Performance Evaluation
and
Hypothesis Testing

add hints on how to evaluate with
unbalanced data, see howtosvm.pdf



Motivati

 Evaluating the performance of learning
systems 1s important because:

— Learning systems are usually designed to predict the class of
“future” unlabeled data points.

— In some cases, evaluating alternative models (that we call
hypotheses) is an integral part of the learning process.

— For example, when pruning a decision tree, alternative pruned trees
represent different “hypotheses™ on how to interpret our data; in
neural networks, different network architectures — with different
numbers of hidden layers — also represent alternative hypotheses.
Which one is the best predictor of the reality?



Issues

Which performance measure we should use?

How well can a classifier be expected to perform
on “novel” data, not used for training?

Since a performance measure 1s an ESTIMATE on
a sample, how accurate 1s our estimate?

How to compare performances of different
hypotheses or those of different classifiers?



Performances of a given hypothesis

* Performances are usually reported in the form of a
CONFUSION MATRIX (also called contingency table)

* The table has four cells (in case of binary classifiers):
— TP: “true positive”, 1.e., number (or %) of positive
instances classified as positive by the system

— FP: “false positive”, should be negative, the system
classified as positive

— TN: “true negative” negative instances classified as

negative
— FN: “false negative” positive instances classified as
negative
s ACCURACY = TP‘ ;lTN

I'=TP+TN+FP+FN



Performances of a given hypothesis

Precision, Recall, F-measure

P=TP/(TP+FP)
R=TP/(TP+FN)
F=2(P X R)/(P+R)



ROC curves plot precision and recall

A and B here are two
alternative runs of a ML
algorithms (with different
parameters and settings)

True Positive rate

’: Félg'e Po;i't'iS/e raﬁéf
Receiver Operating Characteristic curve (or ROC curve.) is a graphical plot
that illustrates the performance of a binary classifier system
The curve is created by plotting the true positive rate (TPR) against the false

positive rate (FPR) at various system settings (parameters, dimension of
learning set, etc). One would obviouly aim at high TPR and low FPR.



https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/True_positive_rate

Learning Curves

Plots accuracy vs. size of training set.

Has maximum accuracy nearly been reached or will more
examples help?

Is one system better when training data is limited?

Most learners eventually converge to optimal given
sufficient training examples.

100%-1-
optimal

Test Accuracy

" Random guessing

# Training examples



Noise Curves (to test robustness)

* Plot accuracy versus noise level to determine relative
resistance to noisy training data.

 Artificially add category or feature noise (1.€. instances
with wrong classification or wrong/missing feature values)
by randomly replacing some specified fraction of category
or feature values with random values.

100%-1—

Test Accuracy

% noise added



Issues

Which performance measure should we use?

How well can a classifier be expected to
perform on “novel” data, not used for training?

Since a performance measure 1s an ESTIMATE on
a sample, how accurate 1s our estimate?

How to compare performances of different
hypotheses or those of different classifiers?



Evaluating an hypothesis

* ROC and Accuracy not enough

* How well will the learned classifier perform
on novel data?

 Performance on the training data is not a
good indicator of performance on future
data
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Example

Learning set

ny

Testing on the training data is not appropriate.

The learner will try to fit at best on available data, and will not learn to generalize.

Possibly, it will misclassify new unseen istances.
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Difficulties in Evaluating a learned model
when only limited data are available

* Bias in the estimate: The observed accuracy of the
learned “hypothesis” (model) over the training
examples D 1s a poor estimator of its accuracy over
future examples ==> we must test the hypothesis on
a test set S chosen independently of the training set
and the hypothesis.

* Variance in the estimate: Even with a separate test
set, the measured accuracy can vary from the true
accuracy, depending on the makeup of the particular
set of test examples. The smaller the test set, the

greater the expected variance.
12




Variance (intuitive)

High variance

Low variance




Variance (for any discrete distribution)

n : Note: for infinite
var = = Z (x, — x) values the sum becomes
=1 an integral
A n
A;
& b ajecte’
"R Bee = R e mean
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How to reduce the variance?

* A common method (if enough labeled data
are available) 1s to perform several
independent split on learning and test set,
and then average the perfomances over
these different split

« Known as k-fold cross evaluation
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K-fold cross validation of an hypothesis

ALL

Partition all the available labeled data in k equally sized random samples

-
.

3
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K-fold cross validation (2)

At each step, learn from Li and test on Ti, then compute the error on Ti

L1 Ti
1 2 3 1 el
2 ~ 1 3 2 e2
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Why k-fold reduces the variance?

* Intuitively, it reduces the probability of
being lucky, or unlucky, in selecting the test
set

* To understand the 1ssue more in detail, we
need to introduce the next topic: testing the
accuracy of an error estimate

19



Issues

Which performance measure we should use?

How well can a classifier be expected to perform
on “novel” data, not used for training?

Since a performance measure is an ESTIMATE
on a sample, how accurate is our estimate?

How to compare performances of different
hypotheses or those of different classifiers?
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Questions to be considered in hypothesis
testing

Let 4 be a model learned by a specific ML algorithm L with some
specific setting of hyper-parameters. We denote / as an
“hypothesis”, and the objective is to estimate its prediction
accuracy. The following are relevant questions:

Q1: Given the observed accuracy of /# over a limited sample of test
data S, how well does this estimate its accuracy over additional
(unseen) 1nstances?

