Performance
Evaluation

and

Hypothesis Testing




Evaluating the performance of learning systems is
important because:

> |Learning systems are usually designed to predict the
class/value of “future” unlabeled data points

> |n some cases, evaluating alternative models (that we

Mot|vat|on call <khypotheses») is an integral part of the learning
process

> For example, in neural networks, different network
architectures — with different numbers of hidden layers
—represent alternative hypotheses.

Which one is the best predictor of reality?




The «real»

function and
the hypothesis

Whether our algorithm must learn a discrete c(x) or
continuous f(x) function ,the problem is that we are given
the «true» values of the function ONLY for the points
(examples) of the training set D

Learning a model amounts to learning a function h(x) —
named an hypothesis — that approximates the unknown
function at best (note we now use h(x) rather than f(x) or
c(x), to highlight the fact that ML systems learn approximate
solutions of a given problem!)

Perfect learning is not possible in the majority of real-life
cases

During the learning process, ML algorithms try to «fit» at
best h(x) (usually, in an iterative manner) on training data so
as to minimize errors on the training set points

Once an hypothesis is learned, we must evaluate its quality



Evaluation in (supervised) ML systems

Basic evaluation workflow

labeled data set
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training set

learned model
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How to select a training set? Stratifiled sampling

When randomly selecting training or testing sets, we may want to
ensure that class proportions are maintained in each selected set

labeled data set
++++++++ - - - - - - - -

training set test set
++++++ - - - - +4+++++ - - - -
validation set This can be done via stratified
+++ - - sampling: first stratify instances by

class, then randomly select instances

from each class proportionally.
11



How to monitor

the training
process?

Learning curves:

A learning curve is a plot showing the
progress in terms of

performance (the Loss, or any chosen
performance measure) w.r.t. a specific
metrics related to learning, during the
training of a machine learning model.



Learning curves by training set size

How does the performance of a learning method change as a
function of the training-set size?

this can be assessed by plotting learning curves

Learning Curve of Californian Housing Data
D.g L] L lllllll L] T IIIlll[ L T II'II'!

0.88

D_-Ir L TR LT LTI i.........— ............................... n éc.lsila:ni‘r.aa .............. —

Logistic Fﬂgrﬂasiun -= -

ﬂ.EB e L I.II.I.I.J.I i . A Ll I.I.Ij. A4 1
10 100 1000 10000 100000

Bample Size

Figure from Perlich et al. Journal of Machine Learning Research, 2003



=1 Learning
curves by n.
of epochs




Learning curves by learning rate n

0.010 +

0.008

Many types of learning
curves can be plotted
according to different
settings of the
hypeparameters

0.006

0.004 A

0.002 +

0.000 I I I I I I I I I
0 25 50 75 100 125 150 175 200




Learning

00 == Simple Linear Model
=== (One Hideen Layer ‘ | | rve I I
0.5 === Two Hidden Layers °
wn === Three Hidden Layers
8 === Five Hidden Layers f °
— 0.4 ‘T :l :l
s | O I e
3= I I
!
0
2 0.3
=
d ye 'S
0.1

0 5 10 15 20 25 30 35 40
MNo. of iterations



Issues In

performance
evaluation

N W NP

. Which performance measure we should use?

. How well can a classifier be expected to perform on

“novel” data, not used for training?

. Since a performance measure is an estimate on a sample,

how accurate is our estimate?

. How to compare performances of different hypotheses or

those of different classifiers?

il



Which

performance
shoud we use?

*Performance measures are a function of the errors made by
the current model

*Adopted performance measures depend on whether we are
learning a classifier or a regressor

*For classifiers, e.g., perceptron, the error function is binary:
either the learned model is correct (it predicts the right class)
or it is wrong

*For regressors, we must take into account the «distance»
between the predicted value and the ground-truth

12



Classifier and (linear) regressor errors

5( Xai ) at ); Y
| y= PG

h(x;)=y;= mx;+q




Performance
measures for
classifiers



Classifier error (measured on the test set)
—GWQL);Y
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y;=c(x.) is the correct classification y;=h(x,) is the
output of the classifier

error(h(x)) = X7, 8(c(xy), h(xy))
6 (x,y)=0 if x=y, else 6 (x,y)=1

0 Itis called the Kronecker function



Performances of classifiers

* For classifiers, often it matters to distinguish the types of errors: is the system misclassifying the

«reds» or the «blues»??
* Performances are usually reported in the form of a confusion matrix (also called contingency

table)
* The table has four cells (in case of binary classifiers):

> False Positive (FP): number of negative

>True Positive (TP): number of positive
instances classified as positive by the

(=blue, =1..) instances classified as

positive by the system system

> True Negative (TN): number of negative > False Negative (FN): number of positive

(=red, =0,..) instances classified as instances classified as
negative by the system negative by the system



l: ACTUAL CLASS l

TRUE POSITIVE FALSE POSITIVE CO nt i n g e n Cy

(TP) (FP)

Table

FALSE NEGATIVE TRUE NEGATIVE
(FN) (TN)

PREDITED CLASS
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Total instances 43
Total positive 24
Total negative 19

FP: 2
TN: 17

Learned decision boundary is f(x)
If f(x)>0 then c(x)=0 (negative) else c(x)=1 (positive)




Performances measures of classifiers (1)

Precision = —L=—

Recall = TPT+PPN ﬁfst?‘z;\!icaitseensitivity or True

F — Score = 2t

ACCURACY = TP + %ff :;g +FN

|Ermr rate = Classification error = — Hfhffgr_ﬁ” = 1 - Accuracy |
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Total instances 43
Total positive 24
Total negative 19

FP: 2
TN: 17

Learned decision boundary is f(x)
If f(x)>0 then c(x)=0 (negative) else c(x)=1 (positive)




Extending to multiple classes (macro P
and R)

Example: classifying future trends of a stock as UP, DOWN, STAY

True labels
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Total instances 43
Total positive 24
Total negative 19

Accuracy (22+17)/43
=0.907
Precison 22/24 =0.91
Recall (TPR) 22/24=0.91
P= 22 FP= 2 FScore 0.91
FN= 2 JTN= LY FPR 2/19 =0,10




Performances measures of classifiers (2)

* Receiver Operating Characteristic curve (or ROC curve.) is a graphical plot
that illustrates the performance of a binary classifier systems.

