Feature engineering

How to make your ML experiments
work on real data

In part from: https://medium.com/open-machine-learning-course/open-machine-
learning-course-topic-6-feature-engineering-and-feature-selection-8b94f870706a

Human's role when applying Machine
Learning

* Machine learning provides you with extremely
powerful tools for decision making ...

e ... Buttheroleof the developer’s decision will still be
crucial.
* Your responsibility:
— setting up the correct problem to be solved/optimized (it's
far from straightforward in the real world)
— choosing a learning algorithm (or a family of algorithms)
— finding relevant data

— designing features, feature representation, feature
selection . ..

Feature engineering

* Featureengineering - not a formally defined
term, just a vaguely agreed space of tasks related

to designing effective feature sets

* For ML applicationstwo components:

— First, understanding the properties of the task you're
trying to solve and how they might interact with the
strengths and limitations of the ML model you are
going to use

— Second, experimental work were you test your
expectations and find out what actually works and

what doesn't.

Raw data: the dream

The Dream...

Raw data Dataset

Raw data: the reality

... The Reality

‘B-7-0

Features ML Ready Model Task
dataset

Raw data

Feature engineering: 4 related tasks

. feature identification: which descriptors are
helpful for the task (often not obvious)

. feature extraction: transformation of raw data
(e,g, text) into features suitable (e.g., numbers)
for modeling;

. feature transformation: transformation of data
to improve the accuracy of the algorithm (e.g.,
normalization, scaling..);

. feature selection: removing unnecessary
features.

1. Feature identification

* Given a problem (e.g. image classification, patient
disease prediction, predicting successful football
players..) often the very first problem is:

Which kind of information would be helpful to
accomplish the task? And where can find it?

e Oftenthisis PRELIMINARY and more crucial than
finding and processingthe information, once
available

* And, this preliminary step is really artwork..

Example

* The transfer fees of football players are
getting higher and higher each year.

 Can ML help predicting these values?

— Problem 1: which information can support the
decision system

— Problem 2: where do | find the data

— Problem 3 (and ONLY in third position!): which
algorithm?

Let’s play

Ttz HILL

Using domain knowledge and open
data sources we find:

Features (for each player):
— Player’s basic information: team, age, height, weight, . ..

— market information: transfer fee, former team, duration of the
contract, when the player joined the team, . ..

— performance information: on-pitch time, actions at the ball, fouls,
scores.

Where can we find these data?

Data sources: Transfer Market , WhoScored, European
Football Database and Garter

Football Player’s Performance and Market Value

Miao He!, Ricardo Cachucho!, and Arno Knobbe!:2

Using on-line infos is far from being
easy (often you need scarpers..)

Whoscored: https://www.google.com/

NEWS TRANSFERS & RUMOURS ~ MARKET VALUES ~ COMPETITIONS ~ FORUMS ~ MYTM LIVEe

A n England

n Competition n Club

Ad closed by Google
SPUT”GHT Latest transfers - What's happening today?
05.10.2018 - 12:26 G;
Foden, Nelson and Barnes named in England Under-21

squad

Manchester City midfielder Phil Foden has been handed his first England Under-21 call up.

The 18-year-old is joined by Arsenal’s Reiss Nelson - on loan at Hoffenheim - and | eicester’s
Read More

04.10.2018 - 15:26

Dortmund Youngster
m [N B oY al [1 r (2)

But Google might help you..

Google Dataset Search ..

football

kaggle

kaggle

kaggle

kaggle

kaggle

kaggle

kaggle

European Soccer Database

www.kaggle.com

Data di aggiornamento: Oct 23, 2016

Football Events

www.kaggle.com

Data di aggiornamento: Jan 25, 2017

Football World Cup 2018 Dataset

data.world

Data di aggiornamento: Jun 18,2018

International football results from
1872 to 2018

www.kaggle.com

Data di aggiornamento: Jul 11, 2018

Ultimate 25k+ Matches Football
Database -European

www.kaggle.com

Data di aggiornamento: Dec 23, 2016

Football Delphi

www.kaggle.com

Data di aggiornamento: Aug 16, 2017

Football World Cup 2018 Dataset

www.kaggle.com

Data di aggiornamento: Jun 14, 2018

Football Matches of Spanish
League

kaggle

European Soccer Database
25k+ matches, players & teams attributes for European Professional Football

