
Feature	engineering

How	to	make	your	ML	experiments	
work	on	real	data

In	part	from:	https://medium.com/open-machine-learning-course/open-machine-
learning-course-topic-6-feature-engineering-and-feature-selection-8b94f870706a

Human's	role	when	applying	Machine	
Learning

• Machine	learning	provides	you	with	extremely	
powerful	tools	for	decision	making	...

• ...	But	the	role	of	the	developer’s	decision	will	still	be	
crucial.

• Your	responsibility:
– setting	up	the	correct	problem	to	be	solved/optimized	 (it's	
far	from	straightforward	in	the	real	world)

– choosing	a	learning	algorithm	(or	a	family	of	algorithms)
– finding	relevant	data
– designing	features,	feature	representation,	 feature	
selection	.	.	.

Feature	engineering

• Feature	engineering	- not	a	formally	defined	
term,	just	a	vaguely	agreed	space	of	tasks	related	
to	designing	effective	feature	sets

• For	ML	applications	two	components:
– First,	understanding	 the	properties	of	the	task	you're	
trying	to	solve	and	how	they	might	interact	with	the	
strengths	and	limitations	of	the	ML	model	you	are	
going	to	use

– Second,	experimental	work	were	you	test	your	
expectations and	find	out	what	actually	works	and	
what	doesn't.

Raw	data:	the	dream

Raw	data:	the	reality

Feature	engineering:	4	related	tasks

1. feature identification:	which descriptors are	
helpful for	the	task	(often not obvious)

2. feature extraction:	transformation of	raw data	
(e,g,	text)	into features suitable (e.g.,	numbers)	
for	modeling;

3. feature transformation:	transformation of	data	
to	improve the	accuracy of	the	algorithm (e.g.,	
normalization,	scaling..);

4. feature selection:	removing unnecessary
features.

1.	Feature	identification

• Given	a	problem	(e.g.	image	classification,	patient	
disease	prediction,	predicting	successful	football	
players..)	often	the	very	first	problem	is:

Which	kind	of	information	would	be	helpful	to	
accomplish	the	task?	And	where	can	I	find	it?
• Often	this	is	PRELIMINARY	and	more	crucial	than	
finding	and	processing	the	information,	once	
available

• And,	this	preliminary	step	is	really	artwork..	

Example

• The	transfer	fees	of	football	players	are	
getting	higher	and	higher	each	year.

• Can	ML	help	predicting	these	values?
– Problem	1:	which	information	can	support	the	
decision	system

– Problem	2:	where	do	I	find	the	data
– Problem	3	(and	ONLY	in	third	position!):	which	
algorithm?

Let’s	play

Using	domain	knowledge	and	open	
data	sources	we	find:	

• Features	(for	each	player):
– Player’s	basic	information:	 team,	age,	height,	weight,	.	.	.
– market	information:	 transfer	 fee,	 former	team,	duration	of	the	

contract,	when	the	player	joined	the	team,	.	.	.	
– performance	information:	on-pitch	time,	actions	at	the	ball,	fouls,	

scores.

• Where	can	we	find	these	data?
• Data	sources:		Transfer	Market	 ,	WhoScored,	 European	

Football	Database	 and	Garter	

Using	on-line	infos is	far	from	being	
easy	(often	you	need	scarpers..)

Whoscored:	https://www.google.com/

But	Google	might	help	you..

Feature	engineering:	4	related	tasks

1. feature identification:	which descriptors are	
helpful for	the	task	(often not obvious)

2. feature extraction:	transformation of	raw data	
(e,g,	text)	into features suitable (e.g.,	numbers)	
for	modeling;

3. feature transformation:	transformation of	data	
to	improve the	accuracy of	the	algorithm (e.g.,	
normalization,	scaling..);

4. feature selection:	removing unnecessary
features.