« The curves are created by plotting the recall (True Positive rate; TPR) against
the false positive rate (FPR) at various system settings (e.qg.,different
hyperparameters, growing dimension of training set, etc). One would aim at
high recall anc! !ow FPR. | Perfect  ROG curve

« FPR=False positives/All negatives 1.0

_.CI_,.)

«

((b]

=

@ 0.5

S
Note that «random» is a bisector if data have an equal ©
probability of being positive or negative =

0.0
0.0 0.5 1.0

False positive rate


https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier

Performance measures of classifiers (3):
AUROC/AUC

Receiver operating characteristic example
T T T T

1.0}

® The Area Under the ROC (AUROC or
AUC) ROC is a probability curve and
AUC represents a measure of
«separability». It tells how much model is
capable of distinguishing between
classes. Higher the AUC, better the

model is at predicting Os as Os and 1s as
— ROC curve (AUC = 0.79) 1S

o
o
T

o
o

True Positive Rate

0.2}t

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

AUROC is the integral of the ROC curve



Why is AUROC useful?

It may help understand what is the «uncertainty» zone of your predictor, and output a
classification only if outside this zone

Example: we predict if a paper will be accepted at a conference, based on features like lenght of
the paper, number of authors... Say red are accepted papers, blue are rejected.

— Let’s say our predictor output a probability, or confidence value
Negatives B el 50) (on the x axis), that a paper is accepted or not. The y axis is the
count of observations in the test set (say we have 250 accepted,
250 rejected in our test set).
For example, there are 50 papers for which the system predicts
p=0.7 of being positive, and they are indeed all positive.
20 papers have p=0.5, of which 10 are positive, 10 are negative

As shown in the figure, when the system output a
0 0102 03 04 05 06 07 08 09 1 probability between 0.4 and 0.6, it has a 50%
chance of being wrong! So we should not rely on

system’s predictions for these output values.




AUC measures this «uncertainty area»

Negatives Positives

50

0 01 02 03 0.7 08 09 1

For p>0.6 the system reliably classifies positive, for p<0.4 it reliably classifies
negative, in between the system is unable to correctly sperate positive from negatives



How dos this relate
S SR— : to ROC and AUROC?

Decrease
threhold

True positive rate A

> The left side of the ROC curve corresponds

: to the more "confident" thresholds: a higher
- threshold leads to lower recall (TPR) and
increase : fewer false positive errors. The extreme

: point is when both recall and FPR are 0. In
this case, there are no correct detections
but also no false ones.

> The right side of the curve represents the
7 PR False positive rate "IessI strict" scenarios when the threshold is
[ low!"Both recall and False Positive rates are
higher, ultimately reaching 100%. If you put
the threshold at 0, the model will always
predict a positive class: both recall, and the
FPR will be 1.

0 01 02 03 04 05 06 0.7 0B 05 1



1
AUuC=1
N PR

0.5
Threshold

0

Area Under the ROC curve:

the highest the value, the
_ smallest the uncertainty zone

0.5 ok

To summarise:
 green and red curves represent the

1 probability that a given model classifies an
instance as positive or negative given the
values of its features (note: in most

: cases probability curves are not "nice" gaussians..
This is only an example)

 AUROC (the rightmost curves) tells us how good
the model is at separating.

 More here

Threshold

0.5 1
Threshold

€Here the model is reciprocating the classes!



https://www.evidentlyai.com/classification-metrics/explain-roc-curve

Performances measures of classifiers (4)
PR curve and AUPR

Precision-Recall curve (or PR curve) is a graphical plot that illustrates the
performance of a binary classifier system. The curve is created by plotting the recall
(True Positive rate; TPR) against the precision at various system settings (for
example, different thresholds of a NN output such that if y>B then c(x)=positive else

negative; different hyperparameter settings, etc.). Two Precision-Recall curves
1.00 -
®* The Area Under the Precision-Recall curve (AUPR) has an intuitive meaning A
just like AUROC. However: c 075
» AUROC is better for a binary balanced problem. 2 150
» AUPR is better for a binary imbalanced problem (we discussed about £ B

imbalanced classes under the topic feature engineering). See link .23

0.00
000 025 050 073 1.00

Recall



https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/

Why not ROC/AUROC with unbalanced classes?

e Suppose we have imbalanced data, e.g., in credit risk prediction, the vast majority of
instances in the dataset are negative (not fraudulent users) and only a minority is
positive. We really care about capturing positive instances.

e ROC curve is not a good visual illustration for highly imbalanced data, because the False
Positive Rate ( FPR=FP / (FP+TN) ) does not drop drastically when the total number of real
negatives is huge (since now FP<<TN).

e Whereas Precision ( True Positives / (True Positives + False Positives) ) is highly sensitive to
False Positives and is not impacted by a large total true negative denominator.



Performance
of regressors




Performance measures of Regressors

(x) =y =mx; +q

error(h(x;)) = f(x;) — h(x)
MAE (mean absolute error)=

1

~Yi=1 f(x) — h(x)|

RMSE Root Mean Squared Error

V

1 n
T (&) = hx))?
=1

RSS Residual Sum of Squares
n

O (FG) = h(x)?
=1




Issues

1. Which performance measure we should
use’?

2. How well can a classifier be expected to
perform on “novel” data, not used for
training?

3. Since a performance measure is an estimate
on a sample, how accurate is our estimate?

4. How to compare performances of different
hypotheses or those of different classifiers?




Before we try to answer
the issue 2 and 3

WE NEED TO UNDERSTAND WHAT ARE THE CAUSES OF AN ERROR
(IN CLASSIFIERS AND REGRESSORS)




e The task of a ML learning algorithm is to find an
hypothesis model h(x) such that it approximates at best
the real function y=f(x) both on the points x1..xn of our
dataset D, and on all other unseen examples

Why errors, in e So h(x) must GENERALIZE on unseen examples
: P, e However, perfectly fitting f(x) is impossible in most cases,
the first place: rlowever,

e The errors (the difference between the real and learned
functions) is made up of 3 different components, as we
have already seen: bias, variance and irreducible error

36




e The Bias lies in the algorithm (a tendency
to model the problem in a specific way
which might be inappropriate, e.g. a linear

Re mem be I th e 3 error model for lineraly unseparable data). It can
be expressed as:
Components Bias? = (E[h(x)] — f(x))?
Error=bias2+variance+ irreducible error e Variance is the sensitivity of the model to

the variability of the data: this can be
reduced not only with ensambles, but also
by using "appropriate" evaluation
methods. It can be expressed as:

E[(h(x) — E(h(x))?]



