learning Ensembles

•  Learn multiple alternative definitions of a concept using
different training data or different learning algorithms.

•  Combine decisions of multiple definitions, e.g. using
weighted voting.

Training Data

Data1 Data m Data2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Learner1 Learner2 Learner m ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Model1 Model2 Model m ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Model Combiner Final Model

Example: Weather Forecast

GROUND
TRUTH

PREDICTOR1

PREDICTOR2

PREDICTOR3

PREDICTOR4

PREDICTOR5

Combine

X

X

X

X X X
X X X
X X

X X

100% CORRECT!

• 4

Why does it work?

•  Suppose there are 25 “simple”
classifiers
– Each classifier has error rate, ε = 0.35

(which is a mid-high rate)
– Assume classifiers are independent
– Probability that the ensemble classifier

makes a wrong prediction (it is wrong if at
least 13 out of 25 make the wrong
prediction):

25
i

!

"
#

$

%
&ε i (1−ε)25−i = 0.06

i=13

25

∑

IF CLASSIFIERS ARE INDEPENDENT, THE PROBABILITY
THAT THE ENSAMBLE MAKES AN ERROR IS VERY LOW!!

5

Value of Ensembles

•  When combing multiple independent and
diverse decisions each of which is at least
more accurate than random guessing,
random errors ,
correct decisions are reinforced.

•  Human ensembles are demonstrably better
– How many jelly beans in the jar?: Individual

estimates vs. group average.
–  In information retrieval evaluation tasks,

“ensamble” decision making is used

6

Homogenous Ensembles

•  Use a single, arbitrary learning algorithm but
manipulate training data to make it learn
multiple models.
–  Data1 ≠ Data2 ≠ … ≠ Data m
–  Learner1 = Learner2 = … = Learner m

•  Different methods for changing training data:
–  Bagging: Resample training data
–  Boosting: Reweight training data
–  DECORATE: Add additional artificial training data

I. Bagging (BAGGING is acronym for
Bootstrap AGGregatING)

7

Random
samples of
dataset

• 8

Bagging (BAGGING is short for
Bootstrap AGGregatING)

•  Create m samples of n data with replacement
(means same item can be resampled)

•  Original training dataset has m=10 instances (#1, #2..#10)
•  Each individual classifiers randomly extracts a sample of n

instances (n=m in this example) with replacement
(instances are put back in the urn, therefore they can be
sampled more than one time)

•  Each instance has probability of 1/mn of being selected in
a training sample and (1 – 1/m)n of being selected as test
data, in each bagging round.

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Training Data Data ID

Example

9

Each instance has a
probability p=1/m of being
extracted out of m instances.
Since extraction is “with
replacement” (the instance is
put back in the urn after having
been extracted) the probability
is always the same at each
extraction.

10

11

12

13

14

15

Training set Test set

The 0.632 bootstrap

•  Each example in the original dataset has a
selection probability of 1/m

•  If m=n on average, 36.8% of the datapoints
are left unselected and can be used for
testing

•  Why?

16

17

The 0.632 bootstrap
•  This method is also called the 0.632

bootstrap
–  If I make n extraction on n instances, each

instance has a probability 1/n of being picked and
1-1/n of not being picked at each extraction

–  Thus its probability of ending up in the test data
(=not being selected n times) is:

–  This means the training data will contain

approximately 63.2% of the instances

368.011 1 =≈⎟
⎠
⎞

⎜
⎝
⎛ − −e

n

n

• 18

Example of Bagging

We aim to learn a classifier C(x) in R1. Assume that the “real” (unknown)
classification is:

0.3 0.8 x

+1 +1 -1

Goal: find a collection of 10 simple thresholding (=linear) classifiers
that collectively can classify correctly.

E.g. each classifier ci learn a single threshold ti such that:
If x<=ti then C else not(C)

Data is not linearly separable, a classifier for these data must learn a range, e.g.:
IF t1<=x<=t2 then C else not(C) In our example, “true” values are t1=0.3 and t2=0.8.