Q2: Given that one hypothesis 41 outperforms another (42) over
some sample data S, how probable is it that this hypothesis 1s
more accurate 1n general (= over the full instance space X)?

Q3. When available classified data 1s limited, what 1s the best way
to use this data to both learn a hypothesis and estimate its

accuracy?
21



1. Estimating Hypothesis Accuracy

A better formulation of Q1:

— (G1ven a hypothesis /# and a data sample containing »
examples (instances) drawn at random according to
distribution 2, what is the best estimate of the accuracy
of 4 over future instances drawn from the same
distribution? => sample error vs. true error

— What 1s the probable error in this accuracy estimate? =>
confidence intervals= error in estimating error

In other terms, 1f we measure an error rate of, say, 20% on a
sample test set, the true error rate of 4 on any sample 1s
NOT guaranteed to be exactly 20%. Let’s say that it 1s
20%=EA. Can we estimate the value of A?




Sample Error and True Error

* Definition 1: The sample error (denoted error (h) or egy(h)) of

hypothesis /# with respect to target (true) classification function £, on a
data sample S is:

error(h)=1/n X X. _¢Xc(x),h(x))=r/n
where 7 1s the number of instances in sample S, ¢(x) is the ground-truth
classification of instances in S, /(x) is the classification produced by our
current model /4, and the quantity o(c(x),h(x)) 1s 1 if c¢(x) #h(x), and O,
otherwise.

« Definition 2: The true error (denoted error (h), or p) of hypothesis 4

with respect to target (unknown) classification function f and
distribution 2 of instances, 1s the probability that z will misclassify an

instance x in X drawn at random according to 2.

error o(h)= p=Pr_._-c(x) Zh(x)]

Sample error is an estimate on S of the true error on ‘D, which is a probability




Estimate, probability and random
variables

We are given a sample S of # instances, we classify S with 4(x) and we
measure 7 errors, we then estimate the error probability of 4(x): P(r errors
in n instances)=r/n

Note: we call § “sample” since it can be any subset X’ of X sampled
according to D,

However, r (or r/n) is a RANDOM variable, governed by chance. If we
get another sample S’ of n different instances, we may get a different
number 7’ and a different estimate. In general errorg(h)#errorg.(h)!!!

Simple experiment: make & different sets of trials, in each toss a coin 10
times and measure the number of “head”. Although, as the number of
experiment, k, increases, the average number of “head” occurrences tend
to %2, in each single trial you will likely obtain different numbers.

In coin tossing, we know that the “real” head rate is 50%, but in
hypothesis testing, we don’t know what is the real error rate. So, how can

we get an idea of error ,(h) on the entire population X, distributed
according to D?
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Sample error and true error

*  We do not know the “true” error probability however we know
that error5(h) 1s a random variable that follows a binomial
distribution with mean p (unknown)

 Why? And what is this “binomial”?

* Say p 1s the (unknown) “true” error probability of h(x) on X. If
we have a sample of n instances, what is the probability that,
given instances x in S, c¢(x) # h(x) for r times??

* Even if we do not know the error rate p, each instance x in S has
probability p of being misclassified by h(x) and (7-p) of being
classified correctly.

* The probability of observing r misclassified exan| # of ways in which
instances 1s then: _we can select r items

! & !
P(error,(h)=r/n) = r p'(1-p)" = n! (1= pyr from a population of n
n ri(n—r)!
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Example- p is the probability of rain in january

= Binomial Distribution (n = 20, p = .25) -
e What is the probability of
0.20 x rainy days out of 20
- days?
0.10
—
0.00 1

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Abscissa is the value r, e.g. there 1s a 20% probability that there will be 5 rainy days

0
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Example- now p is the probability that our ML
system misclassifies an instance x drawn at random

= Binomial Distribution (n = 20, p = .25) -
- What 1s the probability of
.30 x errors when classifying
0 1e 20 1nstances?
0.10
0.05 A
o B EEEEEEE N

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Abscissa 1s the value r, e.g. there is a 20% probability that there will be 5 errors

0
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We can normalize and plot r/n

0.25

0.20

0.15

0.10

0.05 I I
0.00 -—-ul: T T nlrj*r‘-—r‘ﬁ———r—ﬁ";r—“r—r—l—ﬁ

0 0,3 1

Nowoxis fhe % of wronaly classified )




How do we compute these probabilities?

* Say we know that p(rain)=25% (on january)

« However, if we watch the weather 1n 4 consecutive days,
we are not sure we will get “rain” 1 time and “not rain” 3
times. The number of observed “rainy days” in each trial of
4 consecutive days is governed by chance.

* What 1s the probability of getting, instead, 2 rainy days in
4 days?

P(2 "rain" in 4 observed days) = (;L) (0.25)%(1 — 0,25)? =
41

1-2-3-4
=214 2),(025) (1-0,25)* = 0.065(0.5625) = 0,21

1-2(1-2)

Same formula to estimate the probability of 2 errors over 4 instances, given we
know that the true error rate 1s 25%




Properties of Binomial distribution

T n! -
P (errorS = n) = = r)|p "(1—-p)

E,(X) = u(X) = p Expected value
where for short we use X to denote errors,

the random variable representing the observed errors in a trial
Var,(X) = p(1 — p) variance

op(X) = \/p(1 — p) standard deviation

0.25

0.20

E(X)= expected value of

s ———a random variable X in distribution ‘D
0.10 1 | | (also denoted p(X) or X*)
_|| |I.______

Var =variance

o = standard deviation (also
denoted SD)

0.05

(%3]

000 =~ M EEEERNEEREOS® .




