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Performance Evaluation
and

Hypothesis Testing

add hints on how to evaluate with 
unbalanced data, see howtosvm.pdf
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Motivation

• Evaluating the performance of learning 
systems is important because:
– Learning systems are usually designed to predict the class of  
�future� unlabeled data points.

– In some cases, evaluating alternative models (that we call 
hypotheses)  is an integral part of the learning process. 

– For example, when pruning a decision tree, alternative pruned trees 
represent different “hypotheses” on how to interpret our data; in 
neural networks, different network architectures – with different 
numbers of hidden layers – also represent alternative hypotheses. 
Which one is the best predictor of the reality?



Issues

• Which performance measure we should use?
• How well can a classifier be expected to perform 

on “novel” data, not used for training?
• Since a performance measure is an ESTIMATE on 

a sample, how accurate is our estimate?
• How to compare performances of different 

hypotheses or those of different classifiers?
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Performances of a given hypothesis

• Performances are usually reported in the form of a 
CONFUSION MATRIX (also called contingency table)

• The table has four cells (in case of binary classifiers):
– TP: “true positive”, i.e.,  number (or %) of positive 

instances classified as positive by the system
– FP: “false positive”, should be negative, the system 

classified as positive
– TN: “true negative” negative instances classified as 

negative
– FN: “false negative” positive instances classified as 

negative
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ACCURACY =
TP +TN
|T |

T =TP +TN + FP + FN



Performances of a given hypothesis

• Precision, Recall, F-measure

• P=TP/(TP+FP)
• R=TP/(TP+FN)
• F=2(P�R)/(P+R)
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ROC curves plot precision and recall
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Receiver Operating Characteristic curve (or ROC curve.) is a graphical plot
that illustrates the performance of a binary classifier system 
The curve is created by plotting the true positive rate (TPR) against the false 
positive rate (FPR) at various system settings (parameters, dimension of 
learning set, etc). One would obviouly aim at high TPR and low FPR. 

A and B here are two
alternative runs of a ML
algorithms (with different
parameters and settings)

https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate
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Learning Curves

• Plots accuracy vs. size of training set.
• Has maximum accuracy nearly been reached or will more 

examples help?
• Is one system better when training data is limited?
• Most learners eventually converge to optimal given 

sufficient training examples.
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Noise Curves (to test robustness)

• Plot accuracy versus noise level to determine relative 
resistance to noisy training data.

• Artificially add category or feature noise (i.e. instances 
with wrong classification or wrong/missing feature values)  
by randomly replacing some specified fraction of category 
or feature values with random values. 
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Issues

• Which performance measure should we use?
• How well can a classifier be expected to 

perform on “novel” data, not used for training?
• Since a performance measure is an ESTIMATE on 

a sample, how accurate is our estimate?
• How to compare performances of different 

hypotheses or those of different classifiers?

9



Evaluating an hypothesis 

• ROC and Accuracy not enough
• How well will the learned classifier perform 

on novel data?
• Performance on the training data is not a 

good indicator of performance on future 
data
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Example
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Learning set

Testing on the training data is not appropriate.
The learner will try to fit at best on available data, and will not learn to generalize. 
Possibly, it will misclassify new unseen istances. 

Test: is it a lion?
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• Bias in the estimate: The observed accuracy of the 
learned �hypothesis� (model) over the training 
examples D is a poor estimator of its accuracy over 
future examples ==> we must test the hypothesis on 
a test set S chosen independently of the training set 
and the hypothesis.

• Variance in the estimate: Even with a separate test 
set, the measured accuracy can vary from the true 
accuracy, depending on the makeup of the particular 
set of test examples. The smaller the test set, the 
greater the expected variance.

Difficulties in Evaluating a learned model
when only limited data are available



Variance (intuitive)

High variance

Low variance



Variance (for any discrete distribution)
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Variance is defined as the mean of
square differences between values of
n individual outcomes Xi and the
mean (x), i.e. the dispersion around the mean. 

Note: for infinite
values the sum becomes
an integral



How to reduce the variance?