@ Kaggle

5 articoli accademici citano questo set di dati (visualizza in Google Scholar)
Set di dati aggiornato Oct 23,2016

Autori
Hugo Mathien

Licenza
Database: Open Database, Contents: © Original Authors

Formati di download disponibili dai fornitori
SQLITE, ZIP

Descrizione
The ultimate Soccer database for data analysis and machine learning

What you get:

e +25,000 matches

e +10,000 players

e 11 European Countries with their lead championship

e Seasons 2008 to 2016

e Players and Teams' attributes* sourced from EA Sports' FIFA video game series, including the weekly up
e Team line up with squad formation (X, Y coordinates)

e Betting odds from up to 10 providers

e Detailed match events (goal types, possession, corner, cross, fouls, cards etc...) for +10,000 matches

**16th Oct 2016: New table containing teams' attributes from FIFA I*
Original Data Source:

You can easily find data about soccer matches but they are usually scattered across different websites. A thor
any commercial use of the data. The data was sourced from:

e http://football-data.mx-api.enetscores.com/ : scores, lineup, team formation and events

o http://www.football-data.co.uk/ : betting odds. Click here to understand the column naming system for t

Feature engineering: 4 related tasks

. feature identification: which descriptors are
helpful for the task (often not obvious)

. feature extraction: transformation of raw data
(e,g, text) into features suitable (e.g., numbers)
for modeling;

. feature transformation: transformation of data
to improve the accuracy of the algorithm (e.g.,
normalization, scaling..);

. feature selection: removing unnecessary
features.

2. Feature extraction

* |n practice, data rarely comes in the form of ready-to-
use matrices.

* That's why every task begins with feature extraction.
Sometimes, it can be enough to read the csv file and
convert it into an array, but thisis a rare exception.

* Popular types of data from which features can be
extracted:
— Texts
— |Images
— Geospatial data
— Date and time
— Time series, web data, etc.

Text (1)

First step is tokenization, i.e., splitting the text into units
(hence, tokens).

— “Before working with text, one must tokenize it” =
before,working,with,text,one,must,tokenize,it

Next, stemming or lemmatization to normalize data:
— befor,work,with,text,one,must,token,it

Finally, text encoding (bag of words is the simplest):
— Build a vocabulary over all words in all documents:

['aardvak', 'amsterdam', 'ants', ...'you', 'your', ‘'zyxst']
— Encode every document in a sparse vector d; where d;=1 iff word j of
vocabulary is in d; else d;=0

Text (2): Example

“This 1s how you get ants.”

l tokenizer
['this','1is', 'how', 'you',b 'get', 'ants']
l Build a vocabulary over all docum

['faardvak', 'amsterdam', 'ants’', you', 'your', 'zyxst']
l Sparse matrix encoding

aardvak ants get you zyxst
,..»o01,0..,01,0,..,0,10,..,0]

Text (3): embeddings

Most recent approach to text representationis
word embeddings

More in NLP and W&Social courses, however the
idea is that words, rather than being represented
as a binary value (or a real value) in a “sparse”
documentvector with |V| dimensions, are
represented as “dense” numeric vectors in a
“reduced” space

Words with “close” vectors are similar

Popular algorithms to obtain word embeddings:
Word2vect, Glove, Fastext

Words are “projected” onto semantic
spaces

Ol .49 01 oI 04y |
A 0 .44 0.05 0.0\ 0.02 #

O s 047 0-4a4

0.7 0. (0. o-|

The dimensions are “latent” and automatically learned by looking word contexts.
However, the meaning of dimensions is not explicit!

NOTE: We are unaware that dimension 1 is, e.g., “royalty”. And, learnt dimensions
depends on the source texts used for learning — kings, queen and princesses have
different vectors if learnt from fairy tales or from gossips newspapers!