Bias? = (E[h/(x)] — fl(x))z

6

R A E[h(x)] is the expected
ot | value (mean) of different
hypotheses obtained
with different settings of
the same model. Since it
averages over

different model settings,
. it is only sensible to the

: T g *  model choice

-2

-4 |




Variance
(for any discrete distribution)

Variance is defined (in general)asthe
mean of squared differences between

=2
values of N individual outcomes x; and the o2 = var(x) = (% -X)
mean (x), i.e. it measures the dispersion N
around the mean # |
A, For continuous distributions, the sum
a v becomes an integral
L T ERERE mean

In our case, the variance is the «dispersion» of the predicted output values of the model
h(x) around the mean

n

E[(h(x) = ECh(x))1= ) () - Eh()Y:

i=1



E[(h(x) — E(h(x))*]
Lower variance Higher variance models
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Variance cannot be reduced if inherent of our
data.
We can adopt two techniques (or a combination
of the two):
° Train different models (each takes care of
specific features of the data, we already
presented this technique with ensamble

How to reduce methods)

the variance” > Use a validation technique that reduces the
possibility of «being unlucky» when
randomly selecting a test set: K-Fold Cross-

Validation:

» K-FCV: perform several independent splits
on learning and test set and then average
the performance over these different
splits.

4




K-Fold Cross-Validation 1
of a hypothesis (model)

Partition all the available labeled data in k equally sized
random samples.

1

ALL

-
I
D




K-Fold Cross-Validation >
of a hypothesis (model)

At each step i, learn from Learn, and test on Test, then compute
the error (e) on Test.

Learn, Test,
1 2 3 1 — €
2 - 1 3 2 |— €




Why K-Fold Cross Validation
reduces the variance?

o Intuitively, it reduces the
probability of “being lucky”, or
unlucky, in selecting the test-set

« To understand the issue more in

detail, we need to introduce the
next topic:

> testing the accuracy of an
error estimate




Variance and
bias affect the
results of

performance
UEENSIEES

In practice, this means that, depending
on the model, its sensitivity to changes
in hyperparameters and to the choice
of the training data, the performance
measures can significantly vary.

So the question is: given this sensitivity,
to what extent can we rely on
performance evaluation experiments?

45



....\Which
brings us back

to the initial
questions:

. Which performance measure we should use?
. How well can a classifier be expected to

I”

perform on “novel” data, not used for training?

. Since a performance measure is an estimate on

a sample, how accurate is our estimate?

. How to compare performances of different

hypotheses or those of different classifiers?

46



Evaluation: What is an Estimator?

An Estimator is any tunction on a sample of the data that is used to estimate some «usefL
qualities» of the original data from which the sample is drawn. Formally, an estimator is a
function on a sample S:

Os = 9(S5),S = (&(1),...,a(m)),

where x(i) is a random variable drawn from a distribution .2 i.e. x(i) ~ .D.
 We would like to use the sample S to estimate some useful qualities of the original data.
 For example, the mean is an estimator (mean value of a random variable X, given a sample

of «trials»)
* |Ingeneral, an estimator is any random variable used to estimate some parameter of the

underlying population from which the sample is drawn
* An obvious question to ask about any estimator (not only the estimator of a ML error rate) is
whether «on average» it gives the right estimate




Questions to be considered
in estimating the error of a model

Let h(x) be a model learned by a specific ML algorithm L using some specific hyper-parameters
and choice of the training set D. The objective is to estimate its prediction accuracy. The following

are relevant questions:

Q1: Given the observed accuracy (or any other performance measure) of h over a limited sample
of test data S, how well does this value estimate its accuracy over additional (unseen) instances?

Q2: Given that one hypothesis h; outperforms another, h,,over some sample data S, how
probable is it that this hypothesis is more accurate in general (= over the full instance space)?

Note: we analyse the problem for classifiers, extending to
regressors is straighforward
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Estimating Hypothesis
Accuracy

A better formulation of Q1:

A) Given a hypothesis h and a data sample containing n instances drawn at
random according to distribution .2, what is the best estimate of the
accuracy of h over future instances drawn from the same distribution?

Need to consider: sample error vs. true error
B) What is the «probable error» in this accuracy estimate?

Need to consider : confidence intervals (ranges in which the «true
value» of the error may lie)

In other terms, if we measure an error rate (on a sample S) of, say, 20%, the true
error rate of h on any sample is not guaranteed to be exactly 20%. Let’s say that it
is 20% + A. Can we estimate the value of A (confidence interval)?

50



To answer our questions, we need to estimate the Confidence
intervals

Confidence limits

/ True value
Estimation (unknown)

]

.

V4 LS SIS S
L
SIS, /".'f‘.’,//'// ',',‘/'/‘
S ,,/.',%
’ il d s
.

.

.

.

Confidence Level = 95%

Objective: Estimating the interval around the estimated error, such that the true
(unknown) error lies within these bounds with some confidence. (See later)



Sample Error and True Error

e Definition Sample Error (i.e., error(h), error rate):

The sample error of hypothesis h(x) for the target function c(x) (the ground-truth classification c¢(x)
of instances x in S), on a data sample S of n instances is:

error(h(x)) = 21 0(c(xp), h(x;))=r/n
where:

> nis the number of instances in sample S

> ris the number of misclassified instances

> h(x) is the classification produced by our current model h
> &(c(x) Zh(x)) =1 if c(x) # h(x), and O otherwise.



Sample Error and True Error (2)

e Definition True Error (i.e., error 4 (h), p):

The true error of hypothesis h for the target (unknown) classification function ¢(x) and
distribution .2 of instances, is the probability that h will misclassify any instance x

drawn at random according to D

error z(h)=Pr(h(x)zc(x))

error(h) is an estimator of error p(h), which is a probability

So, how good is this estimator?

Remember, we consider classifiers c(x) for now, but it easilty extends to regressors f(x)



Estimate, probability
and random variables

We are given a sample S of n instances, we classify S with h(x) and we measure r
errors, we then estimate the error probability of h(x):

Py

r
errorg(h) = P (r errors in n instances) = noT 1- accuracy¢(h)

®Note: We call S “sample” since it can be any subset X’ of the set of instances X
sampled according to a distribution .2,

®However, r (or ﬁ ) is a random variable, governed by chance. If we choose
another sample S’ of n different instances, we may get a different number r’and a
different estimate. In general errorg(h) # errorg.(h)

A Random Variable can be viewed as the name of an experiment with a
probabilistic outcome. Its value is the outcome of the experiment.