Training set

19

X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Y=C(x) 1 1 1 0 0 0 0 1 1 1

We now sample these data 10 times (thus we obtain 10 datasets),
and on any sample we train a “simple” threshold classifier

Remember: “sampling” the dataset 10 times means that for 10
times (“bagging rounds”) we extract 10 instances from the
original dataset with replacement. The extracted instances in
Round i are used to train the i-th learner, and non extracted
instances are used for testing

So this is the learning set: we have 10 pairs (x, C(x))

• 20

For each bagging,
we show the
thershold
learned by
each classifier

Note: in each round the same training example can be extracted
more than one time, and some examples are not extracted.
Furthermore, each classifier is inconsistent! E.g. classifier 1
is wrong on last two items of “sampled” learning set: c(0.9)=-1

Combining the different learned
classifiers

•  In the previous example, given an initial training
set of 10 examples, we bag the data 10 times and
we learn 10 threshold classifiers Ci (i=1..10), each
with an error rate εi

•  We then need to combine the results (ensemble
method)

•  A simple method (for binary classifiers with
values +1, -1): if sign(ΣiCi(xj))=1, then C(xj)=1

•  This means: if majority says “1” then, predicted class is 1.
•  More in general, we can use majority voting

21

• 22

Bagging (if applied to training data)

Accuracy	of	ensemble	classifier:	100%	J	

If sign(Ci (x)) =1∑ then C(x) =1

Example 2 of ensembles: non-linear classifier
out of many linear classifiers (e.g perceptrons)

23

24

25

26

27

28

By summing all the lines
we may obtain a perfect
classifier

N simple classifiers work like a complex
classifier

•  Note: initial data could not be correctly
separated by a simple threshold/linear
classifier

•  With bagging , we obtain a perfect
classifier!

29

• 30

Bagging- Summary
•  Works well if all instances have equal probability of

being classified correctly or wrongly (means:
Pr(c(x)≠h(x))=p for all x in X)

•  Increased accuracy because it reduces the variance
of the individual classifier, by averaging over many

•  Does not focus on any particular instance of the
training data- assumption is that all instances have
same probability of misclassification

•  What if we want to focus on a particular instances of
training data?

•  E.g. some instance can be more difficult to classify
than others (and on these instances most “simple”
classifiers may err, so majority voting won’t work)

Example 1: handwriting recognition

31

Example 2: face recognition

32

• 33

II. Boosting

•  An iterative procedure to adaptively
change distribution of training data by
focusing (in each iteration) on
previously misclassified examples

Each new member of the ensamble focuses on the instances that the
previous ones got wrong!

• 34

Boosting (2)

•  Instances xi are extracted with a probability that depends on their
weight wi (P(X=xi)=wi)

•  In iteration j, instances that are wrongly classified when testing the
classifier cj will have their weights increased

•  Those that are classified correctly will have their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• 	Suppose	example	4	is	hard	to	classify	(round	1	is	wrong	
on	example	4)	
• 	Its	weight	is	increased,	therefore	it	is	more	likely	to	be	
extracted	again	in	subsequent	sampling	rounds	(2)	
• 	If	round	2	is	again	wrong	on	example	4,	it	probability	
of	being	extracted	increases	again	

Boosting flow diagram

35

The key idea is that, since the learning set (in step i) includes more examples of the
“complex” cases, the current classifier Ci is trained on those cases.
E.g., recognizing faces of people with a hat, or with dark glasses.