Text (4): Example of embeddings

1-0 T T T T T T T
Ol
Qoven () Microwave
O refrigerator
O%
0.5} 8
O bulb
led
o ktcher @ fan . O o bzgecrr;arger
. 19
o Ya:'ty Q@ table ¢
sin saw
0.0 © @) bathroomt . ® o Gewalt
i e bosch 1
@ bathtub © Okt @ (ol ®
@ faucet ~ shower drill
@ @
O valve
D) finish @) deck
051 @ olor _ 0 gardenQ hose © sprinkler .
@ paint
@ concrete @ urass
_10 ! L ! L 1 ! 1
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.8

2. lmages

Images can be represented at
the level of pixel

Many popular and (almost)
readily available techniques
such as Convolutional
Networks can be used to
progressively extract higher
level features (from pixels to
edges to semantic elements
such as eyes, nose, mouth..)

Even in this case, the
“semantic” of hidden layers is
not available!

Feature representation

3rd layer
“Objects”

2nd layer
“Object parts

n

1st layer
IIEdgeS”

Pixels

Images (2)

 Nevertheless, we should not focus too much
onh neural network techniques. Simpler
features are still very useful:

* A more realistic example than
cities&mountains: for predicting the
popularity of a house rental listing, learn from
experts that bright apartments pictures attract
more attention, and create a feature such as
"the average brightness value of the pixel".

3. Geospatial data

* Geospatial data is often presentedin the form of
addresses or coordinates (latitude, longitude).

* Dependingon the task, you may need two
mutually-inverse operations:

— geocoding (recovering a point of interest from an
address)

— reverse geocoding (recovering an address from a
point).
 Both operations are accessible in practice via

external APIs from Google Maps or
OpenStreetMap.

3. Geospatial data (2)

CAVEAT:

Addresses may contain typos, which makes the data
cleaning step necessary (see later).

Coordinates contain fewer misprints, but its position
can be incorrect due to GPS noise or bad accuracy in
places like tunnels, downtown areas, etc.

If the data source is a mobile device, the geolocation
may not be determined by GPS but by WiFi networks
in the area. While traveling alongin Manhattan, there
can suddenly be a WiFi location from Chicago.

3. Geospatial data (3)

* A pointis usually located among infrastructures. Here,
you can really unleash your imaginationand invent
features based on your life experience and domain
knowledge: the proximity of a point to the subway, the
number of stores in the building, the distance to the
nearest store, the number of restaurants around, etc.
(e.g. for predicting people movements, for
recommending tourist informations..)

* For problems outside an urban environment, you may
consider features from more specific sources e.g. the
height above sea level, methereological data, etc.

4. Date and time

e Days of the week are easy to turned into 7 dummy
variables using one-hot encoding (a 7-dimensional
binary vector). In addition, we may create a separate
binary feature for the weekend “is_weekend”.

* Some tasks may require additional calendar features.

— For example, cash withdrawals can be linked to a pay day;
the purchase of a metro card, to the beginning of the
month.

— In general, when working with time series data, it is a good
idea to have a calendar with public holidays, abnormal
weather conditions, and other important events or

anomalyes.

4. Date and time (2)

Dealing with hour (minute, day of the month ...) is not

as simple as it seems. If you use the hour as a real

variable, we slightly contradict the nature of data: 0<23
while 0:00:00 02.01> 01.01 23:00:00. For some .

10

problems, this can be critical.

There also exist some approaches to such data like f' :
projecting the time onto a circle (seee.g., ¢ | i

-0.5 ®

https://ianlondon.github.io/blog/encoding-cyclical-] e

1.0 o

features-24hour-time/).

This transformation preserves the distance between S e
points, which is important for algorithms that estimate
distance (kNN, SVM, k-means...)

=>THIS IS AN IMPORTANT POINT: whenever you apply a
transformation to your data, need to preserve the
relative distance or many ML algorithms won’t work
properly!

5. Time series

e Sequential data are quite common (e.g. stock
market data, personal patient records..)

* The library:
http://tsfresh.readthedocs.io/en/latest/
automatically calculates a large number of
time series features.

* Further the package contains methods to
evaluate the explaining power and importance
of such features for classification tasks.

5. Times series (example)

Max

16.0

. Number Peaks

-\ OgF

- V Median

14.0 ,J \

SRR g \];

12,5 \

12.0

o Q 9 N \ \ :
03.00‘0 dOQQQ (9006 1000 6000 %000 QQQ M 18]

6. Other domains

* In other domains, you can come up with your
own features based on intuition about the
nature of the data, based on available
information, and on the classification task

Feature engineering: 4 related tasks

. feature identification: which descriptors are
helpful for the task (often not obvious)

. feature extraction: transformation of raw data

(e,g, text) into features suitable (e.g., numbers)
for modeling;

. feature transformation: transformation of data
to improve the accuracy of the algorithm (e.g.,
normalization, scaling..);

. feature selection: removing unnecessary
features.