* A simple experiment for a Random Variable:

* Make k different sets of trials, in each trial, toss a
coin 10 times and measure the number of “head”.
. Although, as the number of experiments k
Esti mate, increases, the average number of “head”
occurrences tend to k/2, in every single trial you

prOba blllty will likely obtain different numbers.

and random

varia bleS (the expected value for the fraction of head tosses) is
50%, but in hypothesis testing, we don’t know what
is the real error rate. So, how can we get an idea of
error 5(h) on the entire population X, distributed
according to .2?

* In coin tossing, we know that the “real” head rate

55




Sample Error & True Error (3)

Our question is: Is the Sample Error a good estimator
for the True Error?

We do not know the “true” error probability however we
know that error (h) is a random variable that follows a
binomial distribution with mean p (the unknown «true»
expected error)

What is this “binomial”?




Sample Error & True Error:
Why a binomial?

*Say p is the (unknown) “true” expected error of h(x) on X. If we have
a sample S of ninstances (test set), what is the probability that, given
instances xin S, c(x) # h(x) for r times??

*Even if we do not know the true value of p (the expected value of the
error), each instance x in S has probability p of being misclassified by
h(x) and (1-p) of being classified correctly.

*The probability of observing r misclassified examples in n instances is
then:

__—1 # of ways in which

PX =71) = (n) pr‘(‘]_ —p) "= rlir?—!r}lpr(l —p) 7T | we can select r items
r ' ' from a population of n




Example:
p is the probability of rain days in January

Binomial Distribution (n = 20, p = .25)

0.25

What is the probability of
0.20 :

X rainy days out of 20 days?
0.15
0.10
0.05 A
o WL

5 & 7 B 9 10 11 12 15 14 15 16 17 18 19 20

The abscissa is the value r (n. of rainy days), on the y axis we read the correspondent
probability, e.g. there is a 20% probability that there will be 5 rainy days out of 20
observations, 6% probability of 8 rainy days out of 20, etc.



How do we compute these
probabilities?

* Say we know that p( rain) = 25% (on January)

 However, if we watch the weather in 4 consecutive days, we
are not sure we will get “rain” 1time and “not rain” 3 times.
The number of observed “rainy days” in each trial of 4
consecutive days is governed by chance.

 What is the probability of getting, instead, 2 rainy days in 4
days?
P(2 "rain" in 4 observed days) = (g) (0.25)2(1 — 0,25)% =
4! 1-2-3-4

1201 2) 0.065(0.5625) = 0,21

= i 02521 - 0,25)% =

Same formula to estimate the probability of 2 errors over 4 instances,
given we know that the true error rate is 25%




Example: p is the expected value of the probability that our ML system
misclassifies an instance x drawn at random from the entire
population of instances

Binomial Distribution (n = 20, p = .25)

0.25

What is the probability of x errors
0.20 when classifying 20 instances?

0.15

0.10

The probability of all correct or all
\/ wrong classifications is close to zero
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e The abscissa is the value r, e.g. there is a 20% probability that there will be 5
errors out of 20 classifications, 6% probability of 8 out of 20, etc.




We usually normalize and plot r/n
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Now X is the % of wrongly classified instances

Even if we do not know p, we know that if we perform several experiments on different samples S

- (test sets) we will observe a bell shape distribution of the error rate r/n!!!! I



Properties of Binomial distribution

PX =r1) ==_p(l-p) """

rlin—r)!

Probability of r errors in n trials

* Expected Value of rover ntrials: E(X) =np

* Variance: Var(X) = np(1 —p)

Standard Deviation (STD, SD):  o(X) = /np(1 —p)

0, is the outcome of a correctness test on instance xi. Itis 1
FD It c{x)% h{x) and 0 if c(x)=h{x]
Yiei(0—p)?* 1

Var (X) = =—(np(1 — p)? 1—p)(0—p)?
ar (X) n n(np( p)”+n(l —p)(0=p)7) For np times o=1, for

=np(1—-p) n(1-p) times 0=0




Estimator of an error

Now, we know that the random variable X=r (number of errors observed inn
independent tests) follows a binomial distribution with unknown mean np. If we
compute the error rate on a sample of n observations S, we obtain a value r/n which is

our current estimate errorg(h) of error 4h).

* Note that the “estimator” error¢(h) is also a random variable! If we perform many
experiments on different samples Si we could get different values.

* However, for large enough dimension of the sample S, the expected value of
errors(h) (i.e. E[errorg(h)]) is the same as for error 4£h)!

Why? Because of the Central Limit Theorem




Central Limit

Theorem

General Formulation:

The theorem states that the arithmetic mean of a sufficiently
large number of experiments of independent random
variables, each with a well-defined expected value and well-
defined variance, will be approximately normally distributed.

* This will hold regardless of whether the source population
is normal or skewed (biased), provided the samples size is
sufficiently large (usually n > 30 but this is a "rule of the
thumb", and a better way of establishing a threshold can
be found here)

* Furthermore, the mean of all such experiments will (tend
to) be the same as the “real” population mean

* A Normal distribution (or Gaussian Distribution):

A family of continuous probability distributions such that
the probability density function is the normal (or
Gaussian) function
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https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem

Putting it all toghether:

errorg(n) and error 5(h) both follow a gaussian law, and
E(error(h))=2p

In our case we know:

a) Experiments are accuracy tests on data samples S,

b) The involved random variables are the error rates r,/n. observed on
these samples S.. These random variables are statistically independent of
each other, and follow a binomial distribution, as we have seen

c) For a sufficiently large number of experiments, the observed values
r./n. will be approximately normally distributed, according to the central
limit theorem

d) Their mean value will tend to the “real” (the unknown true value)
expected error p over the entire set of instances X



mean(errorg(h))=»p=E[error (h(x))]

P

errorg;

errorg;

P

p is the unknown
expected (true error)
error rate.

Yellow bars are the
results of different
experiments on
different samples S,
The average of
these results tends
to p as the number
of experiments
grows

The average of many observed values of the random variable errorg(h), generated by repeated random
experiments, converges toward p, the expected value of the TRUE arror rate over the entire distriibution 2D of

instances.




Gaussian (normal) Distribution

The curve parameters, as we have already seen, are the
mean M (e.g., p - the expected error rate - in our specific
case ) and the standard deviation o.

