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Machine Learning: 
Ensemble Methods 



2 

Learning Ensembles 

•  Learn multiple alternative definitions of a concept using 
different training data or different learning algorithms. 

•  Combine decisions of multiple definitions, e.g. using 
weighted voting. 

Training Data 

Data1 Data m Data2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Learner1 Learner2 Learner m ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Model1 Model2 Model m ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Model Combiner  Final Model 



Example: Weather Forecast 

GROUND 
TRUTH 

PREDICTOR1 

PREDICTOR2 

PREDICTOR3 

PREDICTOR4 

PREDICTOR5 

Combine 

X 

X 

X 

X X X
X X X
X X

X X

100% CORRECT! 
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Why does it work? 

•  Suppose there are 25 “simple” 
classifiers 
– Each classifier has error rate, ε = 0.35 

(which is a mid-high rate) 
– Assume classifiers are independent 
– Probability that the ensemble classifier 

makes a wrong prediction (it is wrong if at 
least 13 out of 25 make the wrong 
prediction): 

25
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&ε i (1−ε)25−i = 0.06

i=13

25

∑

IF CLASSIFIERS ARE INDEPENDENT, THE PROBABILITY 
THAT THE ENSAMBLE MAKES AN ERROR IS VERY LOW!! 
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Value of Ensembles 

•  When combing multiple independent and 
diverse decisions each of which is at least 
more accurate than random guessing, 
random errors , 
correct decisions are reinforced. 

•  Human ensembles are demonstrably better 
– How many jelly beans in the jar?: Individual 

estimates vs. group average. 
–  In information retrieval evaluation tasks, 

“ensamble” decision making is used 
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Homogenous Ensembles 

•  Use a single, arbitrary learning algorithm but 
manipulate training data to make it learn 
multiple models. 
–  Data1 ≠ Data2 ≠ … ≠ Data m 
–  Learner1 = Learner2 = … = Learner m 

•  Different methods for changing training data: 
–  Bagging: Resample training data 
–  Boosting: Reweight training data 
–  DECORATE: Add additional artificial training data 



I. Bagging (BAGGING is acronym for 
Bootstrap AGGregatING) 

7 

Random 
samples of 
dataset 
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Bagging (BAGGING is short for 
Bootstrap AGGregatING) 

•  Create m samples of n data with replacement 
(means same item can be resampled) 

 
•  Original training dataset has m=10 instances (#1, #2..#10) 
•  Each individual classifiers randomly extracts a sample of n 

instances (n=m in this example) with replacement 
(instances are put back in the urn, therefore they can be 
sampled more than one time) 

•  Each instance has probability of 1/mn of being selected in 
a training sample and (1 – 1/m)n of being selected as test 
data, in each bagging round.  

 

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Training Data Data ID 



Example 
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Each instance has a 
probability p=1/m of being  
extracted out of m instances. 
Since extraction is “with 
replacement” (the instance is 
put back in the urn after having  
been extracted) the probability 
is always the same at each  
extraction. 
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Training set Test set 



The 0.632 bootstrap 

•  Each example in the original dataset has a 
selection probability of 1/m 

•  If m=n on average, 36.8% of the datapoints 
are left unselected and can be used for 
testing 

•  Why? 

16 
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The 0.632 bootstrap 
•  This method is also called the 0.632 

bootstrap 
–  If I make n extraction on n instances, each 

instance has a probability 1/n  of being picked and 
1-1/n of not being picked at each extraction 

–  Thus its probability of ending up in the test data 
(=not being selected n times) is: 

 
–  This means the training data will contain 

approximately 63.2% of the instances 
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Example of Bagging 

We aim to learn a classifier C(x) in R1. Assume that the “real” (unknown)  
classification is: 

0.3 0.8 x 

+1 +1 -1 

Goal: find a collection of 10 simple thresholding (=linear) classifiers  
that collectively can classify correctly. 
 
E.g. each classifier ci learn a  single  threshold ti such that: 
If x<=ti then C   else not(C) 

Data is not linearly separable, a classifier for these data must learn a range, e.g.: 
IF  t1<=x<=t2  then C else not(C) In our example, “true” values are t1=0.3 and t2=0.8. 