• A common method (if enough labeled data 
are available) is to perform several 
independent split on learning and test set, 
and then average the perfomances over 
these different split

• Known as k-fold cross evaluation
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K-fold cross validation of an hypothesis
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Partition all the available labeled data in k equally sized random samples



K-fold cross validation (2)
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At each step, learn from Li and test on Ti, then compute the error on Ti 

Li Ti

e1

e2

e3
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K-FOLD CROSS VALIDATION



Why k-fold reduces the variance?

• Intuitively, it reduces the probability of 
being lucky, or unlucky, in selecting the test 
set 

• To understand the issue more in detail, we
need to introduce the next topic: testing the 
accuracy of an error estimate
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Issues

• Which performance measure we should use?
• How well can a classifier be expected to perform 

on “novel” data, not used for training?
• Since a performance measure is an ESTIMATE 

on a sample, how accurate is our estimate?
• How to compare performances of different 

hypotheses or those of different classifiers?
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Questions to be considered in hypothesis 
testing

Let h be a model learned by a specific ML algorithm L with some 
specific setting of hyper-parameters. We denote h as an 
�hypothesis�, and the objective is to estimate its prediction 
accuracy.  The following are relevant questions:
Q1: Given the observed accuracy of h over a limited sample of test 
data S, how well does this estimate its accuracy over additional 
(unseen) instances?
Q2: Given that one hypothesis h1 outperforms another (h2) over 
some sample data S, how probable is it that this hypothesis is 
more accurate in general (= over the full instance space X)?
Q3. When available classified data is limited, what is the best way 
to use this data to both learn a hypothesis and estimate its 
accuracy?



1. Estimating Hypothesis Accuracy

A better formulation of Q1:
– Given a hypothesis h and a data sample containing n

examples (instances) drawn at random according to 
distribution D, what is the best estimate of the accuracy 
of h over future instances drawn from the same 
distribution? => sample error vs. true error

– What is the probable error in this accuracy estimate? => 
confidence intervals= error in estimating error

In other terms, if we measure an error rate of, say, 20% on a 
sample test set, the true error rate of h on any sample is 
NOT guaranteed to be exactly 20%. Let’s say that it is  
20%�Δ. Can we estimate the value of Δ?
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Sample Error and True Error

• Definition 1: The sample error (denoted errors(h) or  eS(h)) of 
hypothesis h with respect to target (true) classification function f, on a  
data sample S is:

errors(h)= 1/n� SxÎSd(c(x),h(x))=r/n
where n is the number of instances in sample S, c(x) is the ground-truth 
classification of instances in S, h(x) is the classification produced by our 
current model h, and the quantity d(c(x),h(x)) is 1 if c(x) ¹ h(x), and 0, 
otherwise.

• Definition 2: The true error (denoted errorD(h), or p) of hypothesis h
with respect to target (unknown) classification function f and 
distribution D of instances, is the probability that h will misclassify an 
instance x in X drawn at random according to D. 

errorD(h)= p=PrxÎD[c(x) ¹ h(x)]
Sample error is an estimate on S of the  true error on D, which is a probability



Estimate, probability and random 
variables

• We are given a sample S of n instances, we classify S with h(x) and we 
measure r errors, we then estimate the error probability of h(x): P(r errors 
in n instances)=r/n

• Note: we call S “sample” since it can be any subset X’ of  X  sampled 
according to D. 

• However, r (or r/n) is a RANDOM variable, governed by chance.  If we 
get another sample S’ of n different instances, we may get a different 
number r’ and a different estimate. In general errorS(h)≠errorS’(h)!!!

• Simple experiment: make k different sets of trials, in each toss a coin 10 
times and measure the number of “head”. Although, as the number of 
experiment, k, increases, the average number of “head” occurrences tend 
to ½, in each single trial you will likely obtain different numbers. 

• In coin tossing, we know that the “real” head rate is 50%, but in 
hypothesis testing, we don’t know what is the real error rate. So, how can 
we get an idea of errorD (h) on the entire population X, distributed 
according to D? 
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Sample error and true error

• We do not know the “true” error probability however we know 
that errorD(h) is a random variable that follows a binomial 
distribution with mean p (unknown)

• Why?  And what is this “binomial”?
• Say p is the (unknown) “true” error probability of h(x) on X. If 

we have a sample of n instances, what is the probability that, 
given instances x in S,  c(x) ¹ h(x) for r times??