1 z—p)?

f{xlﬁrgz):ﬂ_me- 2o




Interesting properties of gaussian
distributions

Gaussian curves allow to establish a fixed
relationship between standard deviation and
portions of the area under the Gaussian

curve. These areas are interpreted as probability

mass
| In a gaussian curve, for any | and o, it holds that:
! ® 99.7% of the probability mass lies in the area below the mean value p
30

: ® 95.4% of the probability mass lies in the area below p + 20

215% : 215% ® 68.3% of the probability mass lies in the area below pt o
: 99.74%

0.13% : 0.13%
5 ' 13.50% : 3413% 3413% 13.50%

-4 -3 -2 -1 0 +1 +2

+3 +:
; —+ : : : :
Number of Standard Devistions from the Mean
. 3y b

Number of standard deviations from the mean (z value)
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Stay tuned pls..




Consequences of applicability central
limit theorem to the random variable r/n

Result 1:

If the random variable X=r/n follows a Gaussian distribution, then error¢(h(x))=r/n
is an unbiased estimator of the real expected error rate p since:

In our case, we are talking about the bias of the error function:
(Bias(errory(h))? = (E[errorg(h)] — errorp(h))? = (p — p)*=0



Conseqguences of applicability central
limit theorem to the random variable r/n

Result 2: we can approximate the standard deviation of error 5(h(x))

The Standard deviation of a sample S of n instances is defined as:

Y R 1 — _ pil-p) _ . [5U=2)_ _ ferror(h)-(1-errors(h))
s =Z=1lynp-(T-p) 5/2L2 = /202 1=/ ;

> Note that for n»+ (very large samples), then og=0
(since r/n=p i.e., the observed error will converge to the real error rate)
We replace the (unknown) p with our computed mean
value r/n. This is an estimate since we assume thatr/nis a
good approximation of the real error rate p, which holds
approximately true for large enough n, according to CLT!

0]




Why is this approximation acceptable
(and replacing p with r/n is not)?

* Whywecanset p(l1-p) = E(1-1%) ?27?
 Say p=0.6 and r/n=0.7 (difference is 0.1)
* However, p(1-p)=0.24 r/n(1-r/n)=0.21 (difference is only 0.03))

* = Although approximating the real error with the estimated error
can lead to a significant over or under-estimate, approximating
the real SD with the estimated SD is much less critical

* |n general, if n is sufficiently large, the probability that our
estimate is very far from real SD is sufficiently low



Conseguences of applicability central
limit theorem to the random variable r/n

Result 3:

Normal (gaussian) distributions have important properties concerning how the
probability mass is distributed below the curve (e.g., 99.7% of the probability
mass lies in the area below the mean value p £ 30, 95.4% of the probability
mass lies in the area below p * 20, 68.3% of the probability mass lies in the area
below p * 6 ...), establishing fixed relationships between the probability mass
and intervals around the mean.

This property allows easy calculation of confidence intervals!!



We are ready to compute the confidence
intervals for an error estimate

YFinaIly!Y




Confidence interval for an error estimate

* The confidence interval represents the statistical significance (Margin Error; ME) of the
expected distance A between the real value (in our case, p) and the observed estimate
(in our case, r/n).

* Definition: An N% confidence interval for some parameter p is an interval [LB, UB] that
is expected with probability N% to contain p. (equivalently: with probability N% we
have LB< p <UB)

* The confidence interval is a way to show what the uncertainty is with a certain
measured statistics. The margin of error ME tells you how many percentages points
your results (e.g., your estimated error rate) will differ from the real population value
(e.qg., the real error rate)




Confidence interval for an error
estimate

e Confidence interval (Cl)
A = | errory(h) — errors(h)| = ME = | p— L| = ME

|p—£| Zo ZO'5=>£—ZO'SSPS£+ZO'S
>ME (Margin Errer) = zo= (Critical Value) x (Standard

Deviation for the poptiqtion)

The critical values are also\called z-values.
>A is called Absolute Error of the estimate

AN



Confidence intervals

Confidence limits

True value
Estimation (”",‘"()ua”)
i S

Confidence Level = 95%

The good news is that the error follows a gaussian distribution, a regular and symmetric
distribution that facilitates the computation of such intervals



Confidence intervals computation with
Gaussian Distributions

| oo ] A =1 errorg(h(x) - errors(h(x))
— 95% within
2 standard deviations — |
o Spwnin For any gaussian, we can say
deviation “with a probability of 68% (95%,

99.7%, N%) any value x we
measure for errorg will lie in the
interval +1o (20, +30, tz0)

\ > errors(h) around the mean p”. More in
\’\ general, with an N% probability
= it will lie in the tzo interval
P

One reason that we prefer to work with the gaussian distribution is that we have tables specifying the size of the
interval around the mean that contains N% of the probability mass under the Normal distribution. This is precisely
the information (the critical values, z-values) needed to calculate our N% confidence interval.

Since errorg(h(x)) follows a gaussian, we can use this property!




How do we compute confidence intervals in
oractice

Wl W S o

We must fix either N% (the confidence, or probability mass) or z (the lenght of the
interval, in terms of «khow many» standard deviations, or "critical value")

Clearly, the higher is the confidence we need, the larger is the interval we will find
We must set as our target either the confidence, or the lenght of the interval

For gaussian curves, tables are provided to determine one variable when the other is

given, e.g. : —
N%[50 68 80 (90 \95 98 99 — —_
Zn 0,67 1.00 1.2811.64 \1.96 2.33 2.58 : -
e.g. with 90% probability,

Tabl ided £ N d vi The true error will lie in an
apiles are proviae to compute Z T0r any anga viceversa interval of +/- 1.640

To compute confidence intervals from z tables, see here e e EeliEred) Qe
rate


https://www.statisticshowto.com/probability-and-statistics/confidence-interval/#:~:text=Step%201%3A%20Divide%20your%20confidence,%3A%2024%2F160%20%3D%200.15.