Variance and Standard deviation of
Binomial: wh 1-p)?

(1-p)* +n(1—p)(0—p)*) =p(1—-p)

SD(X)=0(X) = /Var(X) = ,/¢|(1

Standard deviation of a random
variable is the square root of

31



Estimator of an error

So, we know that errorp(h) follows a binomial distribution with unknown

mean p. If we sample the error on a set of instances S, we obtain a value
r/n which is our current ESTIMATE errorg(h) of errorp(h).

Note that the “estimator” errorgs(h) of p is also a random variable! If
we perform many experiments on different samples S we could get different values

However, for large enough dimension of the sample,
the mean (expected value) of errory(h) is the same es for errory(h)!

Why? Because of the central limit theorem

32




Central Limit Theorem

* (General formulation) The theorem states that the arithmetic mean of a
sufficiently large number of experiments of independent random
variables, each with a well-defined expected value and well-defined
variance, will be approximately normally distributed

e This will hold true regardless of whether the source population is
normal or skewed, provided the samples size is sufficiently large
(usually n > 30).

« Futhermore, the mean of all such experiments will (tend to) be the
same as the “real” population mean

33


https://en.wikipedia.org/wiki/Arithmetic_mean
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Applied to our case (testing error rate)

In our case:
* a) experiments are accuracy test on data samples S;;

* b) the random variables are the error rates r;/n;
observed on these samples S;, they are independent
from each other, and they follow a binomial;

 ¢) for sufficiently large number of experiments, the
values r;/n; will be approximately normally distributed,
and

* d) their mean value will tend to the “real” (unknown)
error rate p over the entire set of instances X

34



avg(errorg(h))=2p

Pn/r)

eITOrg;

LIJJ

In other words, if you perform ° several” experiments, E(errorg(h))=>p

eITOr;

il

T e

p 1s the unknown

expected error rate.
Green bars are the
results of different
experiments on
different samples S,
The average of these
results tends to p as
the number of
experiments grows

IIJJJ
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Central Limit Theorem

» Therefore, the theorem ensures that the
distribution of estimated errorg;(h) for different
samples Si of at least 30 instances follows a
Gaussian (Normal) distribution whose mean is the
true error mean error o(h)=p




What 1s a Gaussian

Distribution?

L

The curve parameters are the mean p (e.g., p in our specific case of error

fla | 1,0?) =

rate) and standard deviation 6. In a gaussian, for any u and ¢ it holds that:
99.7% of the probability mass lies in the area
below the mean value p £ 3 times the standard deviation o

Probability

95.4% in the area below n £ 2 ¢
68.3% in the area below n *£ o

The mean p in our case
1S p, or errorp(h).

37



..but..

WHY 1s 1t important to know that the
distribution of error rates 1s approximately
normal (Gaussian)??

Stay tuned..
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Standard deviation of a sample

Thanks to CL Theorem, we know that E(errory(h))=E(error ,(h))=p
(mean of “true” error probability and mean of estimated error
rate on different samples are the same)

What about the standard deviation of error¢(h)??

Standard deviation of a random variable is the square root of its
variance, as we said.

The standard deviation of a sample of n instances is defined as:

O = Op  n-1is called Bessel’s correction
S

\/E For large n we can ignore the “-1”

Note that for n=2» o (very large samples) ¢ tends to zero (since r/n=»p
1.e., the observed error will converge to the real error rate)

However, we don’t know O, , since we don’t know p!!But here
comes the advantage of the central limit theorem..

39



Estimating the standard deviation of
errorg(h) on the sample S

_ \/p(l —p) \/% (1 - %) B \/errors (h)(l — errors(h))

n

We replace the (unknown) p with our computed mean value r/n

This 1s an ESTIMATE since we assume that r/n is a good
approximation of the real error rate p, which holds approximately true
for large enough n, according to CLT!

|error, (h)—error.(h) || p - error,(h) =] p - % = A

the bias of an estimator 1s the difference A between this estimator's
expected value and the true value of the parameter being estimated

40
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Example

Why we can set t/n(1-r/n)=p(1-p)??
Say p=0.6 and r/n=0.7 (difference 1s 0.1, 10%)

However, p(1-p)=0.24 r/n(1-r/n)=0.21 (difference 1s 0.03,
only 3%))

=>» Although approximating the real error with the
estimated error can lead to a significant over or under-
estimate, approximating the real SD with the estimated SD
1s much less critical

In general if n 1s sufficiently large, the probability that our
estimate 1s truly very far from real sigma is sufficiently
low

41



Summary

errorp(h)=|h(x)-c(x)| is a random boolean variable and P(errorp(h) follows a
Binomial probability distribution with mean p, over the full population 2

The sample error, errorg(h), is also a random variable (depending on the
selected sample S) following a Binomial distribution. In general,
errorg(h)#errorp(h) and

lerrorp(h)#errorg(h)|=|p-r/n|=4 is called bias.