3a) Normalization and changing
distribution

* Certain algorithms —and platforms- require
specific format for data

* E.g., decision trees allow for categorical data,
other methods do not;

e Similarly, there are algorithms that suffer for
unbalanced scaling of features (e.g. one
feature with range [0,1] and others with range
[-10000.. +1000..]

Normalization: Scaling and centering

 The reason for centering and scaling is that it places all
features on equal standing.

 Some ML algorithms, e.g. clustering, project instances onto
a multi-dimensional space and examine the distances
between different data points. In such methods, features
with large absolute differences in values will be more
important (will “affect” more than others the computation
of distance).

* Yet generally such absolute differences in values reflects
nothing more than the metric chosen to measure the
variable, and a priori it is unreasonable that one variable
should be more important than others

Normalization: Scaling and centering

(2)

* Centering of a real valued feature is done by subtracting its
sample mean from all values. The equation for calculating the
sample mean is (N number of samples):

N

)?=Z)Cl-

=1

* Scaling of a real valued feature is done by dividing all its
values by its sample standard deviation:

SSD, =

N
1 7\ 2
—N-1Z<xi"”

Number of rooms

Number of rooms (normalized)

Example

Here , the
Un-normalized Houses feature
100 A “number of
rooms” does
50 - not allow any
useful
v ey Yy | | separation
0 20 40 60 80 between
Years old datapoints
Normalized Houses using z-score normalization
21 ° o ¢ os!
O* . ~‘
0 - ® ¢
"o’ '0 ‘o‘
P
2 1 o0 1 2 3 4 5 6

Years old (normalized)

Normalization: Changes of Bases

* Sometimes a ML application involves visual
examination of plots of the data or functions
of the data, as well as statistical tests.

* Acommon aim is the generation of a function
that would make clearly non-normal data at
least “approximately” normal.

* A statistical tests of normality is the
ShapiroWilk

Normalization: Changes of Bases (2)

e “skewness” is asymmetry in a statistical distribution,
in which the curve appears distorted or skewed
either to the left or to the right.

* Skewness can be quantified to define the extent to

which a distribution differs from a normal (Gaussian)
distribution

* Skewness affects the performance of several
algorithms (e.g., linear regression, k-nearest
neighbour and K-means). See examples
https://www.linkedin.com/pulse/question-does-
skewness-variable-impact-predictive-data-
mosaddar/)

Normalization: Changes of Bases (3)

 To reduce the skewness of the distribution of
feature values in a dataset, we can perform a
log transform.

* For more “sparse” distributions, other more

complex methods are possible (e.g. ggnorm).
Some are provided, e.g. in sckitlearn

3500000 -

3000000 A

2500000 A

2000000 A

1500000 -

1000000 -

500000 A

0-

Example

0.2 .4 0.6 0.8 1.0
le7

Original distribution of values,
applying a log transformation

0.25 1

0.20 1

0.15 -+

0.10 A

0.05 1

0.00 -

and distribution after

16

Normalization: Categorial into numeric

e Certain features can take categorial values
(e.g.(Spotify dataset) artist, track name..)

e Categories may be nominal (sport, politics, finance..)
or ordinal (e.g., dates or week days). Ordinal levels
follow a logical order. In nominal categories finding
such an order is difficult.

* Some algorithms do not accept categories, therefore
we need some transformation. Some packages also
do not accept categorical variables (SciKitLearn)

Normalization: Categorial into numeric

(2)

* One-hot encoding is the default way of turning categorical data into
numeric. With this method we encode the categorical variable as a

one-hot vector, i.e. a vector where only one element is non-zero, or
hot.

* With one-hot encoding, a categorical feature becomes an array

whose size is the number of possible choices for that features. With
N values, the dimension of the vectorsis N

color color_red | color_blue |color_green
red 1 0 0
green 0 0 1
blue 0 1 0

Normalization: Categorial into numeric

(3)

 However, if N is large, one-hot encoding may be a
bad idea. Another approach to encoding
categorical values is to use a techniquecalled
label encoding. Label encodingis simply
converting each categorical value to a number.