Z-table

—

T o 1 g1 1

Entries in the table give the percentage of the
area under the curve from zero to the z-score.
For example, if z=1.32 the area under the
curve between 0 and 1.32 13 0.40638.
Ifz=-1.32, the area under the curve between

—1.32 and 0 is =till 040638,
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0.4648510.46562 1046638

0467121046784 0.4685610.46926
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How to use
z-tables to
relate N
and z




The Z-table:
Gaussian Distribution

f)

The z-value in the
table gives you this
area (for a mean =0
and sigma=1)

The red line is your
z-value (e.g. 1.45)
for sigma=1

£

T T 3 lH':_?“”F
Or viceversa if the input is N: Dividing by 2 the probability mass (say, N=
85.3% /2 = 0.4265), we obtain the z (1.45) value from the table, to calculate the
Interval




How to : Finding the N% confidence interval

« We know the formula to compute the interval, given the
estimated error rate:

_ — 1_1_
e — %_er/n(n n),%_l_zjr/n(n )

 |n this formula, z is unknown. But we fixed N, so we look in
the table and we obtain z for the desired N, and compute
the interval.



Example 1

 We have a classifier which produced a hypothesis model h(x), and a
test set S of 100 instances

We apply h(x) on the sample test set S and compute 13% (0.13) error
rate (r/n)

* Since n>30 we assume that the error distribution follows a gaussian
distribution with mean 0,13 and standard deviation o:

J0.13(1 — 0.13) /100

 To compute the N=90% confidence interval, on the table we find
/=1.64

N% |50 68 80 |90 |95 98 99
zy (0,067 1.00 1.2§ 1.64}1.96 2.33 2.58




Example 1.
Calculating the N% Confidence Interval

® \We then have:
7=164 and Og = +/0.13(1 —0.13)/100

® The 90% confidence interval is estimated using the
previous formula is:

0.13-1.64JO‘13(1'0‘13),0.13+1.64\/0‘13(1"0‘13)

100 100
10.075,0.19]




Example 2:
Finding 95% Cl on a face recognition task

Given the following extract from a scientific paper on multimodal
-~ emotion recognition: —

We trained the classifiers with 156 samples and tested with
50 samples from three subjects.

Table 3. Emotion recognition results for 3 subjects using
156 training and 50 testing samples.

Attributes I‘?umber of Classifier Correctly

Classes classified
Face* 67 8 C4.5 78 %
Body® 140 6 BayesNet 90 %

For the Face modality, what 1s n? What 1s error (h)?

N% |50 68 80 90 95 98 99
zy |0,67 1.00 1.28 1.64 1.96 2.33 2.58




Example 2:

Accuracy is 0.78, hence error rate is 0.22; the test set has 50 instances,
hence n=50.

Choose, e.g., to compute the N% confidence interval with N=0.95

Given that error (7)=0.22 and n= 50, and z,~1.96 for N = 95, we can
now say that with 95% probability error,(h) will lie in the interval:

[0.22 -1.96\/ 0.22(1 - 0'22),0.22 +1 .96‘/ 0.22(1 - 0'22)] -
50 50

0.11,0.34]




From here on not on 23-24




One side
bound
(Tailed-test)

We might be interested in computing the probability that the
error of our ML system is “at most” a given value, rather than
within a given range like before.

Which amounts to computing the blue area

Now N% is the area for which error, < zo

Normal Curve, mean = 0, 5D = 1
Shaded Area = 0.5

0.4

densiby
.z 0.3

0
-

(=1
= I




Gaussian is symmetric!

One-sided / Two-sided bounds: The Gaussian distribution is
symmetric and its total area is 100% (of the probability mass).

0.4 T
035 - 80%

j 0.3 -

[ 0.25 % .

0.2 -

{];]I-i:r : 109, 10% :

0.05 -
0 : :

—
P(x)<=L L  L<=P(x)<=U Y P(x)>=U
P(x)<=U

Pr(Y)




Example: One/Two-Sided bounds

In the previous emotion recognition example, we said that with 95% probability

(the confidence), the true error (i.e errory ) lies in the [0.11,0.34] interval.
 Thereis a 5% (100-95=5) area outside this interval, of which, 2.5% to the left and 2.5% to
the right (due to symmetry)

* Therefore, we can also say that there is a 2.5% probability that errory > 0.34 (the upper
bound UB) and 2.5% probability that errory < 0.11 (the lower bound LB)

e Thereis a97.5% (95+2.5=97.5) probability

2. 5%

that: error; < 0.34 i 2.5%
+ There is a 97.5% (95+2.5=97.5) probability X .
that: error, > 0.11 R mean 3
lu::f-ﬁlrer UppEr

larpnt Lrruet




Issues

1. Which performance measure we should
use’?

2. How well can a classifier be expected to
perform on “novel” data, not used for
training?

3. Since a performance measure is an estimate
on a sample, how accurate is our estimate?

4, How to compare performances of different
hypotheses or those of different classifiers?




Comparing
Two Learned Hypotheses

When evaluating two hypotheses (e.g. using different hyper-parameters on the same
ML algorithm), their observed ordering concerning accuracy may or may not reflect the
ordering of their true accuracies.

* Assume h, is tested on the test-set S, of size n,
* Assume h, is tested on the test-set S, of size n,

A

errorg,(h,) errorg,(hy)

A B S

' ~ ‘i errorg(h)

P(errorg(h))




Comparing
Two Learned Hypotheses

When evaluating two hypotheses (e.g. using different hyper-parameters on the same ML
algorithm), their observed ordering concerning accuracy may or may not reflect the
ordering of their true accuracies.

* Assume h, is tested on the test-set S; of size n,

* Assume h, is tested on the test-set S, of size n,

A

errorg;(h,) errorg,(h,)

P(errorg(h))

’7\ errorg(h) "




Testing alternative hypotheses

When we wish to understand how much we can rely on a statistical finding
(e.g., that a model h2 is more precise than h1 on a sample dataset), we need to

list the alternatives (e.g. h2 in not more precise than hl on the entire
population).

One of these alternatives is called the Null Hypothesis HO
Usually, the null hypothesis disconfirms our findings



Alternative Hypothesis Tests

Suppose we measured the error rate of h1 and h2 finding that
d = errorg,(h1) - errorg,(n2) # O; we can perform 3 different tests:

1. Two-Tailed Test: We formulate and test two alternatives:

> HO (null hypothesis): data do not support that h1#h2
(hence error4(h1) - error4(h2) could actually be O)

> H1: data support that h1Zzh2
(d is either positive or negative; with high confidence our
finding is true; like N=95%)



Alternative Hypothesis Tests

2. One-tailed right-test (d>0)
> HO (null hypothesis): data do not support that h2>h1
>H1: data support h2>h1 (error of hl is significantly lower)

3. One-tailed left-test (d<0)
> HO (null hypothesis): data do not support that h2<h1

> H1: data support h1>h2 (error of h1 is significantly higher)
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How to do: Two-Tailed Test

1. Assumes:
> h1is tested on the test-set S, of size n,
> h2 is tested on the test-set S, of size n,
> n,>30, n,>30 to hold the Central Limit Theorem
> Note: for CLT, binomial is approximated by Gaussian, so both error(h1)
and error,(h2) approximately follow a Gaussian distribution.