If the number of examples n in any sample S is sufficiently large ( >30), then
according to Central Limit Theorem (CLT) the underlying binomial
distribution for errorg(h) approximates a Gaussian (Normal) distribution
and has the same mean p as for errorp(h) in 2

THIS DOES NOT MEAN that for n>30 errorp(h)=errorg(h)!! It means that, if
we would repeat the experiment on different independent samples S; of the
same dimension n, we would obtain different values ry/n for errorg;(h) and the
DISTRIBUTION of these values approximates a Gaussian with mean p.
Furthermore, for a single experiment with sufficiently large n we have:

\/Ml —p) _ [r/n(1-3)
og = ~

- n—1 n




Confidence interval for an error estimate

* Confidence interval
LB < ‘errarD (h(x)) - error, (h(x)) = p-1/ n‘ <UB

* LB and UB provide an estimate of the minimum and maximum
expected discrepancy between the measured and real error rate

* In general terms, a CI provides bounds for the bias 4 of an estimator

* Def: an N% confidence interval for an estimate A is an interval
[LB,UB] that includes A4 with probability N% (with probability N%
we have LB<A<UB)

« In our case, A= |errory (h(x)) - errorg(h(x))| is a random variable (again!)
representing the difference between true and estimated error If errorg

and error, obey a gaussian distribution, then also 4 does, and the
confidence interval can be easily estimated!!

43



Confidence intervals

99.7% of the data are within A
| 3 standard deviations of the mean | <« r
95%within LB < |errorg(h) — errorp (71) =|——p|<UB
2 standard deviations n
68% within j & &
«— 1 standard —> —— LB Sps—"l' UB
deviation n n
P r/n(1-0)

P(errorg(h) = x) follows a Gaussian and o5 = =

P(errorp(h) = y) also follows a Gaussian with SAME mean p

For any gaussian, we can say e.g “with a probability of 68% (95%, 99.7%) any value
we measure for errorg will lie in the interval &= 16 (20, £ 30) around the mean p” .
More in general, with an N% probability it will lie in the £ zo interval 44



The z table for Gaussian distributions

e Z IS half Of the Z 0.00 0.01 0.02 0.03 0.04 0605 0.06 0.07 0.08 0.09
f 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
lenght of the

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

interval around 0200793 00832 00871 00910 00948] 00987 [0.1026 01064 01103 0.1141
0301179 01217 01255 01293 01331] 01368 [J0.1406 0.1443 01480  0.1517

the mean p that 0.4 01554 01591 01628 0.1664 01700 0.1736 [Jo.1772 0.1808 01844 0.1879
includes N% Of the 0501915 01950 0.1985 0.2019 02054 02088 [o.2123 02157 02190 0.2224
om o 0.6 02257 02291 02324 02357 02389] 02422 [Jo.2454 02486 02517  0.2549

tOtal prObablllty 0.7 0.2580 02611 02642 026735 02704 02734 02764 02794 02823  0.2852
mass. A 7Z-SCore 0502881 02910 02939 02967 02995 03023 03051 03078 03106 03133
“ 0.9 03159 03186 03212 03238 03264 03289 [Jo.3315 03340 03365  0.3389

tells you hOW 1003413 03438 03461 03485 03504 03531 [03554 03577 03599 03621
many Standard 1103643 03665 03686 03708 03729 03749 Jo3770 03790 03810  0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
. . 13
deviations” (z X ©)

1.40.4192 0.4207 0.4222 0.4236 04251 0.4279 04292 0.4306 0.4319
from the mean p ” [-] :

1.5 US55Z UA5%D U4add7 U.43/U U.s Ol‘ UA37% U,‘+4\E US510 UasLT Us991

your result r/n 1S. 1.6 0.4452 04463 04474 04484 04495 04505 Jo4515 04525 04535  0.4545

1.7 0.4554 04564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

Highlighted cell says that N=0.4265x2=0.913 % of the probability mass lies
7z=(1.4+0.05)=1.45 times the standard deviations around (=) the mean




3 2 -1 0 1 2 3

/ 145
Or viceversa: you input the desired probability mass (say, N=0.913), you divide by 2
(0.4265) and obtain the z value from the table, to calculate the interval
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density

There are different z-tables! Be aware

The area to the left of zo

Normal Curve, mean= 0,SD# 1

The area to the right of zo

Shaded Area = 085

£ .—\'\
/ . A\

D

2 4

154

The table gives

10 -+ this wea

54

0+ ——

3 2 1 [ 1 2 3

The area in between *zo

0985 11 125 14 155 1.7 185

The area between the mean and zo

e

The table contains the area under the standard normal ¢

between U and a spocific value of



How do I know?

0 z

Thlsubleprcs:ntsm:uuba\veenthmemmdmeZm When Z=1.96, the shaded
area is 0.4750.

Areas Under the Standard Normal Curve
z 000 001 002 003 004 005 006 007 008 009

0517 0857 0596 0636 0675 0714 0753
02 0793 0832 0871 0910 0948 0987 1026 1064 1103 1141
0.3 UM 4217 1255 1293 1331 1368 1406 1443 1480 1517
0.4 1554 1591 1628 1664 1700 1736 4772 1808 1844 1379

00 00000 0.0040 00080 0.0120 0.0160 00199 0.0239 00279 00319 0.0359
0398 0438 0478

0.5 1915 L1950 1985 2019 2054 2083 2123 2157 219 2224
0.6 ‘2257 2291 2324 2357 2389 242 2454 2486 2517 2549
0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2882
08 2881 2010 2939 2967 2995 3023 .JOSI 3078 3106 3133
0.9 G189 3186 322 3238 3264 3289 33IS 3360 3365 3389

1.0 3413 3438 3461 3485 3508 3531 3554 3517 3399 3621
1.l 3643 3665 3686 3708 3729 79 3770 37% 3810 3830
3849 3869 3888 3907 3925 3944 3962 1980 3997 4015