* BUT, in those algorithms where the “weight” of
each attribute value matters (SVM, regressions..),
label encoding introduces an unjustified bias

towards higher values

e Anintermediate alternativeis label binarization
wich introduces log2(N) values.

Example (label and binary encoding)

— Binary Encoded
Categorical Feature\ xl x2 x4 x8
Louise 0€

Gabriel
Emma
Adam

Alice
Raphael
Chloe
Louis

Jeanne
Arthur

f

o

VooV
o

v

VoW

o nonn
A
O VO 00 NG UV - W N
— - -0 O O O O

OO0 0 —~ =~ — — O O

v

3b. Missing values

* Real-world data often has missing
values.

 Data can have missing values for = WY RS
number of reasons such as R Y I
observations that were not
recorded and data corruption.

* Handling missing data is
importantas many machine

learning algorithms do not
support data with missing values.

Missing values (2)

 Thefirst thingto do is counthow many you have and
try to visualize their distributions (methods are
provided e.g. missingno package in phy).

e
)
1 I

32561

White
PO PR spaces

(‘ 8 B
> $ 'y o
o o O e e
Q £ N < |
& & e are
& &

S’O\Q
F _b(de ‘g’* &Q\G - -
missing
values

!——

£
%%,
O

™
B
)

AL A

Missing values (3)

 The simplestthing to do is REMOVAL of instances
with missing values (if missing <10%), or removal
of attribute (if missing >50%)

* For numerical values, a standard and often very
good approach is to replace the missing values
with mean, median or mode in the entire

distribution of values for a given feature

* With categorical values, the standardis to

replace with the most probable value (although it
might be dangerous..)

Missing values: other methods (4)

* Regression imputation: A
regression model is estimated to \
predict observed values of a s S
feature x; based on other feature: ° | S
(X...X,), and that model is then
used to impute values in cases
where that variable is missing.

x] - kak + "'ann

* Correlation matrixes among
features can help designing the
regression model (what are the
most helpful features that could
predict the missing value of a
feature)

Missing values: other methods (5)

* |mputation with K-Nearest Neighbours:
If j-th feature x; is missing on instance x;, we can consider the

K most similar instances that have no missing value in j-th
feature.

 Then impute the missing value with the most frequent item
(the mode) amongst the j-th feature of these K patterns.

x> 1
. Clasel
(o]
a
[#]

o
a
o
|

l/ \ 1
([® .\ Clase 2
N T

% e

3
»

v

3c. Data Augmentation

Data augmentationrefers to methods that add
more features to available data

For image datasets, you can rotate, scale,
translate, intepolate..

For other types of datasets, you can add new
features that can be inferred from the available

data

For example, in a database of football matches,
you may want to add for each team the time
elapsed between the current match and the last

victorious match

3d. Inbalanced categories

Class imbalance is when each class
does not make up an equal portion of
your data-set

For example, suppose you have two
classes— A and B.

Class A is 90% of your data-set and
class B is the other 10%, but you are
most interested in identifying
instances of class B.

You can reach an accuracy of 90% by
simply predicting class A every time, .
but this provides a useless classifier
for your intended use case.

1

Imbalanced categories: sampling

 Sampling: A simple way to fix imbalanced data-sets is simply
to balance them, either by oversampling instances of the
minority class or undersampling instances of the majority
class.

Undersampling Oversampling
= Copies of the [N
SE— minority class -
- Samples of
i\ majority class

Original dataset Original dataset

undersampling and oversampling

Inbalanced categories (2)

A more powerful sampling method is
SMOTE Synthetic Minority
Oversampling TEchnique , which
creates new instances of the minority
class by forming convex combinations
of neighboring instances.
https://www.researchgate.net/publicat
ion/220543125 SMOTE Synthetic_ Mi
nority Over-sampling Technique

As the graphic shows, it effectively

draws lines between minority points in .
the feature space, and samples along A
these lines.

Inbalanced categories (3)

Anomaly Detection: we assume that
there is a “normal” distribution(s) of
data-points, and anything that
sufficiently deviates from that
distribution(s) is an anomaly.