• Even if we do not know the error rate p, each instance x in S has 
probability p of being misclassified by h(x) and (1-p) of being 
classified correctly. 

• The probability of observing r misclassified examples in n 
instances  is then: 
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# of ways in which
we can select r items
from a population of nP(errorD (h) = r / n) = r

n

!

"
#
$

%
& pr (1− p)n−r =

n!
r!(n− r)!

pr (1− p)n−r



Example- p is the probability of rain in january
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Abscissa is the value r, e.g. there is a 20% probability that there will be 5 rainy days
out of 20,  6% probability of  8 out of 20, etc. 

What is the probability of 
x rainy days out of 20 
days?



Example- now p is the probability that our ML 
system misclassifies an instance x drawn at random
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Abscissa is the value r, e.g. there is a 20% probability that there will be 5 errors
out of 20 classifications,  6% probability of  8 out of 20, etc. 

What is the probability of 
x errors when classifying
20 instances?



We can normalize and plot r/n

0                              0,3                                                               1

Now x is the % of wrongly classified instances



How do we compute these probabilities?

• Say we know that p(rain)=25% (on january)
• However, if we watch the weather in 4 consecutive days, 

we are not sure we will get “rain” 1 time and “not rain” 3 
times. The number of observed “rainy days” in each trial of 
4 consecutive days is governed by chance.

• What is the probability of getting, instead,  2 rainy days in 
4 days? 

!(2!"rain"!!"!4!!"#$%&$'!!"#$) = 4
2 (0.25)!(1 − 0,25)! = 

= 4!
2! 4 − 2 ! (0.25)

!(1 − 0,25)! = 1 ∙ 2 ⋅ 3 ⋅ 4
1 ∙ 2 1 ∙ 2 0.065 0.5625 = 0,21 

Same formula to estimate the probability of 2 errors over 4 instances, given we
know that the true error rate is 25%



Properties of Binomial distribution

! "##$#% =
#
' = '!

#! ' − # ! *
+(1 − *)/0+	 

!" # = % # = &		Expected value 
(ℎ*+*	,-+	.ℎ-+/	(*	0.*	#	/-	1*2-/*	*++-+3	, 

		/ℎ*	+521-6	75+859:* +*;+*.*2/82<	/ℎ*	-9.*+7*1	*++-+.	82	5	/+85: 
=5+" # = ; 1 − ; 		variance 
@" # = ;(1 − ;) standard deviation 

ED(X)= expected value of 
random variable X in distribution D
(also denoted µ(X) or X^)
Var =variance
σ = standard deviation (also
denoted SD)



Variance and Standard deviation of  
Binomial: why p(1-p)? 
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= 1
! (!"(1 − !)

! + ! 1 − ! (0− !)!) = !(1 − !) 

SD(X)=! ! = !"#(!) = !(1 − !) 
 
 

Xi is the outcome of a 
single trial. If the 
outcome is binary (e.g, 
Xi=1 means error and 0 
non-error), and the 
probability of Xi=1 is 
p, then over n trials we 
expect that for np times 
Xi=1, for n(1-p) times 
Xi=0

Standard deviation of a random
variable is the square root of 
its variance

!"# ! = 1
! !(!! − !)!!

!

!!!
 



Estimator of an error 
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Note that the “estimator” errorS(h) of p is also a random variable! If
we perform many experiments on different samples S we could get different values 

However, for large enough dimension of the sample,
the mean (expected value) of errorS(h) is the same es for errorD(h)! 

Why? Because of the central limit theorem

So, we  know that errorD(h) follows a binomial distribution with unknown
mean p. If we sample the error on a set of instances S, we  obtain a value
r/n which is our current ESTIMATE errorS(h) of errorD(h).



Central Limit Theorem

• (General formulation) The theorem states that the arithmetic mean of a 
sufficiently large number of experiments of independent random 
variables, each with a well-defined expected value and well-defined 
variance, will be approximately normally distributed

• This will hold true regardless of whether the source population is 
normal or skewed, provided the samples size is sufficiently large 
(usually n > 30).