• 36

Boosting (3)

•  At first, equal weights are assigned to each training
instance (1/n for round 1), so all instances have the
same probability of being sampled

•  After a classifier Ci is learned, the instance weights are
adjusted to allow the subsequent classifier Ci+1 to
“pay more attention” to data that were misclassified by
Ci. Higher weights è higher probability for an instance of
being extracted

•  Final boosted classifier C* combines the votes of each
individual classifier
–  Weight of each classifier’s vote is a function of its

accuracy
•  Adaboost – most popular boosting algorithm

• 37

Adaboost (Adaptive Boost)

•  Input:
– Training set D containing n instances
– T iterations, or “rounds” (i=1…T)
– A classification learning scheme

•  Output:
– A composite model

• 38

Adaboost: Training Phase

•  Training data D contain n labeled data (X1,y1),
(X2,y2), (X3,y3),….(Xn,yn) yi are the correct
classifications

•  Initially assign equal weight 1/n to each example
•  To generate T “base” classifiers, we need T

rounds or iterations
•  Round i, examples (instances) from D are

sampled with replacement , to generate dataset
Di (of size n)

•  Each instance chance of being selected in the
next rounds depends on its weight
–  Each time the new sample is generated directly from

the training data D with different sampling
probability according to the weights;

Testing phases in AdaBoost

•  Testing occurs on individual classifiers Ci at
the end of each round.

•  The performance of each classifier is used
to assess the “importance” or authority of Ci

•  Final testing is performed on unseen data.
To combine individual classifications by
each Ci, the decision of each classifier is
taken into consideration proportionally to
its importance

39

• 40

Testing phase for individual classifiers in
AdaBoost

•  “Base” learned classifiers: C1,
C2, …, CT

•  Error rate of Ci: (i = index of
classifier, j=index of instance,
C(xj)=yj correct class for xj)

•  Importance of a classifier:

error(Ci) = εi = wjδ Ci (x j) ≠ y j()
j=1

n
∑

αi =
1
2
ln
1−εi
εi

"

#
$$

%

&
''

• 41

Final Testing Phase

•  The lower a classifier’s error rate , the more accurate it
is, and therefore, the higher its weight when voting
should be

•  Weight of a classifier Ci’s vote is

•  Final Testing (on unseen data):
–  For each class yj, sum the weights of each classifier that

assigned class yj to instance Xtest. The class with the highest
sum is the WINNER!

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

i

i
i ε

ε
α

1ln
2
1

y =C *(xtest) = argmax
y

αiδ Ci (xtest) = y()
i=1

T
∑

εi

δ(x) =1 if x = true
It is again a majority voting but votes of each classifier are weighted by its importance

• 42

Training Phase of Ci depends on
previous testing phase on Ci-1

•  Base classifier Ci, is derived from training
data of set Di

•  Error of Ci is tested using Di (same data)
•  Weights of training data are adjusted

depending on how they were classified
– Correctly classified: Decrease weight
–  Incorrectly classified: Increase weight

•  Weight of a data indicates how hard it is to
classify it

• 43

Weighting rule for data in
AdaBoost
•  Weight update rule on all training data in D:

wj
(i+1) =

wj
(i)

Zi
×

exp−αi if Ci (x j) = y j

expαi if Ci (x j) ≠ y j

$

%
&

'
&

 where Zi is a normalization factor

If classification of xj is correct, decrease weight (divide by expαi)
else increase (multiply by expαi)

αi is the “importance” of classifier Ci, as previously computed

• 44

Boosting
Round 1 + + + -- - - - - -

0.0094 0.0094 0.4623
B1

a = 1.9459

Illustrating AdaBoost
Data	points	
for	training	

IniHal	weights	for	each	data	point	

Original
Data + + + -- - - - + +

0.1 0.1 0.1

C1 is wrong on these 2 examples, hence
their weight is increased

α

α=1.9459

• 45

Illustrating AdaBoost

Boosting
Round 1 + + + -- - - - - -

Boosting
Round 2 - - - -- - - - + +

Boosting
Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

a = 1.9459

a = 2.9323

a = 3.8744

α

α

α

Adaboost pseudo-code (summary)

Given D:<xi,yi> |D|=n
1.  Initialize weights wj=1/n
2.  For i=1..T

a.  Bootstrap Di from D using P(X=xj)=wj, and train Ci

b.  Test Ci and compute error rate on Di, εi

3.  Iff εi>1/2 then T=t-1 abort loop
a.  Compute αi
b.  Update wj

4.  Output: for any unseen xtest

46

C *(xtest) = argmax
y

αiδ Ci (xtest) = y()
i=1

T
∑

• 47

III. Random Forests

•  Ensemble method specifically designed for
decision tree classifiers

•  Random Forests grows many trees
–  Ensemble of unpruned decision trees
–  Each base classifier classifies a “new” vector of

attributes from the original data
–  Final result on classifying a new instance: voting.