Training set 
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X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Y=C(x) 1 1 1 0 0 0 0 1 1 1 

We now sample these data 10 times (thus we obtain 10 datasets),  
and on any sample we train a “simple” threshold classifier  
 
Remember: “sampling” the dataset 10 times means that for 10  
times (“bagging rounds”) we extract 10 instances from the  
original dataset with replacement. The extracted instances in  
Round i are used to train the i-th learner, and non extracted  
instances are used for testing 

So this is the learning set: we have 10 pairs (x, C(x)) 
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For each bagging, 
we show the 
thershold 
learned by 
each classifier 

Note: in each round the same training example can be extracted  
more than one time, and some examples are not extracted. 
Furthermore, each classifier is inconsistent! E.g. classifier 1  
is wrong on last two items of “sampled” learning set: c(0.9)=-1 



Combining the different learned 
classifiers 

•  In the previous example, given an initial training 
set of 10 examples, we bag the data 10 times and 
we learn 10 threshold classifiers Ci (i=1..10), each 
with an error rate εi 

•  We then need to combine the results (ensemble 
method) 

•  A simple method (for binary classifiers with 
values +1, -1): if sign(ΣiCi(xj))=1, then C(xj)=1 

•  This means: if majority says “1” then, predicted class is 1.  
•  More in general, we can use majority voting  

21 
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Bagging (if applied to training data) 

Accuracy	of	ensemble	classifier:	100%	J	

If sign( Ci (x)) =1∑ then C(x) =1



Example 2 of ensembles: non-linear classifier 
out of many linear classifiers (e.g perceptrons) 
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By summing all the lines 
we may obtain a perfect  
classifier 



N simple classifiers work like a complex 
classifier 

•  Note: initial data could not be correctly 
separated by a simple threshold/linear 
classifier 

•  With bagging , we obtain a perfect 
classifier! 

29 
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Bagging- Summary 
•  Works well if all instances have equal probability of 

being classified correctly or wrongly (means: 
Pr(c(x)≠h(x))=p for all x in X) 

•  Increased accuracy because it reduces the variance 
of the individual classifier, by averaging over many 

•  Does not focus on any particular instance of the 
training data- assumption is that all instances have 
same probability of misclassification  

•  What if we want to focus on a particular instances of 
training data? 

•  E.g. some instance can be more difficult to classify 
than others (and on these instances most “simple” 
classifiers may err, so majority voting won’t work) 

 



Example 1: handwriting recognition 

31 



Example 2: face recognition 

32 
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II. Boosting 

•  An iterative procedure to adaptively 
change distribution of training data by 
focusing (in each iteration) on 
previously misclassified examples 

Each new member of the ensamble focuses on the instances  that the 
previous ones got wrong! 
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Boosting (2) 

•  Instances xi are extracted with a probability that depends on their 
weight wi (P(X=xi)=wi) 

•  In iteration j, instances that are wrongly classified when testing the 
classifier cj will have their weights increased 

•  Those that are classified correctly will have their weights decreased 

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• 	Suppose	example	4	is	hard	to	classify	(round	1	is	wrong	
on	example	4)	
• 	Its	weight	is	increased,	therefore	it	is	more	likely	to	be	
extracted	again	in	subsequent	sampling	rounds	(2)	
• 	If	round	2	is	again	wrong	on	example	4,	it	probability	
of	being	extracted	increases	again	



Boosting flow diagram 
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The key idea is that, since the learning set (in step i) includes more examples of the  
“complex”  cases, the current classifier Ci is trained on those cases.  
E.g., recognizing faces of  people with a hat, or with dark glasses.  
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Boosting (3) 

•  At first, equal weights are assigned to each training 
instance (1/n for round 1), so all instances have the 
same probability of being sampled  

•  After a classifier Ci is learned, the instance weights are 
adjusted to allow the subsequent classifier     Ci+1  to 
“pay more attention”  to data that were misclassified by 
Ci. Higher weights è higher probability for an instance of 
being extracted 

•  Final boosted classifier C* combines the votes of each 
individual classifier 
–  Weight of each classifier’s vote is a function of its 

accuracy 
•  Adaboost – most popular boosting algorithm 
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Adaboost (Adaptive Boost) 

•  Input: 
– Training set D containing n instances 
– T iterations, or “rounds” (i=1…T) 
– A classification learning scheme 