• Futhermore, the mean of all such experiments will (tend to) be the 
same as the “real” population mean
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https://en.wikipedia.org/wiki/Arithmetic_mean
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Random_variables
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Normal_distribution


Applied to our case (testing error rate)

In our case: 
• a) experiments are accuracy test on data samples Si; 
• b) the random variables are the error rates ri/ni

observed on these samples Si, they are independent
from each other, and they follow a binomial; 

• c) for sufficiently large number of experiments, the 
values ri/ni  will be approximately normally distributed, 
and 

• d) their mean value will tend to the “real” (unknown) 
error rate p over the entire set of instances X
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avg(errorS(h))àp
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p

In other words, if you perform “several” experiments, E(errorS(h))èp

• p is the unknown 
expected error rate. 

• Green bars are the 
results of different 
experiments on 
different samples Si

• The average of these 
results tends to p as 
the number of 
experiments grows

P(n/r)

r/n

errorSi

errorSj
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Central Limit Theorem

• Therefore, the theorem ensures that the 
distribution of estimated errorSi(h) for different 
samples Si of at least 30 instances follows a 
Gaussian (Normal) distribution whose mean is the 
true error mean errorD(h)=p



What is a Gaussian 
Distribution? 
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The curve parameters are the mean  µ (e.g., p in our specific case of error 
rate) and standard deviation σ. In a gaussian, for any µ and σ  it holds that: 

99.7% of the probability mass lies in the area
below the mean value µ � 3 times the standard deviation σ

95.4% in the area below  µ � 2 σ
68.3% in the area below  µ � σ

The mean µ in our case
is p, or errorD(h). 



..but..

• WHY is it important to know that the 
distribution of error rates  is approximately 
normal (Gaussian)??

• Stay tuned..
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Standard deviation of a sample

• Thanks to CL Theorem, we know that E(errorS(h))=E(errorD(h))=p 
(mean of “true” error probability and  mean of estimated error 
rate on different samples are the same)

• What about the standard deviation of errorS(h)??
• Standard deviation of a random variable is the square root of its 

variance, as we said.
• The standard deviation of a sample of n instances  is defined as:

• Note that for nè∞ (very large samples) σ tends to zero (since r/nèp 
i.e., the observed error will converge to the real error rate) 

• However,  we don’t know          , since we don’t know p!!But here 
comes the advantage of the central limit theorem.. 
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σ S =
σ D

n−1

σ D

n-1 is called Bessel’s correction
For large n we can ignore the “-1”



Estimating the standard deviation of 
errorS(h) on the sample S

40

We replace the (unknown) p with our computed mean value r/n
This is an ESTIMATE since we assume that r/n is a good
approximation of the real error rate p, which holds approximately true
for large enough n, according to CLT!

!! =
!!
! =

! 1 − !
! ≃

!
! 1 − !

!
! = !""#"! ℎ 1 − !""#"! ℎ

!  

 

the bias of an estimator is the difference Δ between this estimator's
expected value and the true value of the parameter being estimated

| errorD (h)− errorS (h) |=| p− errorS (h) |=| p−
r
n
|= Δ

http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Expected_value


Example

• Why we can set r/n(1-r/n)�p(1-p)??
• Say p=0.6 and r/n=0.7 (difference is 0.1, 10%) 
• However, p(1-p)=0.24  r/n(1-r/n)=0.21 (difference is 0.03, 

only 3%))
• èAlthough approximating the real error with the 

estimated error can lead to a significant over or under-
estimate, approximating the real SD with the estimated SD 
is much less critical

• In general if n is sufficiently large, the probability that our 
estimate is truly very far from real sigma is sufficiently 
low 
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Summary
• errorD(h)=|h(x)-c(x)| is a random boolean variable and P(errorD(h) follows a 

Binomial probability distribution with mean p, over the full population D.
• The sample error, errorS(h), is also a random variable (depending on the 

selected sample S) following a Binomial distribution. In general, 
errorS(h)≠errorD(h) and 
|errorD(h)≠errorS(h)|=|p-r/n|=Δ is called bias.  