2.	Feature	extraction
• In	practice,	data	rarely comes in	the	form of	ready-to-
use	matrices.	

• That's why every task	begins with	feature extraction.	
Sometimes,	it can	be	enough to	read the	csv file	and	
convert it into an	array,	but this is a	rare	exception.	

• Popular types of	data	from	which features can	be	
extracted:
– Texts
– Images
– Geospatial data
– Date	and	time
– Time	series,	web	data,	etc.

Text	(1)

• First	step	is	tokenization,	 i.e.,	splitting	the	text	into	units	
(hence,	tokens).
– “Before	working	with	text,	one	must	tokenize	it”	è

before,working,with,text,one,must,tokenize,it

• Next,	stemming	or	lemmatization	to	normalize	data:
– befor,work,with,text,one,must,token,it

• Finally,	text	encoding	(bag	of	words	is	the	simplest):
– Build	a	vocabulary	over	all	words	in	all	documents:

– Encode	every	document	in	a	sparse	vector	di where	dij=1	iff word	j	of	
vocabulary	is	in	di,	else	dij=0

Text	(2):	Example

Text	(3):	embeddings

• Most	recent	approach	to	text	representation	is	
word	embeddings

• More	in	NLP	and	W&Social courses,	however	the	
idea	is	that	words,	rather	than	being	represented	
as	a	binary	value	(or	a	real	value)	in	a	“sparse”	
document	vector	with	|V|	dimensions,	are	
represented	as	“dense”	numeric	vectors		in	a	
“reduced”	space

• Words	with	“close”	vectors	are	similar
• Popular	algorithms	to	obtain	word	embeddings:	
Word2vect,	Glove,	Fastext

Words	are	“projected”	onto	semantic	
spaces	

The	dimensions	 are	“latent”	and	automatically	learned	by	looking	word	contexts.
However,	the	meaning	of	dimensions	 is	not	explicit!	
NOTE:	We	are	unaware that	dimension	1	is,	e.g.,	“royalty”.	And,	learnt	dimensions	
depends	on	the	source	texts	used	for	learning	– kings,	queen	and	princesses	 have	
different	vectors	if	learnt	from	fairy	tales	or	from	gossips	newspapers!

Text	(4):	Example	of	embeddings

2.	Images
• Images	can	be	represented	at	

the	level	of	pixel
• Many	popular	and	(almost)	

readily	available	techniques	
such	as	Convolutional	
Networks	can	be	used	to	
progressively	extract	higher	
level	features	(from	pixels	to		
edges	to	semantic	elements	
such	as	eyes,	nose,	mouth..)

• Even	in	this	case,	the	
“semantic”	of	hidden	layers	is	
not	available!

Images	(2)

• Nevertheless,	we	should	not	focus	too	much	
on	neural	network	techniques.	Simpler	
features	are	still	very	useful:

• A	more	realistic	example	than	
cities&mountains:	for	predicting	the	
popularity	of	a	house	rental	listing,	learn	from	
experts	that	bright	apartments	pictures	attract	
more	attention,	and	create	a	feature	such	as	
"the	average	brightness	value	of	the	pixel".	

3.	Geospatial	data

• Geospatial data	is often presented in	the	form of	
addressesor	coordinates (latitude,	longitude).	

• Depending on	the	task,	you may need two
mutually-inverse	operations:	
– geocoding (recovering a	point of	interest from	an	
address)	

– reverse	geocoding (recovering an	address from	a	
point).

• Both operations are	accessible in	practice via	
external APIs from	Google	Maps or	
OpenStreetMap.	

3.	Geospatial	data	(2)

• CAVEAT:
• Addresses may contain typos,	which makes the	data	
cleaning step necessary (see later).	

• Coordinatescontain fewermisprints,	but its position	
can	be	incorrect due	to	 in	
places like tunnels,	downtown	areas,	etc.	

• If the	data	source	is a	mobile	device,	the	geolocation
may not be	determinedby	GPS	but by	WiFi networks	
in	the	area.	While traveling along in	Manhattan,	there
can	suddenly be	a	WiFi location	from	Chicago.