4049 4066 4082 4099 4lls 4131 4147 4162 AIT7
4192 4207 4222 4236 4251 4265 4279 4292 4306 4319

8 Swhah wLi
-
£

A3 4345 4357 4170 43R 4394 4406 4418 4429 444l
4452 4463 4474 4484 4495 4505 451 S 4525 4535 4545
J 464 4ST3 45B2 4591 4599 4608 4616 4625 4633
4641 4649 4656 4664 4671 4678 4686 4693 4699 4706
4713 ATI9 4726 4732 4T3 4744 4750 4756 4161 4767

4772 ATI8 4783 4788 4793 4798 4803 4808 4812 4817

LURES
st
5
5t
28

==
35
3t
T

s&
bl ]
o5

3
§
3
3
§ 8388
2
$
%
§ 333338 3

36 4998 4998 4999 4999
39 5000

Soarce: Mwmmh&mu«lwwww Seedecor and William G, Cochean, sixth edition
© 1967 by The lowa Stae University Press, Ames, lowa, p. 348,
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Finding the N% confidence interval

99,7% of the data are within
3 standard deviations of the mean »

95% within
2 standard deviations

68% within Where 1s our
«— 1 standard —>

deviation error estimate
placed?

e

u— 3o pu— 20 i— o u U+ o u+ 20 u+ 30
We don’t know where is our error estimate r/n (the red line) is placed, but we know that, e.g.
with 68.26% probability (34.13+34,13) it will be at a distance = 1o from the mean error, with
probability 95,44 (68,26+2x13.59) it will be at a distance *2c
and in general, with probability N% at a distance *=Zyo (this is because it follows a
gaussian)



Finding the N% Confidence Interval

 To determine the confidence interval we need to fix either z or N

* Say N% 1s the known PARAMETER (we want to compute, e.g.
the 80% confidence interval).

*  We know that N% of the probability mass lies between ptzc

* The Gaussian table gives us the z value for any N%,

* e.g.,1f N=80% then z=1,28: we know that with 80%
probability our estimated error is =1,28c far from the true

9 95 98 99
1.64 196 2.33 2.58

error. [ N% |50 68
zy [0,07 1.00

And: O = % = l\/np(l-p) E\

Vv r
;(1—;) ) \/ermrS(h)a-ermrS(h))

n n n o



Case 1: finding the interval with a given
confidence N

* We know the formula to compute the
interval, given the estimated error rate:

| _ —
5,081 - | Jr/n( D, Jr/n( o)

n n n

 In this formula, z 1s unknown. But we know
N, so we look 1n the table and we obtain z
for the desired N, and compute the interval.
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Example

* We have a classifier which produced an hypothesis
model h(x), and a test set S of 100 1nstances

* We apply h(x) on the sample test set S and compute
13% (0.13) error rate (r/n)

* Since n>30 we assume that the error distribution
follows a gaussian with mean 0,13 and standard

deviation 65> /513(1 —0.13)/100
» If we wish, e.g., to compute the N=90% confidence

interval, on the table we find Z=1.64
- 11nC

N% |50 68 80 190 |95 98 99
zn 0,67 1.00 1.2§ 1.64|1.96 2.33 2.58

|
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Calculating the N% Confidence Interval:

Examgle ( 2 )

 We then have:
« 7=1.64 os ~ ,/0.13(1 — 0.13)/100

* The 90% confidence interval 1s estimated
using the previous formula:

100 100

[0.13—1.64\/0'13(1_0'13),0.13+1.64\/0'13(1—0'13)] -
10.075,0.19
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Example 2 (finding 95% CI on a face
recognition task)

Given the following extract from a scientific paper on multimodal
emotion recognition:

We trained the classifiers with 156 samples and tested with
50 samples from three subjects.

Table 3. Emotion recognition results for 3 subjects using
156 training and 50 testing samples.

Attributes I‘:umber of Classifier Correctly

Classes classified
Face® 67 8 C4.5 78 %
Body* 140 6 BayesNet 90 %

For the Face modality, what 1s »? What 1s error (h)?
z, [0,67 1.00 128 1.64 1.96 2.33 2.58
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Solution

Precision is 0.78 hence error rate r/n 1s 0.22; the test set has 50 instances, hence n=50

Choose e.g. to compute the N% confidence interval with N=0.95

Given that error (h)=0.22 and n= 50, and z,~1.96 for N= 95, we can
now say that with 95% probability error, () will lie 1n the interval:

0.22(1-0.22)
50

0.22(1-0.22)
50

0.22 - 1.96\/ ,0.22 +1 .96\/

0.11,0.34]

55



One side bound

* We might be interested in computing the
probability that the error of our ML system 1s “at
most” a given value, rather than within a given
range

Normal Curve_ mean = 0, SD = 1
Shaded Area = 0.95

Jemsity

e Which amounts to computing the blue area
* Now N% 1s the area for which errorg < zo 56



One sided / two sided bounds. Gaussian i1s symmetric!