Forest chooses the classification result having the
majority of votes (over all the trees in the forest)

• 48

Random Forests

•  Introduce two sources of randomness:
“Bagging” and “Random input vectors”
– Bagging method: each tree is grown using a

bootstrap sample of training data (as in
Bagging and Boosting)

– Random vector method: At each decision
node, best attribute to test is chosen from a
random sample of m attributes, rather than
from all attributes

Random forest algorithm

•  Let the number of training instances be N, and the number of features
(attributes) describing instances be M.

•  We are told the number m of input features to be used to determine the
decision at a node of the tree; m should be much less than M

•  Choose a training set Di for tree DTi by choosing n times with
replacement from all N available training cases (i.e. take a bootstrap
sample). Use the rest of examples to estimate the error of DTi.

•  For each node of the tree, randomly choose m features on which to
base the decision at that node. Calculate the best split based on these m
variables in the training set (either test on best attribute in m based on
Infogain, - or select the best binary split based on IG).

•  Each tree is fully grown and not pruned (as may be done in
constructing a normal tree classifier).

49

50

Best binary split, example

•  Say we select m=2 and sample two binary
features at random, e.g., f1 and f3

•  Possible splits:
–  (0,0) (0,1; 1,0; 1,1)
–  (0,1) (0,0;1,0; 1,1)
–  (1,0) (0,0;0,1; 1,1)
–  (1,1) (0,0;1,0; 1,0)

•  Select the one with highest IG (or other
selection methods)

51

f1,f3

(0,0) (0,1;1,0;1,1)

Decision forest with multiple test

52

m=1 m>1

Leukemia MLL vs ALL vs AML based on marker genes

• 53

Random Forests – combining
results

Example of random forest prediction

54

Class 2 is selected

Advantage of Random Forest

•  Since each tree only handles a subset of
features, this can be considered a good
choice when instances are described by very
many features

•  It is considered a good “dimensionality
reduction” method

•  I does not do so well when features are
continuous (regression trees)

55

56

IV. DECORATE
(Melville & Mooney, 2003)

•  Change training data by adding new
artificial training examples that encourage
diversity in the resulting ensemble.

•  Improves accuracy when the training set is
small, and therefore resampling and
reweighting the training set would have
limited ability to generate diverse
alternative hypotheses.

57

Base Learner

Overview of DECORATE

Training Examples

Artificial Examples

Current Ensemble

-
-
+

+
+

C1

+
+
-
+
-

58

C1

Base Learner

Overview of DECORATE

Training Examples

Artificial Examples

Current Ensemble

-
-
+
-
+

-
-
+

+
+

C2
+
-
-
-
+

59

C1

C2 Base Learner

Overview of DECORATE

Training Examples

Artificial Examples

Current Ensemble

-
+
+
+
-

-
-
+

+
+

C3

Creating artificial examples

•  Create a set of new examples which are maximally
diverse from training set. Let x be an (unclassified)
example in this new set.

•  To classify x, proceed as follows:
– Each base classifer, Ci, in the ensemble C*,

provides probabilities for the class membership of
a sample x, i.e.

– E.g., Naïve Bayes
– The category label for x is selected according to:

60

P̂Ci ,y (x) = P̂Ci (C(x) = y)

C *(x) =
y∈Y

argmax
P̂Ci ,y (x)

Ci∈C*
∑

C *

61

Issues in Ensembles

•  Parallelism in Ensembles: Bagging is easily
parallelized, Boosting is not.

•  Variants of Boosting to handle noisy data.
•  How “weak” should a base-learner for Boosting

be? (beyond the simple rule that error<50%)
•  Exactly how does the diversity of ensembles affect

their generalization performance.
•  Combining Boosting and Bagging.