• If the number of examples n in any sample S is sufficiently large ( >30), then 
according to Central Limit Theorem (CLT) the underlying  binomial 
distribution for errorS(h) approximates a Gaussian (Normal) distribution 
and has the same mean p as for errorD(h) in D

• THIS DOES NOT MEAN that for n>30 errorD(h)=errorS(h)!! It means that, if 
we would repeat the experiment on different independent samples  Si of the 
same dimension n, we would  obtain different values ri/n for errorSi(h) and the 
DISTRIBUTION of these values approximates a Gaussian with mean p.  
Furthermore, for a single experiment with sufficiently large n we have:



Confidence interval for an error estimate

• Confidence interval

• LB and UB provide an estimate of the minimum and maximum 
expected discrepancy between the measured and real error rate

• In general terms, a CI provides bounds for the bias Δ of an estimator
• Def: an N% confidence interval for an estimate Δ is an interval 

[LB,UB] that includes Δ with probability N%  (with probability N% 
we have LB£Δ£UB)

• In our case, Δ=     is a random variable (again!) 
representing the difference between true and estimated error  If errorS
and errorD obey a gaussian distribution,  then also Δ does, and the 
confidence interval can be easily estimated!!
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LB ≤ errorD(h(x))− errorS (h(x)) |=| p− r / n ≤UB

errorD(h(x))− errorS (h(x))



Confidence intervals
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For any gaussian, we can say  e.g “with a probability of 68% (95%, 99.7%) any value x
we measure for errorS will lie in the interval �1σ (�2σ, �3σ) around the mean p” .
More in general, with an N% probability it will lie in the �zσ interval

Δ

Δ

p



The z table for Gaussian distributions 

• z is half of the 
lenght of the 
interval around 
the mean p that 
includes N% of the 
total probability 
mass. A z-score 
tells you “how 
many standard 
deviations” (z�σ) 
from the mean p 
your result r/n is. 

45
Highlighted cell says that N=0.4265x2=0.913 % of the probability mass lies 
z=(1.4+0.05)=1.45 times the standard deviations around (�) the mean

1.4

0.05



Z- table
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The red line is your
z score   (e.g. 1.45)

The table 
gives you this
area (for a 
mean =0)

0.4265 %

Or viceversa: you input the desired probability mass (say, N=0.913), you divide by 2
(0.4265) and obtain the z value from the table, to calculate the interval



There are different z-tables! Be aware

The area to the left of zσ

The area to the right of zσ

The area in between �zσ

The area between the mean and zσ



How do I know?
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Finding the N% confidence interval 
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We don’t know where is our error estimate r/n  (the red line) is placed, but we know that, e.g. 
with 68.26% probability (34.13+34,13) it will be at a distance �1σ from the mean error, with 
probability 95,44 (68,26+2x13.59) it will be at a distance �2σ  
and in general, with probability N% at a distance �ZNσ (this is because it follows a 
gaussian)

Where is our
error estimate 
placed?



Finding the N% Confidence Interval
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• To determine the confidence interval we need to fix either z or N
• Say N% is the known  PARAMETER (we want to compute, e.g. 

the 80% confidence interval). 
• We know that N% of the probability mass lies  between p±zs
• The Gaussian table gives us the z value for any N%, 
• e.g., if N=80%  then z=1,28: we know that with 80% 

probability our estimated error is �1,28s far from the true 
error.

And:

N%
zN

50     68      80     90     95     98      99
0,67  1.00   1.28  1.64  1.96  2.33   2.58

σ S =
σ D

n
=

1
n

np(1− p) ≅

r
n

(1− r
n

)

n
=

errorS (h)(1− errorS (h))
n



Case 1: finding the interval with a given 
confidence N

• We know the formula to compute the 
interval, given the estimated error rate:

• In this formula, z is unknown. But we know 
N, so we look in the table and we obtain z 
for the desired N, and compute the interval. 
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Example

• We have a classifier which produced an hypothesis 
model h(x), and a test set S of 100 instances

• We apply h(x) on the sample test set S and compute 
13% (0.13) error rate (r/n)