2. Suppose we wish to estimate the difference dj; (the «true» difference)
between the (unknown) true errors of these two hypotheses:

d, = errory,(hl) - error,(h2)
3. As usual, define d the estimator of d; with the known sample errors:

d, =error(hl)-error_(h2)
> dsis an unbiased estimator of d;. We will not give the proof.
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How to do: Two-Tailed Test

4. T in th nfidence interval we n m h

Note: What is the probability distribution governing the random variable? For CLT,
we know that both errorg(h1) and error,(h2) follow distributions that are
approximately Gaussian. Because the difference of two Normal distributions

(Gaussian) is also a Normal distribution, dqwill also follow an approximately Normal
distribution, with mean d4 and variance:

vﬂ_ﬂ{ﬂg} ~ error,, (hl) -(1—error_, (h1)) + error,(h2) «(1-error_, (h2))
n, s

Note: It can also be shown that the variance of this distribution is the sum of the
variances of error(h1) and error,(h2)

Ud — -\/Vﬂ_ﬂ{dg} ~ VErmrﬂ{hl}l “(1—error_ (hl)) n error_,(h2) -(1-error_,(h2))
5

ny n,
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How to do: Two-Tailed Test

If HO (null hypothesis) holds true, then we must have:

rr
l

UID\II_L} — C
Which means: although in our experiments we observe

that errori(hl) # errori(h2) (e.g.,errori(h1) < errorc(h2)), the “true”
expected value of error differences of hl and h2 on D is zero.

* To test the likelihood of HO, we have to consider:

dg = error,(hl) —error,(h2) Error estimates on the samples
d, = errory(hl) —errory(h2) = 0 )
d smust be zero if HO holds true
ldg - dy| =|dg — 0] =|dg| szog= — 20 = dg = 20, D
_ d. Error bounds in estimating dg
£ = 5.

L

We know both ds and o4, SO we compute z and look on a z-table, to

see“how many times” our result ds is far from the expected mean difference
(which is zero according to HO)




How to do: Two-Tailed Test

If the area lies within the non-critical region (i.e. N<95%), the Null Hypothesis
-~ HO is accepted (= there is no significant difference between the two hypotheses)

|ds-0]=zc , z=|d¢|/c Two Tailed Hypothesis Test

1.98

Given z, using the
table we can

s B=-
FTF BT PR R EERNN

cal vake =156

wisdom” is that the
acceptance region
for HO is within -2¢
and +2¢ (N<95%)

Criheal Kegion i ] Man-Critcal Region CiRical Regicn
compute N (the b
c |
confidence area). ¥ i
R 200
i i
The “common _ ! )
Reject Ho | : Feject Ho
I

We estimate dg on the sample If HO holds, d,=0
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How to do: Two-Tailed Test

® |n other terms: the farther our measured distance dg is from the
“expected” distance (d ;=0 in case the null hypothesis HO holds), the
less confident we should be in HO.

e For any measured value of de, the y-axis gives us the probability of
observing that value

o If dg is farther than 20 from d, then we may conclude that the
probability of having observed the value dg in case d5=0 is too
small. And hence we reject HO as being very unlikely.
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How to do:
Example of Two-Tailed Test

= ¥ [ X513 0.2 0.0 .0 .05 oL 0.07 [=Na1] LG

(=X ) O.5040 o.5o080 (N4 -Ta] .51 60 0.5199 O.5239 05279 0.53109 0.5359

o.1 0.5438 | 0.5478 | o517 [ o.5557 | 05596 | 05636 | 0.5675 | 0.5714 | 0.5753

. oz 0.583=2 o.5871 05010 oL 5o 0.5087 0.6026 oubobg 0.6103 06141

SS u I I I e . o3 o.621F o.b6255 o.b2g3 6331 0.6368 o406 ab443 o o.6517
o 0.6591 o.6628 o.bHbg oBF00 o.6736 0.6z o.bBo8 0.6844 o.687g

_ o5 0.8950 o608 O.FOLIG oLFOSg o.rol8 o.FL2S OUFLIST 0.7 190 o.Fz2g

. d —_ 1 5 o6 o.F2g1 | o.F324 | oF357 | o.7380 o.7422 | o.7454 | ooF4B6 | ogsiy | 07540

S ¢ o7 o.F611 | oFb4z | oF6F3 | OFFo4 | 07734 | OFF64 | ogyrog | oS82z | op8sz2

o8

® o.=0.05 22

1.1
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How to do:
Example of Two-Tailed Test

Our z-test says that, if d =0, the probability to obtain the value d<=0.15 or more,
is less than 0.13% (100-99,87)!! So HO is very unlikely

We should reject HO!!

0.065%+0.065% = 0.13%
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p-value

The p-value is the “probability value” of

observing our estimate, given that HO
holds.

e The common wisdom is to reject the
null hypothesis if p<0.05 (5% the area
under the curve of the tails)

(same as saying that the estimated
value lies outside the 20 interval, or
outside the 95% probability mass

around the mean) |carer e
lirnit IFril

|
‘
=
o
=

® In the previous example, we obtained
p <0.0013 (0.13%)
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How to do: One-Tailed Test

For the 1-tailed test
the p-value = 0.05
(5%)

Then, the right area
is 0.95 (95%) of the
total area

T hiz let area shaded
dark blue iz 05
ofthe total area
under the curve,

T
-1 B45 1]
Marmal Probahbility

In a one-tailed test we test either h1>h2 or h1i<h2

In case h1>h2, we state the null hypothesis as follows:
® HO: not support that h1>h2 (hence hi<h2)
® H1: support h1>h2 (in this case we should get an estimate of d )
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How to do:
Example of One-Right tailed test

Right-tailed test ( h2 > h1( d>0)):