When we reframe our classification
problem into an anomaly detection
problem, we treat the majority class
as the “normal” distribution of
points, and the minority as
anomalies.

We can also simply ignore anomalies
(however, it depends on application:
if anomalies are, e.g. fraudolent
behaviors, then this is exactly what
we may be looking for!)

09 ¥

0.8

0.6 -

0.5

0.4 -

03 7

Inbalanced categories (4)

Cost-sensitive Learning In regular learning, we treat all misclassifications
equally (regardless of the class which is misclassified), which causes
issues in imbalanced classification problems, as there is no extra reward
for identifying the minority class over the majority class.

Cost-sensitive learning changes this, and uses a function C(p, t) (usually
represented as a matrix) that specifies the cost of misclassifying an
instance of class t as class p.

The algorithm, in the attempt of minimizing the cost of wrong decisions,
will pay more attention to the minority elements

Actual Positive | Actual Negative
yi = | yi =0
Predicted Positive . .
Crp, Crp
Ci | '
Predicted Negative i .
CEN; Crn;

Ci 0

Feature engineering: 4 related tasks

. feature identification: which descriptors are
helpful for the task (often not obvious)

. feature extraction: transformation of raw data
(e,g, text) into features suitable (e.g., numbers)
for modeling;

. feature transformation: transformation of data
to improve the accuracy of the algorithm (e.g.,
normalization, scaling..);

. feature selection: removing unnecessary
features.

Feature selection

How many? Are there enough? Are there too many?

For any ML task, you can easily come up with dozens of
features and extract them from various external sources.

However, the number and complexity of NEEDED features
often depend on the specific task addressed

For example, if you need to distinguish city landscapes from
mountain landscapes you don’t need pixel features (a color

Feature selection

* |In many practical cases, one may come out with
hundreds —and sometimes more — potentially useful
features (so the “too many” is the most frequent case)

* Not easy to say what is truly useful, nor if some
features are correlated
— Adding many potentially correlated features can decrease
model performance
— Too many features make models less interpretable and less
generalizable
 So, we need automatictools for feature selection

(filtering)

Feature Selection

The abundance of data in contemporary datasets demands development
of clever algorithms for detecting feature importance

If we have too many features, it is hard to select those that truly impact

on performance (this is specially true for deep learning and neural
algorithms)

X,

m features

A

v

A

\ 4

58/54

4. Feature selection

* Since exhaustive search for optimal feature
subset is infeasible in most cases, many search
strategies have been proposed in literature,
often classified in three types:

— Filter methods
— Wrapper methods

— Embedded and hybrid methods

a) Filter methods

* Filter methods select features based on a
performance measure regardless of the employed
data classification algorithm.

* Only after the best features are found, the ML
algorithms can use them.

Filter Feature

Selector
Complete ‘ Search) Optimal
feature sct feature set
— . - r* Classification model
S, \:R i ';Zal:“: Information Sf . \Tw h N
N . : sel
e content of LN
S, :R"
v

‘ Evaluation
function

Filter methods (2)

* We can roughly classify the developed
measures for feature filtering into:
information, distance, consistency, similarity,
and statistical measures.

 Furthermore, univariate feature filters
evaluate (and usually rank) a single feature,
while multivariate filters evaluate an entire
feature subset.

A list of
common

filter

methods

Applicable to

Name Filter class
task
. .) univariate, e
Information gain . . classification
information
)) univariate, e
Gain ratio . . classification
information
Symmetrical univariate, .
. .o . classification
uncertainty information
. univariate, .
Correlation o regression
statistical
) univariate, .
Chi-square S classification
statistical
) L multivariate, e
Inconsistency criterion . classification
consistency
Minimum redundancy, . L
. multivariate, classification,
maximum relevance - . .
information regression
(mRmR)
Correlation-based multivariate, classification,
feature selection (CES) statistical regression
Fast correlation-based multivariate, classification
filter (FCBF) information -
. univariate, e
Fisher score . classification
statistical
o . univariate, classification,
Relief and ReliefF . .
distance regression
Spectral feature
selection (SPEC) univariate, classification,
and Laplacian Score similarity clustering
(LS)
Feature selection for multivariate, .
. o clustering
sparse clustering similarity
Localized Feature
Selection Based on multivariate, clusterin
Scatter Separability statistical) g
(LFSBSS)
Multi-Cluster Feature multivariate, clusterin
Selection (MCFS) similarity stering
Feature weighting K- multivariate, .
L clustering
means statistical
- univariate, .
ReliefC clustering

distance

Examples of filters

Information gain (information, univariate) YOU KNOW!