3.	Geospatial	data	(3)

• A	point is usually located among infrastructures.	Here,	
you can	really unleash your imaginationand	invent
features based on	your life	experience and	domain	
knowledge:	the	proximityof	a	point to	the	subway,	the	
numberof	stores in	the	building,	the	distance to	the	
nearest store,	the	number of	restaurantsaround,	etc.	
(e.g.	for	predicting people movements,	for	
recommending tourist informations..)

• For	problems outside an	urban environment,	you may
consider features from	more	specific sources e.g.	the	
height above sea level,	methereological data,	etc.

4. Date	and time

• Days of	the	week	are	easy	to	turned into 7	dummy
variablesusing one-hot	encoding (a	7-dimensional	
binary vector).	In	addition,	wemay create	a	separate	
binary feature for	the	weekend	“is_weekend”.

• Some	tasksmay require additional calendar features.	
– For	example,	cash	withdrawals can	be	linked to	a	pay day;	
the	purchase of	a	metro	card,	to	the	beginning of	the	
month.	

– In	general,	when working with	time	series data,	it is a	good
idea	to	have a	calendar with	public	holidays,	abnormal
weather conditions,	and	other important events or	
anomalyes.

4. Date	and time	(2)
• Dealing with	hour	(minute,	day of	the	month ...)	is not

as simple as it seems.	If you use	the	hour	as a	real
variable,	we slightly contradict the	nature	of	data:	0<23	
while 0:00:00	02.01>	01.01	23:00:00.	For	some	
problems,	this can	be	critical.

• There also exist some	approaches to	such data	like
projecting the	time	onto a	circle (see e.g.,	
https://ianlondon.github.io/blog/encoding-cyclical-
features-24hour-time/).

• This transformationpreserves the	distance between
points,which is important for	algorithms that estimate	
distance (kNN,	SVM,	k-means ...)

• èTHIS	IS	AN	IMPORTANT	POINT:	whenever you apply a	
transformation to	your data,	need to	preserve the	
relative	distance or	manyML	algorithms won’t work	
properly!

5.	Time	series

• Sequential	data	are	quite	common	(e.g.	stock	
market	data,	personal	patient	records..)

• The	library:	
http://tsfresh.readthedocs.io/en/latest/
automatically	calculates	a	large	number	of	
time	series	features.	

• Further	the	package	contains	methods	to	
evaluate	the	explaining	power	and	importance	
of	such	features	for	classification	tasks.

5.	Times	series	(example)

6.	Other	domains

• In	other domains,	you can	come	up	with	your
own features based on	intuition about the	
nature	of	the	data,	based on	available
information,	and	on	the	classification task	

Feature	engineering:	4	related	tasks

1. feature identification:	which descriptors are	
helpful for	the	task	(often not obvious)

2. feature extraction:	transformation of	raw data	
(e,g,	text)	into features suitable (e.g.,	numbers)	
for	modeling;

3. feature transformation:	transformation of	data	
to	improve the	accuracy of	the	algorithm (e.g.,	
normalization,	scaling..);

4. feature selection:	removing unnecessary
features.

3a)	Normalization and	changing
distribution

• Certain	algorithms	–and	platforms- require	
specific	format	for	data

• E.g.,	decision	trees	allow	for	categorical	data,	
other	methods	do	not;

• Similarly,	there	are	algorithms	that	suffer	for	
unbalanced scaling	of	features	(e.g.	one	
feature	with	range	[0,1]	and	others	with	range	
[-10000..	+1000..]

Normalization:	Scaling	and	centering

• The	reason	for	centering	and	scaling	is	that	it	places	all	
features	on	equal	standing.	

• Some	ML	algorithms,	e.g.	clustering,	project	instances	onto	
a	multi-dimensional	space	and	examine	the	distances	
between	different	data	points.	In	such	methods,	features	
with	large	absolute	differences	 in	values	will	be	more	
important	(will	“affect”	more	than	others	the	computation	
of	distance).	