• Since n>30 we assume that the error distribution 
follows a gaussian with mean 0,13 and standard 
deviation σS:

• If we wish, e.g.,  to compute the N=90% confidence 
interval, on the table we find Z=1.64
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N%
zN

50     68      80     90     95     98      99
0,67  1.00   1.28  1.64  1.96  2.33   2.58



Calculating the N% Confidence Interval: 
Example (2)

• We then have: 
• Z=1.64  

• The 90% confidence interval is estimated 
using the previous formula:
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Example 2 (finding 95% CI on a face 
recognition task)

54

N%
zN

50     68      80     90     95     98      99
0,67  1.00   1.28  1.64  1.96  2.33   2.58



Solution
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Precision is 0.78 hence error rate r/n is 0.22; the test set has 50 instances, hence n=50

Choose e.g. to compute the N% confidence interval with  N=0.95



One side bound

• We might be interested in computing the 
probability that the error of our ML system is “at 
most” a given value, rather than within a given 
range

• Which amounts to computing the blue area
• Now N% is the area for which errorS ≤ zσ 56



One sided / two sided bounds. Gaussian is symmetric!

57

L<=P(x)<=U

P(x)<=U

P(x)>=L

P(x)<=L P(x)>=U



Example

• In the previous emotion recognition 
example, we said that with 95% probability 
(confidence) true error lies in the 
[0.11,0.34] interval

• There is a 5% area outside this interval, of 
which, 2.5% to the left and 2.5% to the 
right 

• Therefore, we can also say that there is a 
2.5% probability that the true error is 
higher  than 0.34 (the upper bound) 

• There is a (95+2.5=97.5)% probability that 
it is below 0.34

• There is a 2.5% probability that the true 
error is lower than 0.11 (the lower bound) 

• There is a (95+2.5=97.5)%  that it is higher 
than 0.11 58



Issues

• Which performance measure we should use?
• How well can a classifier be expected to perform 

on “novel” data, not used for training?
• Since a performance measure is an ESTIMATE on 

a sample, how accurate is our estimate?
• How to compare performances of different 

hypotheses or those of different classifiers?

59
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a) Comparing Two Learned Hypotheses

• When evaluating two hypotheses (e.g. using different 
hyper-parameters on the same ML algorithm), their 
observed ordering with respect to accuracy may or may 
not reflect the ordering of their true accuracies.
– Assume h1 is tested on test set S1 of size n1

– Assume h2 is tested on test set S2 of size n2

P(
er

ro
r S

(h
))

errorS(h)

errorS1(h1) errorS2(h2)

Observe h1 more accurate than h2
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Comparing Two Learned Hypotheses

• When evaluating two hypotheses, their observed 
ordering with respect to accuracy may or may not 
reflect the ordering of their true accuracies.
– Assume h1 is tested on test set S3 of size n1

– Assume h2 is tested on test set S4 of size n2

P(
er

ro
r S

(h
))

errorS(h)

errorS3(h1) errorS4(h2)

Observe h1 less accurate than h2



Alternative Hypotheses testing

• When we wish to understand how much we can 
rely on a statistical finding (for example, that a 
ML model h2 is more precise than h1 on a sample 
dataset), we need to list alternatives (e.g. that h2 
in NOT more precise than h1 on the entire 
population). 

• One of these alternatives is called the NULL 
HYPOTHESIS H0

• Usually, the null hypothesis is one that 
disconfirms our findings

62



Alternative Hypotheis testing (2)

• Suppose we measure the error rate of h1 and the error rate of h2, and 
find a non zero difference d=errorS1(h1)-errorS2(h2)

• Two-tail test (we obtain a value |d|≠0):
– H0: although we measure a value |d|≠0, this value does not 

support that there is a difference between h1 and h2, hence 
errorD(h1)-errorD (h2) could actually be 0

– H1: there is indeed a (statistically significant) difference between 
h1 and h2 (either positive or negative): with high confidence our 
finding is true.