Dw»sv\
Pr(Y)

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

- 10%

|

M 80% 7

|

P(x)<=L [

L<=P(x)<=U UE P(x)>=U§

. P(x)<=U 3

-Ffrr—>

P(x)>=L

57



Example

In the previous emotion recognition
example, we said that with 95% probability
(confidence) true error lies in the
[0.11,0.34] interval

There 1s a 5% area outside this interval, of
which, 2.5% to the left and 2.5% to the
right

Therefore, we can also say that there is a
2.5% probability that the true error is
higher than 0.34 (the upper bound)

There 1s a (95+2.5=97.5)% probability that
it 1s below 0.34

There is a 2.5% probability that the true
error is lower than 0.11 (the lower bound)

There 1s a (95+2.5=97.5)% that it 1s higher
than 0.11

lower

Larrut

UppEr

lormet
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Issues

Which performance measure we should use?

How well can a classifier be expected to perform
on “novel” data, not used for training?

Since a performance measure 1s an ESTIMATE on
a sample, how accurate 1s our estimate?

How to compare performances of different
hypotheses or those of different classifiers?
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a) Comparing Two Learned Hypotheses

When evaluating two hypotheses (e.g. using different
hyper-parameters on the same ML algorithm), their
observed ordering with respect to accuracy may or may
not reflect the ordering of their true accuracies.

— Assume £, 1s tested on test set S, of size n,

— Assume /£, 1s tested on test set S, of size n,
4k

errorg;(h)) errors;(h,)

P(errory(h))

AN S

Observe /1, more accurate than /,

errors(h) ]
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Comparing Two Learned Hypotheses

* When evaluating two hypotheses, their observed
ordering with respect to accuracy may or may not
reflect the ordering of their true accuracies.

— Assume £, 1s tested on test set S5 of size n,
— Assume /£, 1s tested on test set S, of size n,

{k

errorg(h)) errorshy)

P(errory(h))

errors(h) ]
Observe A, less accurate than /4,
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Alternative Hypotheses testing

* When we wish to understand how much we can
rely on a statistical finding (for example, that a
ML model /2 1s more precise than 2/ on a sample
dataset), we need to list alternatives (e.g. that h2
in NOT more precise than hl on the entire
population).

* One of these alternatives 1s called the NULL
HYPOTHESIS HO

* Usually, the null hypothesis 1s one that
disconfirms our findings
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Alternative Hypotheis testing (2)

Suppose we measure the error rate of h1 and the error rate of h2, and
find a non zero difference d=errorg,(hl)-errorg,(h2)

Two-tail test (we obtain a value |d|#0):

— HO: although we measure a value |d|#0, this value does not

support that there is a difference between hl and h2, hence
errorp(h1)-errory, (h2) could actually be 0

— HI1: there is indeed a (statistically significant) difference between
hl and h2 (either positive or negative): with high confidence our
finding is true.

One-tail right-test (we find that d>0)

— HO: data do not support that h2>h1

— HI: h2>h1 (error of h1 1s significantly lower)
One-tail left-test (we find that d<0)

— HO: data do not support that h2<hl

— HI: h1>h2 (error of h1 is significantly higher)
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Z-Score Test for Comparing
alternative classifiers (= Hypotheses)

* Assumes 4, 1s tested on test set S, of size n; and £,
1s tested on test set S, of size n,. Assume both
n>30 for the Central Limit Theorem to hold.

» Compute the difference between the accuracy of
hyand hy: g ‘ermrs (h,))—error, (k A
! 2| Note: the SD of the sum

- - . | or diff f
» The difference is a random varig ° ¢1icrence of random
variables, is the sum

the difference between two varid ;¢ sps.
gaussian distribution, it also follows a gaussian,
with standard deviation:

=

n n

1 ) n n

1 ) n n

1 2

\/ Oth 052 \/ gill 01;922 \/ error, (h))-(1-error, (h)) error, (h,))-(1-error, (h,))
o,= |—"“+—"= + = ‘ : + : :
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Testing for the null hypothesis

* If HO (null hypothesis) holds true, then we must have:
errorp(hl)=errory (h2) and therefore d,=0

1.e., although if in our experiments we observe that e.g.,

errorg(hl)<errorg(h2), the “true” mean of error differences of hl and
h2 on D is zero.

* To test the likelyhood of HO, we t'
d = |errory; (h1) — errory, (h2)|

Error estimates on the samples

d, must be zero if
dp = |errorp (hl) — errorp (h2)| = 0l HO holds true

|d —dp| = |d| < zxay

Error bounds in estimating d*

d

zZ=—

O4 .
We know both d and ¢ so we compute z and look on a z-table, to see“how many times”
our result d”* 1s far from the expected mean difference (which is zero according to I;Ié))



Two-tail test

oo 3 | (e

If the area lies within the non-critical region (N<95%), the null
Hypothesis is ACCEPTED (= there is no significant difference
between the two hypotheses)

Critical Region} 3 Non-Critical Region

T FV‘:
-_--.

('rflcal Region

The “common wisdom” is that the acceptance reglon or HO is within -26 and +2¢

< 220,028

Reject Ho

- ------t-..-
'._'.4P- ----x’-

- 4




Two tail test

* In other terms: the far-est our measured distance
dg 1s from the “expected” distance (d5=0) 1n case
the null hypothesis HO holds true, the less
confident we are 1n HO.