• Yet	generally	such	absolute	differences	in	values	reflects	
nothing	more	than	the	metric	chosen	to	measure	the	
variable,	 and	a	priori	 it	is	unreasonable	that	one	variable	
should	be	more	important	than	others

Normalization:	Scaling	and	centering	
(2)

• Centering of	a	real	valued	feature	is	done	by	subtracting	its	
sample	mean from	all	values.	The	equation	for	calculating	the	
sample	mean	is	(N	number	of	samples):	

• Scaling	of	a	real	valued	feature	 is	done	by	dividing	all	its	
values by	its	sample	standard	deviation:

Example
Here	,	the	
feature	

“number	of	
rooms”	does	
not	allow	any	

useful	
separation	
between	
datapoints

Normalization:	Changes	of	Bases	

• Sometimes	a	ML	application	involves	visual	
examination	of	plots	of	the	data	or	functions	
of	the	data,	as	well	as	statistical	tests.	

• A	common	aim	is	the	generation	of	a	function	
that	would	make	clearly	non-normal	data	at	
least	“approximately”	normal.	

• A	statistical	tests	of	normality	is	the	
ShapiroWilk

Normalization:	Changes	of	Bases	(2)

• “skewness”	is	asymmetry in	a	statistical	distribution,	
in	which	the	curve	appears	distorted	or	skewed	
either	to	the	left	or	to	the	right.	

• Skewness can	be	quantified	to	define	the	extent	to	
which	a	distribution	differs	from	a	normal	(Gaussian)	
distribution

• Skewness affects	the	performance	of	several	
algorithms	(e.g.,	linear	regression,	k-nearest	
neighbour and	K-means).	See	examples	
https://www.linkedin.com/pulse/question-does-
skewness-variable-impact-predictive-data-
mosaddar/)

Normalization:	Changes	of	Bases	(3)

• To	reduce	the	skewness of	the	distribution	of	
feature	values	in	a	dataset,	we	can	perform	a	
log	transform.	

• For	more	“sparse”	distributions,	other	more	
complex	methods	are	possible		(e.g.		qqnorm).	
Some	are	provided,	e.g.	in	sckitlearn

Example

Original	distribution	of	values,	and	distribution	after
applying	a	log	transformation	

Normalization:	Categorial into	numeric
• Certain	features	can	take	categorial values	
(e.g.(Spotify dataset)		artist,	track	name..)

• Categories	may	be	nominal	(sport,	politics,	finance..)	
or	ordinal	(e.g.,	dates	or	week	days).	Ordinal	levels	
follow	a	logical	order.	In	nominal	categories	finding	
such	an	order	is	difficult.	

• Some	algorithms	do	not	accept	categories,	therefore	
we	need	some	transformation.	Some	packages	also	
do	not	accept	categorical	variables	(SciKitLearn)

Normalization:	Categorial into	numeric	
(2)

• One-hot	encoding	is	the	default	way	of	turning	categorical	data	into	
numeric.	With	this	method	we	encode	the	categorical	variable	as	a	
one-hot	vector,	i.e.	a	vector	where	only	one	element	 is	non-zero,	or	
hot.	

• With	one-hot	encoding,	a	categorical	feature	becomes	an	array	
whose	size	is	the	number	of	possible	choices	for	that	features.	With	
N	values,	the	dimension	of	the	vectors	is	N	

One	hot	encoding

Normalization:	Categorial into	numeric	
(3)

• However,	if	N	is	large,	one-hot	encoding	may	be	a	
bad	idea.	Another	approach	to	encoding	
categorical	values	is	to	use	a	technique	called	
label	encoding.	Label	encoding	is	simply	
converting	each	categorical	value to	a	number.

• BUT,	in	those	algorithms	where	the	“weight”	of	
each	attribute	value	matters	(SVM,	regressions..),	
label	encoding	introduces	an	unjustified bias	
towards	higher	values

• An	intermediate	alternative	is	label	binarization
wich introduces	log2(N)	values.