• One-tail right-test (we find that d>0)
– H0: data do not support that h2>h1 
– H1: h2>h1 (error of h1 is significantly lower)

• One-tail left-test (we find that d<0)
– H0: data do not support that h2<h1 
– H1: h1>h2 (error of h1 is significantly  higher) 64
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Z-Score Test for Comparing 
alternative classifiers (= Hypotheses)

• Assumes h1 is tested on test set S1 of size n1 and h2
is tested on test set S2 of size n2. Assume both 
n>30 for the Central Limit Theorem to hold.

• Compute the difference between the accuracy of 
h1 and h2:

• The difference is a random variable and since it is 
the difference between two variables following a 
gaussian distribution, it also follows a gaussian, 
with standard deviation: 

d̂ = errorS1 (h1)− errorS2 (h2 )

σ d =
σ D

h1

n1

+
σ h2

D

n2

≅
σ S1

h1

n1

+
σ h2

S 2

n2

=
errorS1

(h1) ⋅ (1− errorS1

(h1))

n1

+
errorS2

(h2 ) ⋅ (1− errorS2

(h2 ))

n2

Note: the SD of the sum
or difference of random
variables, is the sum
of SDs. 



Testing for the null hypothesis

• If H0 (null hypothesis) holds true, then we must have:
errorD(h1)=errorD (h2) and therefore dD=0
i.e., although if in our experiments we observe that e.g.,  
errorS(h1)<errorS(h2), the “true” mean of error differences  of h1 and 
h2 on D is zero.

• To test the likelyhood of H0, we then compute:
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! = |!!!"!!! ℎ1 − !!!"!!! ℎ2 | 
 

!! = !""#!!(ℎ1) − !!!"!!(ℎ2) = 0 
 

! − !! = |!| ≤ !×!!  
 

! = !
!!  

We know both d and σ so we compute z and look on a z-table, to see“how many times”
our result d^ is far from the expected mean difference (which is zero according to H0)

Error estimates on the samples

dD must be  zero if
H0 holds true

Error bounds in estimating d^



Two-tail test
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If H0 holds, 
dD=0

We estimate dS on the sample 

|dS-0|=zxσ  è z=|dS|/σ
Given z, using the table we can compute N 
(the confidence area).  

If the area lies within the non-critical region (N≤95%), the null
Hypothesis is ACCEPTED (= there is no significant difference 
between the two hypotheses)

The “common wisdom” is that the acceptance region for H0 is within -2σ and +2σ



Two tail test

• In other terms: the far-est our measured distance 
dS is from the “expected” distance (dD=0) in case 
the null hypothesis H0 holds true, the less 
confident we are in H0.

• For any measured value of dS , the y axis give us 
the probability of observing that value

• If dS is more far than �2σ from dD, then we may 
conclude that the probability of having observed 
the value dS in case dD=0 is too small. And hence 
we reject H0 as being very unlikely . 
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Example: Testing for the null hypothesis

• Assume that dS=0.15 and σS=0.05 then z=dS/σ=3 
• Then, 

N=99,87%  
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We should reject H0!!
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Our z-test says that, if the mean difference is zero, the probability to obtain the value
|d|=0.15 or more, is less than 0.03 (100-99,87)!! So H0 is VERY UNLIKELY

Z=3



p-value

• The p-value is the “probability value” of observing our 
estimate, given that H0 holds true

• Common wisdom is to reject the null hypotesis if p<0.05 
(5%) (same as saying that the estimated value lies outside 
the �2σ interval, or outside the 95% probability mass 
around the mean)

• In previous example we obtained p<0.03
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One-tail test
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In a one-tail test  we test either h1>h2 or h1<h2   

For example, if we test h1>h2 we state the null hypothesis as follows:
H0: data do not support that h1>h2 (hence h1≤h2)
H1: h1>h2 (in this case we should get an estimate of d )

For the 1-tail test the
p value is 0.05 



Example (one-tail left test: is truly 
h2>h1?)