•  Output:  
– A composite model 
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Adaboost: Training Phase  

•  Training data D contain n labeled data (X1,y1), 
(X2,y2 ), (X3,y3),….(Xn,yn)  yi are the correct 
classifications 

•  Initially assign equal weight 1/n to each example 
•  To generate T “base” classifiers, we need T 

rounds or iterations 
•  Round i, examples (instances) from D are 

sampled with replacement , to generate dataset 
Di (of size n) 

•  Each instance  chance of being selected in the 
next rounds depends on its weight 
–  Each time the new sample is generated directly from 

the training data D with different sampling 
probability according to the weights;  



Testing phases in AdaBoost 

•  Testing occurs on individual classifiers Ci at 
the end of each round.  

•  The performance of each classifier is used 
to assess the “importance” or authority of Ci 

•  Final testing is performed on unseen data. 
To combine individual classifications by 
each Ci, the decision of each classifier is 
taken into consideration proportionally to 
its importance 

39 
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Testing phase for individual classifiers in 
AdaBoost 

•  “Base” learned  classifiers: C1, 
C2, …, CT 

•  Error rate of Ci: (i = index of 
classifier, j=index of instance, 
C(xj)=yj correct class for xj) 

 

•  Importance of a classifier:  

error(Ci) = εi = wjδ Ci (x j ) ≠ y j( )
j=1

n
∑

αi =
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Final Testing Phase 

•  The lower a classifier’s error rate     , the more accurate it 
is, and therefore, the higher its weight when  voting 
should be 

•  Weight of a classifier Ci’s vote is  

•  Final Testing  (on unseen data):  
–  For each class yj, sum the weights of each classifier that 

assigned class yj to instance Xtest.  The class with the highest 
sum is the WINNER! 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

i

i
i ε

ε
α

1ln
2
1

y =C *(xtest ) = argmax
y

αiδ Ci (xtest ) = y( )
i=1

T
∑

εi

δ(x) =1 if x = true
It is again a majority voting but votes of each classifier are weighted by its importance 
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Training Phase of Ci depends on 
previous testing phase on Ci-1 

•  Base classifier Ci, is derived from training 
data of set Di 

•  Error of Ci is tested using Di (same data) 
•  Weights of training data are adjusted 

depending on how they were classified 
– Correctly classified: Decrease weight 
–  Incorrectly classified: Increase weight 

•  Weight of a data indicates how hard it is to 
classify it 
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Weighting rule for data in 
AdaBoost 
•  Weight update rule on all training data in D: 
 

wj
(i+1) =

wj
(i )

Zi
×

exp−αi if Ci (x j ) = y j

expαi if Ci (x j ) ≠ y j

$

%
&

'
&

  where Zi  is a normalization factor

If classification of xj is correct, decrease weight (divide by expαi ) 
else increase (multiply by expαi ) 

αi is the “importance” of classifier Ci, as previously computed   
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Boosting
Round 1 + + + -- - - - - -

0.0094 0.0094 0.4623
B1

a = 1.9459

Illustrating AdaBoost  
Data	points	
for	training	

IniHal	weights	for	each	data	point	

Original
Data + + + -- - - - + +

0.1 0.1 0.1

C1 is wrong on these 2 examples, hence 
their weight is increased 

α 

α=1.9459 
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Illustrating AdaBoost 

Boosting
Round 1 + + + -- - - - - -

Boosting
Round 2 - - - -- - - - + +

Boosting
Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

a = 1.9459

a = 2.9323

a = 3.8744

α 

α 

α 



Adaboost pseudo-code (summary) 

Given D:<xi,yi> |D|=n 
1.  Initialize weights wj=1/n 
2.  For i=1..T 

a.  Bootstrap Di from D using P(X=xj)=wj, and train Ci 

b.  Test Ci and compute error rate on Di,  εi 

3.  Iff εi>1/2 then T=t-1 abort loop 
a.  Compute αi 
b.  Update wj   

4.  Output: for any unseen xtest 
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C *(xtest ) = argmax
y

αiδ Ci (xtest ) = y( )
i=1

T
∑
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III. Random Forests 

•  Ensemble method specifically designed for 
decision tree classifiers 

•  Random Forests grows many trees 
–  Ensemble of unpruned decision trees 
–  Each base classifier classifies a “new” vector of 

attributes from the original data 
–  Final result on classifying a new instance: voting.  