* For any measured value of dg , the y axis give us
the probability of observing that value

* Ifdg 1s more far than =206 from dp, then we may
conclude that the probability of having observed
the value dgq 1n case d=0 1s too small. And hence
we reject HO as being very unlikely .
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Example: Testing for the null hypothesis

* Assume that d¢=0.15 and 6¢=0.05 then z=c

* Then,
N=99,87%

'S/ (523

_

z [ o.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
c.0 |wwwwed 5050 | 05080 | 0.5120 | 05160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | o0.5359
0.1 | 05398 | 0.5438 | 05478 | 0.5517 | ©.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753
0.2 | 05793 | 0.5832 | 05871 | o.5910 | ©.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
0.3 | 06179 | 0.6217 | 06255 | 0.6293 | 06331 | 0.6368 | 06406 | 0.6443 | 0.6480 | 0.6517
0.4 | 06554 | 0.6591 | 0.6628 | 0.6664 | 06700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 | 0.6915 | 0.6950 | 06985 | 0.7019 | 07054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | O.7224
0.6 | 07257 | 0.7291 | 07324 | 0.7357 | 07389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549
0.7 | 07580 | 0.7611 | 0.7642 | 0.7673 | 07704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852
08 [ 07881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133
0.9 | 08159 | 0.8186 | 08212 | 08238 | 08264 | 0.8289 | 0.8315 | 0.8390 | 08365 | 0.8389
1.0 | 08413 | 0.8438 | 0.8461 | 08485 | 08508 | 0.8531 | 08554 | 08577 | 0.8509 | 0.8621
1.1 | 08643 | 0.8665 | 0.8686 | 0.8708 | 08729 | 0.8749 | 08770 | 08790 | 0.8810 | 0.8830
1.2 | 08849 | 0.886g9 | 08888 | 08907 | 08925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | o.gois
1.3 | 09032 | 09049 | 09066 | 0.9082 | 0909y | 0.9115 | 0.9131 | 09147 | 09162 | 0.9177
1.4 | 09192 | 09207 | 09222 | 09236 | 09251 | 0.9265 | 09279 | 0.92902 | 0.9306 | 0.9319
1.5 | 0.9332 | 09345 | 09357 | 09370 | 09382 | 0.9304 | 0.0406 | 0.9418 | 0.9429 | 0.9441
1.6 | 0.9452 | 09463 | 0.9474 | 0.9484 | 09495 | 0.9505 | 0.9515 | 09525 | 0.9535 | 09545
1.7 | 0.9554 | 09564 | 09573 | 09582 | 09591 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633
1.8 | 09641 | 0.9649 | 0.9656 | 0.9664 | 09671 0.9678 | 0.9686 | 09693 | 09699 | 0.9706
1.9 | 09713 | 0.9719 | 09726 | 0.9732 | 09738 0.9744 | 09750 | 0.9756 | 0.9761 0.9767
20 | 09772 | 09778 | 09783 | 09788 | 09793 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817
21 | 09821 | 09826 | 09830 | 09834 | 09838 | 09842 | 0.9846 | 09850 | 0.9854 | 0.9857
2.2 | 0.9861 0.9864 | 09868 | 0.9871 0.9875 0.9878 | 0.9881 0.0884 | 0.9887 | 0.98g0
2.3 | 09893 | 0.9896 | 0.9898 | o0.9go1 09904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916
2.4 | 09918 | 0.9920 | 09922 | 0.9925 | 09927 | 0.9920 | 0.9931 | 0.9932 | 0.9934 | ©0.9936
2.5 | 0.9938 | 0.9940 | 0.9941 0.9943 0.9945 0.9946 | 0.9948 | 0.9949 | 0.9951 0.9952
2.6 | 09953 | 09955 | 0.9956 | 0.9957 | 09959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964
2.7 | 0.9965 | 0.9966 | 09967 | 0.9968 | 0.9969 0.9970 | 0.9971 0.9972 | 0.9973 | 0.9974
28 | 09974 | 09975 | 09976 | 09977 | 09977 | 0.9978 | 09979 | 0.9979 | 0.9980 | 0.9981

caalt | 09982 | 09982 | 09983 | 00984 | 0.9981 | 09985 | 0.9985 | 0.9986 | 0.9986
3.0 £0.9987)| 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | ©0.99g0

0.9990 | 0.9991 | 0.9991 | 0.9991 | 09992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993
3.2 | 09993 | 0.9993 | 09994 | 0.9994 | 09994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995
33 | 09995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | ©0.9996 | 0.9996 | 0.9997
3.4 | 09997 | 0.9997 | 0.9997 | 0.9997 | 09997 & 0.9997 | 0.0997 | 0.9997 | 0.9997 & 0.9998
3.5 | 0.9998 | 0.9998 | 09998 | 0.9998 | 0.9998 0.9998 | 09998 | 09968 | 0.9998 | 0.9998




We should reject HO!!

Our z-test says that, if the mean difference 1s zero, the probability to obtain the value
|d|=0.15 or more, is less than 0.03 (100-99,87)!! So HO is VERY UNLIKELY -,




p-value

* The p-value is the “probability value” of observing our
estimate, given that HO holds true

¢ Common wisdom is to reject the null hypotesis if p<0.05
(5%) (same as saying that the estimated value lies outside
the 26 interval, or outside the 95% probability mass
around the mean)

 In previous example we obtained p<0.03

lenaser ¥ “poar
lirnit ' Himit
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One-tail test

For the 1-tail test the
p value 1s 0.05

I his left area shaded
dark blue iz .05
ofthe total area
under the curve.