• errors1(h1)= x1=17.5%,  errors2(h2)= x2=12.4%, d=5.1% 
(0.51)

• n1=50, n2=50
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σ d ≅
errorS1

(h1) ⋅ (1− errorS1

(h1))

n1

+
errorS2

(h2 ) ⋅ (1− errorS2

(h2 ))

n2

=
0.175⋅ (1−0.175)

50
+

0.124 ⋅ (1−0.124)
50

= 0.005

z =
(x1− x2)+ (errorD (h1)− errorD (h2 ))

0.07
= (0.051−0) / 0.07 = 0.73

N=0.2327 è p>0.05

The null hypothesis is accepted: difference is not
large enough to support  h1<h2 (p is not lower than 
0.05)



Summary: two-side test
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b) Comparing 2 Learning Algorithms

• Comparing the average accuracy of hypotheses produced 
by two different ML algorithms is more difficult. Ideally, 
we want to measure:

where LX(S) represents the hypothesis learned by learning 
algorithm LX from training data S.

• To accurately estimate this, we need to average over 
multiple, independent training and test sets.

• However, since labeled data is limited, generally must 
average over multiple splits of the overall data set into 
training and test sets (K-fold cross validation).

)))(())((( SLerrorSLerrorE BDADDS -Ì
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K-Fold Cross Validation: summary

• Every example in D used as a test example once 
and as a training example k–1 times.

• All test sets are independent; however, training 
sets overlap significantly (see two previous 
slides).

• In total we test on [(k–1)/k]×|D| training examples.
• Standard method is 10-fold.
• If k is low, not sufficient number of train/test 

trials; if k is high, test set may be too small and 
test variance is high and run time is increased.

• If k=|D|, method is called leave-one-out cross 
validation  (at each step, you leave out one 
example). Used for specific cases (e.g. learning 
recommendations)
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How to use K-Fold Cross Validation to 
evaluate different learning algorithms

Randomly partition dataset D into k disjoint equal-sized (N) 
subsets P1…Pk

For i from 1 to k do:
Use Pi for the test set and remaining data for training

Si = (D – Pi)
hA = LA(Si)
hB = LB(Si)
δi = errorPi(hA) – errorPi(hB) 

Return the average difference in error:

δ =
1
k

δi
i=1

k

∑
δ ± Z ⋅σ

δ

σ
δ
=

1
k(k −1)

δi −δ( )
i=1

k
∑

2Error bound is
computed as: 



Is LA better than LB?

• K-fold cross validation improves 
confidence in our estimate of δ since we are 
performing many experiments and 
computing δ as the  AVERAGE of δi.

• As K grows this average tends to the true 
mean difference (however we cannot make 
K too big since individual samples should 
be  large enough for the CLT to apply)

• We can in any case apply hypothesis testing 
as before
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Sample Experimental Results

SystemA SystemB

Trial 1 87% 82%

Trail 2 83% 78%

Trial 3 88% 83%

Trial 4 82% 77%

Trial 5 85% 80%

Average 85% 80%

Experiment 1
SystemA SystemB

Trial 1 90% 82%

Trail 2 93% 76%

Trial 3 80% 85%

Trial 4 85% 75%

Trial 5 77% 82%

Average 85% 80%

Experiment 2
δ

+5%

+5%

+5%

+5%

+5%

+5%

δ

+8%

+17%

–5%

+10%

– 5%

+5%

Which experiment provides better evidence that SystemA is better than SystemB?

Experiment 1 mean δ has σ=0, therefore we have a 
perfect confidence in the estimate of δ



81

Experimental Evaluation Conclusions

• Good experimental methodology is important to evaluating 
learning methods.

• Important to test on a variety of domains to demonstrate a 
general bias that is useful for a variety of problems. 
Testing on 20+ data sets is common.

• Variety of freely available data sources
– UCI Machine Learning Repository 

http://www.ics.uci.edu/~mlearn/MLRepository.html
– KDD Cup  (large data sets for data mining)                       

http://www.kdnuggets.com/datasets/kddcup.html
– CoNLL Shared Task  (natural language problems)                             

http://www.ifarm.nl/signll/conll/
• Data for real problems is preferable to artificial problems 

to demonstrate a useful bias for real-world problems.
• Many available datasets have been subjected to significant 

feature engineering to make them learnable.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.kdnuggets.com/datasets/kddcup.html
http://www.ifarm.nl/signll/conll/