Forest chooses the classification result having the 
majority of votes (over all the trees in the forest) 
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Random Forests 

•  Introduce two sources of randomness: 
“Bagging” and “Random input vectors” 
– Bagging method: each tree is grown using a 

bootstrap sample of training data (as in 
Bagging and Boosting) 

– Random vector method: At each decision 
node, best attribute to test is chosen from a 
random sample of m attributes, rather than 
from all attributes 



Random forest algorithm 

•  Let the number of training instances be N, and the number of features 
(attributes) describing instances be M. 

•  We are told the number m of input features to be used to determine the 
decision at a node of the tree; m should be much less than M  

•  Choose a training set Di for tree DTi by choosing n times with 
replacement from all N available training cases (i.e. take a bootstrap 
sample). Use the rest of examples to estimate the error of DTi. 

•  For each node of the tree, randomly choose m features on which to 
base the decision at that node. Calculate the best split based on these m 
variables in the training set (either test on best attribute in m  based on 
Infogain, - or select the best binary split based on IG). 

•  Each tree is fully grown and not pruned (as may be done in 
constructing a normal tree classifier). 

49 
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Best binary split, example 

•  Say we  select m=2 and sample two binary 
features at random, e.g., f1 and f3 

•  Possible splits: 
–  (0,0) (0,1; 1,0; 1,1) 
–  (0,1) (0,0;1,0; 1,1) 
–  (1,0) (0,0;0,1; 1,1) 
–  (1,1) (0,0;1,0; 1,0) 

•  Select the one with highest IG (or other 
selection methods) 
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f1,f3 

(0,0) (0,1;1,0;1,1) 



Decision forest with multiple test 
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m=1 m>1 

Leukemia MLL vs ALL vs AML  based on marker genes 
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Random Forests – combining 
results 



Example of random forest prediction 
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Class 2 is selected 



Advantage of Random Forest 

•  Since each tree only handles a subset of 
features, this can be considered a good 
choice when instances are described by very 
many features  

•  It is considered a  good “dimensionality 
reduction” method 

•  I does not do so well when features are 
continuous (regression trees) 

55 
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IV. DECORATE 
(Melville & Mooney, 2003) 

•  Change training data by adding new 
artificial training examples that encourage 
diversity in the resulting ensemble. 

•  Improves accuracy when the training set is 
small, and therefore resampling and 
reweighting the training set would have 
limited ability to generate diverse 
alternative hypotheses. 



57 

Base Learner 

Overview of DECORATE 

Training Examples 

Artificial Examples 

Current Ensemble 

- 
- 
+ 

+ 
+ 

C1 

+ 
+ 
- 
+ 
- 
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C1 

Base Learner 

Overview of DECORATE 

Training Examples 

Artificial Examples 

Current Ensemble 

- 
- 
+ 
- 
+ 

- 
- 
+ 

+ 
+ 

C2 
+ 
- 
- 
- 
+ 
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C1 

C2 Base Learner 

Overview of DECORATE 

Training Examples 

Artificial Examples 

Current Ensemble 

- 
+ 
+ 
+ 
- 

- 
- 
+ 

+ 
+ 

C3 



Creating artificial examples 

•  Create a set of new examples which are maximally 
diverse from training set. Let x be an (unclassified) 
example in this new set. 

•  To classify x, proceed as follows: 
– Each base classifer, Ci, in the ensemble C*, 

provides probabilities for the class membership of 
a sample x, i.e.  

– E.g., Naïve Bayes 
– The category label for x is selected according to: 
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P̂Ci ,y (x) = P̂Ci (C(x) = y)

C *(x) =
y∈Y

argmax
P̂Ci ,y (x)

Ci∈C*
∑

C *
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Issues in Ensembles 

•  Parallelism in Ensembles: Bagging is easily 
parallelized, Boosting is not. 

•  Variants of Boosting to handle noisy data. 
•  How “weak” should a base-learner for Boosting 

be? (beyond the simple rule that error<50%) 
•  Exactly how does the diversity of ensembles affect 

their generalization performance. 
•  Combining Boosting and Bagging.  