Relief(F) (distance, univariate): consider all features as independent
ones and estimate the relevance (quality) of a feature based on its
ability to distinguish instances located near each other.

— the algorithm iteratively selects a random instance and then searches
for its two nearest neighbors: a nearest hit (from the same class, e.g.,
negative) and a nearest miss (from the different class).

— For each feature x; the estimation of its quality (weight W)) is updated
depending on the differences between the current instance and its
nearest hit and miss along the corresponding attribute axis.

2

W; = W; — (z; — nearHit;)* + (x; — nearMiss;)
— Several measures to compute difference (euclidean distance,
Manhattan distance..)
— An implementation is described in
http://www.ijird.com/index.php/ijird/article/viewFile/81772/63106

Example (Relief)

Relief
w Target Instance (e.g. Class ‘())

Instance with Class ‘O’
(Zero instance weight)

Instance with Class ‘X’
X *. (Zero instance weight)

N

b) Wrappers

* Wrappers consider
feature subsets by the e |
eature subset
q ud | |ty Of the 1 selection

Feature subset

performance on a generation

. ;o . features evaluatign
S p e C | fl C I\/I L a |g0 r | t h m ’ I;ezu'niug all]’Dptimﬂ,l feature
. . alporithm subset
which is taken as a e
“black box” evaluator. Performancs

(b) Wrapper method

Wrappers (2)

e Thus, for classification tasks, a wrapper will
evaluate subsets of features based on the
classifier performance (e.g. Naive Bayes or
Decision Forest or Neural Networks).

 The evaluation is repeated for each subset, and
the subset generation is dependenton the search
strategy, in the same way as with filters.

* Wrappers are much slower than filters in finding

sufficiently good subsets because they depend on
the the considered algorithm.

Wrappers (3)

Wrapper methods:

recursive feature elimination
sequential feature selection algorithms
genetic algorithms

Wrappers (sequential)

The task: Say we have features A, B, C and a classifier M. We
want to predict T (the class) given the smallest possible
subset of features {A,B,C}, while achieving maximal
performance (accuracy)

FEATURE SET CLASSIFIER PERFORMANCE

{A,B,C} M 98%
{A,B} M 98%
{A,C} M 77%
{B,C} M 56%
{A} M 89%
{B} M 90%
{C} M 91%
{} M 85%

Wrappers (sequential)

The set of all subsets of features is the power set and its size
is 21Vl . Hence for large V we cannot do this procedure
exhaustively; instead we rely on heuristic search of the space
of all possible feature subsets.

{A,B} 98
{A} 89 4 {A,C} 77
{A,B}98
‘ A,B,C}98
{}85 » {B}90 / (B.C} 56 { l}
{A,C}77
{C}91
~ o/

69

Wrappers (5)

A common example of heuristic search is hill climbing: keep
adding features one at a time until no further improvement

{A,B}98

can be achieved.
‘ {A,B} 98
{A} 8 {A,C} 77

{A,B,C}98

{185 . {B}90 15,0l 56

{A,C}77
{B,C}56

select best (local)
choice

3) Embedded methods

Embedded methods perform feature selection during the
modelling algorithm's execution.
In contrast with filter (a) and wrapper (b) approaches, in

embedded methods (c) the features selection part can not be
separated from the learning part.

Most embedded methods are model-dependent, they depend
on the class of algorithms chosen

Featureselection

Featureselection Feature selection
Feature subset

Classification

Classification

Classification

(a) (b) (c)

Embedded methods (2)

 Most common methods are (advanced
readings):
* Perturbation-based approaches (Lundberg

and Lee, 2017: A Unified Approach to
interpreting model decisions)

* Gradient approaches (Selvaraju et al., 2016:

Grad-cam: Why say you that? Visual
explantions from deep networks via gradient-

based localization)