® crror(h1)=x1=17.5%, error(h2)=x2=12.4%, d=5.1% (0.51)
® n=50, n,=50

0

n, n

Ud ~ \/Errnrslihlj (1—error_, (h1)) n error_,(h2) -(1-error_,(h2))
g

2

SpmmmaDecimal Place of z
i _ - : | o 0 Vo3 0 e 05 06 07 08 09
00 | 5000 2960 4920 A0 4840 4801 4761 4721 A6SL 464l
0.175-(1-0.175 0.124-(1-0.124 01 | .4602 4562 4522 AR5 A3 4404 4364 4325 4286 4247
. : : : 02 | 4207 4168 4120 A0 4052 4013 3974 3936 3897 3859
= + =+/0.005 03 | 3821 3783 315 I 3669 3632 3594 3557 3520 483
50 50 04 | 3446 3409 3372 af6 3300 3264 328 3190 3156 321
05 | 3085 2050 2015 NP 2946 2012 2877 2843 2810 2776
06 2709 . S 2611 2578 2546 2514 2483 2451
= 2296 2266 2236 2206 2177 2148
(xl—x2)+(err0r (h )_error (h )) 03 o1 Gl 2005 1977 1949 1922 1894 1867
z= D> 1 D22 1788 1762 173 1711 1685 1660 1635 1611

=(0.051_0)/0.07=0.73 0:9 :157 :1562 1539 1515 1492 1469 1446 1423 1401 1379
0'07 L1 | .1357 A335 1314 1292 1271 1251 L1230 1210 1190 1170

N=0.2327 = 23.27%= p>0.05

The null hypothesis is accepted:
o The difference is not large enough to support hl<h2 (p is not lower than 0.05)




Summary:
Two-Tailed Test

Two-tailed test
N(O,1)

Critical region
/ al2

Critical region
aIZ\

Acceptance

~Z2 0 Sapp Zo




Comparing
Two Learning Algorithms

e Comparing the average accuracy of hypotheses produced by two different ML
algorithms is more difficult. Ideally, we want to measure:

E_p(error, (L, (S))—error,(Lg(S)))

> where L,(S) represents the hypothesis learned by learning algorithm L, from
training data S.

e To accurately estimate this, we need to average over multiple, independent
training and test sets.

e However, since labeled data is limited, generally must average over multiple
splits of the overall data set into training and test sets (K-Fold Cross Validation,
see the beginning of this lesson).




How to use:

K-Fold Cross Validation to evaluate different
learning algorithms

Randomly partition dataset D into k disjoint equal-sized (N)
subsets P,...P,
Forifrom 1to k do:
Use P, for the test set and remaining data for training
D;=(D - P)
hy=LAD)
hg=LgD) (learn models on D, )
&,= errorp(h,) — errorp(hpg) (test models on P, and compute
difference)
Return the average difference in error:

— k < k _2
O = %251 Error bound is O, = \/k(kl— D E(éf —5)

computed as: -




Is L, better than Lg?

® K-fold cross-validation improves confidence in our
estimate of & since we are performing many
experiments and computing 6 as the average of &..

® As K grows this average tends to the true mean
difference (however we cannot make K too big since
individual samples should be large enough for the
CLT to apply)

® We can, in any case, apply hypothesis testing as
before
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Example:

Sample Experimental Results

Which experiment provides better evidence that SystemA is better
than SystemB?

Experiment 1 Experiment 2
SystemA | SystemB 0 SystemA | SystemB 0
Trial 1 87% 82% +5% Trial 1 90% 82% +8%
Trail 2 83% 78% +5% Trail 2 93% 76% | +1/%
Trial 3 88% 83% +5% Trial 3 80% 85% —2%
Trial 4 82% 7% +5% Trial 4 85% 5% +10%
Trial 5 85% 80% +5% Trial 5 7% 82% — 5%
Average 85% 80% +5%0 Average 85% 80% +5%

Experiment 1 mean & has 0=0, therefore we have perfect
confidence in the estimate of &



Experimental Evaluation:
Conclusions

® Good experimental methodology is important for evaluating learning
methods.

® Important to test on a variety of domains to demonstrate generality for a
variety of problems. Testing on 10+ data sets is common.

® Variety of freely available data sources
> UCI Machine Learning Repository (link)
> KDD Cup (large data sets for data mining) (link)
> CoNLL Shared Task (natural language problems)(link)

® Data for real problems is preferable to artificial problems to demonstrate
usefulness in real contexts.

® Many available datasets have been subjected to significant feature
engineering to make them learnable.



http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.kdnuggets.com/datasets/kddcup.html
http://www.ifarm.nl/signll/conll/

Related links

® Metrics: link, link, link, link, link

® Basic statistics: link

® Bias, Variance, and Error: link, link, link
® Estimator: link, link

® Estimating the accuracy of a hypothesis/Confidence
Interval:

> Text: link, link, link, link, link, link

> Video: link
> Hypothesis testing: link, link, link
> Z-table: link



https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
https://medium.com/thalus-ai/performance-metrics-for-classification-problems-in-machine-learning-part-i-b085d432082b
https://medium.com/@wilamelima/metrics-to-measure-machine-learning-model-performance-e8c963665476
https://machinelearningmastery.com/metrics-evaluate-machine-learning-algorithms-python/
https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/
https://www.me.psu.edu/cimbala/me345/Lectures/Basic_Statistics.pdf
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://medium.com/datadriveninvestor/bias-and-variance-in-machine-learning-51fdd38d1f86
https://www.statisticshowto.datasciencecentral.com/absolute-error/
https://en.wikipedia.org/wiki/Estimator
https://365datascience.com/point-estimates-confidence-intervals/
https://users.cs.northwestern.edu/~pardo/courses/eecs349/readings/chapter5-ml.pdf
https://www.cse.unsw.edu.au/~mike/ml4as/08/l00-2x2.pdf
https://disi.unitn.it/~passerini/teaching/2010-2011/MachineLearning/slides/21_hypothesis_testing/handouts.pdf
https://www0.gsb.columbia.edu/faculty/pglasserman/B6014/ConfidenceIntervals.pdf
https://learnche.org/pid/univariate-review/confidence-intervals
https://www.cs.cmu.edu/~tom/10601_sp08/slides/evaluation-2-13.pdf
https://www.youtube.com/watch?v=_asRoBRorDI
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Confidence_Intervals/BS704_Confidence_Intervals_print.html
https://newonlinecourses.science.psu.edu/stat504/node/19/
http://www.stat.yale.edu/Courses/1997-98/101/confint.htm
https://www.statisticshowto.datasciencecentral.com/tables/z-table/#left