Ll
-1645 0
Mormal Probability

For example, if we test h1>h2 we state the null hypothesis as follows:

HO: data do not support that h1>h2 (hence h1<h2)
H1: h1>h2 (in this case we should get an estimate of d )




Example (one-tail left test: 1s truly

h2>h1?2

o errorg(hl)=x1=17.5%, error,(h2)=x2=12.4%, d=5.1%
(0.51)

¢ n1:50, n2:50
error, (h))-(1-error, (h))) errory (h)):(1-error, (h,))
~ 1 1 + 2 2

O, =

n, ",

0.175-(1-0.1 124-(1-0.
=\/ (500 75) , 0.124 (5100124)= 005

e (x1-x2)+ (error,(h)—-error,(h,))
0.07

=(0.051-0)/0.07=0.73

N=0.2327 = p>0.05

| Second Decimal Place of z

: | 00 o1 02 03 .04 05 : o .09 ..
o 5
0.0 | 5000 4960 4920 4880 4840 4801 4761 4721 4681 4641 h 11 h th t d. d ff
01 | 4602 456 4522 AMS3 4443 4404 4364 4325 4286 4247 The nu YpOotnesis 1S acceprea: airrerence 18 not
02 | .4207 4168 4129 4090 4052 4013 3974 3936 3897 3859
03 | 3821 3783 3745 3707 3669 3632 3594 .3557 3520 .3483 1 aree enou oS < .
04 | 3446 3409 3372 3336 3264 3228 3192 3156 3121 g gh t uppo hl h2 (p t l th
| 1 | 1%
05 | .3085 3050 3015 . 2912 2843 2810 2776 1S NOo ower an
06 | 2743 2709 2676 g 2578 6 2514 2483 2451
07 | 2420 2389 2358 2327 2296 2266 6 2206 2177 2148 O O 5
08 | 2119 5050 2061 Smwmwsl 5005 1977 1949 1922 1894 1867 .
09 | .1841 1814 1788 736 1711 .1685 1660 1635 1611
10 | .1587 1562 1530 1515 1492 1469 .1446 1423 1401 .1379

1357 1335 1314 1292 1271 .1251 .1230 1210 .1190 1170



Summary: two-side test

Two-tailed test
N(0O,1)

Critical region Critical region
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b) Comparing 2 Learning Algorithms

» Comparing the average accuracy of hypotheses produced
by two different ML algorithms 1s more difficult. Ideally,
we want to measure:

Eg_p(error, (L, (S))—error,(Ly(S)))
where L(S) represents the hypothesis learned by learning

algorithm L, from training data S.

* To accurately estimate this, we need to average over
multiple, independent training and test sets.

« However, since labeled data 1s limited, generally must
average over multiple splits of the overall data set into
training and test sets (K-fold cross validation).
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K-Fold Cross Validation: summary

Every example in D used as a test example once
and as a training example A1 times.

All test sets are independent; however, training

sets overlap significantly (see two previous
slides).

In total we test on [(k—1)/k]-|D| training examples.

Standard method 1s 10-fold.

If £ 1s low, not sufficient number of train/test
trials; 1f £ 1s high, test set may be too small and
test variance 1s high and run time 1s increased.

If /=|D|, method 1s called leave-one-out cross
validation (at each step, you leave out one
example). Used for specific cases (e.g. learning
recommendations)

77



How to use K-Fold Cross Validation to
evaluate different learning algorithms

Randomly partition dataset D into k disjoint equal-sized (N)
subsets P;...P;
For i from 1 to k£ do:
Use P, for the test set and remaining data for training
S;i=(D - P
hy=L(S;)
hg= Lp(S))
0,= errorp(h ) — errorp ()

Return the average difference in error: _

- 1 £ Error bound is 1 k <
0 = E E 51' computed as: A 95 = k(k—1)Z (61' B 5)
i=1

- 78
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Is L, better than Lg?

» K-fold cross validation improves
confidence 1n our estimate of o since we are

performing many experiments and
computing o as the AVERAGE of 9.

* As K grows this average tends to the true
mean difference (however we cannot make
K too big since individual samples should
be large enough for the CLT to apply)

* We can in any case apply hypothesis testing
as before
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Sample Experimental Results

Which experiment provides better evidence that SystemaA is better than SystemB?

Experiment 1

Experiment 2

SystemA | SystemB | 0 SystemA | SystemB o
Trial 1 O"In/. oNnNn/ L &0/ ) T 1 1 [aYAY\ VA oNn/ 1 %
Experiment 1 mean o has 6=0, therefore we have a
Trail 2 : : 7%
< Iperfect confidence in the estimate of & i
Trial 3 88% 83% | +5% Trial 3 80% 85% | —5%
Trial 4 82% 77% | +5% Trial 4 85% 75% | +10%
Trial 5 85% 80% | +5% Trial 5 77% 82% | - 5%
Average 85% 80% +5% Average 85% 80% +5%
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Experimental Evaluation Conclusions

Good experimental methodology 1s important to evaluating
learning methods.

Important to test on a variety of domains to demonstrate a
general bias that 1s useful for a variety of problems.
Testing on 20+ data sets 1s common.

Variety of freely available data sources

— UCI Machine Learning Repository
http://www.ics.uci.edu/~mlearn/MLRepository.html

— KDD Cup (large data sets for data mining)
http://www.kdnuggets.com/datasets/kddcup.html

— CoNLL Shared Task (natural language problems)
http://www.ifarm.nl/signll/conll/

Data for real problems 1s preferable to artificial problems
to demonstrate a useful bias for real-world problems.

Many available datasets have been subjected to significant
feature engineering to make them learnable.
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