Example	(label	and	binary	encoding)

Binary	encoding
label	encoding

3b.	Missing	values

• Real-world	data	often has missing
values.

• Data	can	have missing values for	a	
number of	reasons such as
observations that were not
recordedand	data	corruption.

• Handling	missing data	is
importantas many machine	
learning algorithms do	not
support data	with	missing values.

Missing	values	(2)

• The	first	thing to	do	is counthowmany you have and	
try to	visualize their distributions(methods are	
providede.g.	missingnopackage	in	phy).

White	
spaces	
are	

missing	
values

Missing	values	(3)

• The	simplest	thing	to	do	is	REMOVAL	of	instances	
with	missing	values	(if	missing	<10%),	or	removal	
of	attribute	(if	missing	>50%)

• For	numerical values,	a	standard	and	often	very	
good	approach	is	to	replace	the	missing	values	
with	mean,	median	or	mode	in	the	entire	
distribution	of	values	for	a	given	feature

• With	categorical values,	the	standard	is	to	
replace	with	the	most	probable	value	(although	it	
might	be	dangerous..)

Missing	values:	other	methods		(4)
• Regression	imputation:	A	

regression	model	is	estimated	to	
predict	observed	values	of	a	
feature	xj based	on	other	features	
(xk..xn),	and	that	model	is	then	
used	to	impute	values	in	cases	
where	that	variable	is	missing.	

• Correlation	matrixes	among	
features	can	help	designing	the	
regression	model	(what	are	the	
most	helpful	features	 that	could	
predict	the	missing	value	of	a	
feature)

Missing	values:	other	methods	(5)

• Imputation with	K-Nearest Neighbours:
If j-th feature xj is missing on	instance xi,	we can	consider the	
K most similar instances that have no	missing value in	j-th
feature.	

• Then impute the	missing value with	the	most frequent item	
(the	mode)	amongst the	j-th feature of	these K patterns.

3c.	Data	Augmentation

• Data	augmentation	refers	to	methods	that	add	
more	features to	available	data

• For	image	datasets,	you	can	rotate,	scale,	
translate,	intepolate..

• For	other	types	of	datasets,	you	can	add	new	
features	that	can	be	inferred	from	the	available	
data

• For	example,	in	a	database	of	football	matches,	
you	may	want	to	add	for	each	team	the	time	
elapsed	between	the	current	match	and	the	last	
victorious	match

3d.	Inbalanced categories
• Class	imbalance	is	when	each	class	

does	not	make	up	an	equal	portion	of	
your	data-set

• For	example,	suppose	you	have	two	
classes — A	and	B.	

• Class	A	is	90%	of	your	data-set	and	
class	B	is	the	other	10%,	but	you	are	
most	interested	in	identifying	
instances	of	class	B.	

• You	can	reach	an	accuracy	of	90%	by	
simply	predicting	class	A	every	time,	
but	this	provides	a	useless	classifier	
for	your	intended	use	case.

Imbalanced	categories:		sampling

• Sampling:	A	simple way	to	fix imbalanced data-sets	is simply
to	balance	them,	either by	oversampling instances of	the	
minority class or	undersampling instances of	the	majority
class.	

Inbalanced categories	(2)
• A	more	powerful sampling method is

SMOTE		Synthetic Minority
Oversampling TEchnique ,	which
creates new	instances of	the	minority
class by	forming convex combinations
of	neighboring instances.	
https://www.researchgate.net/publicat
ion/220543125_SMOTE_Synthetic_Mi
nority_Over-sampling_Technique

• As the	graphic shows,	it effectively
draws lines between minority points in	
the	feature space,	and	samples along
these lines.

Inbalanced categories	(3)
• Anomaly Detection:	we assume	that

there is a	“normal”	distribution(s)	of	
data-points,	and	anything that
sufficiently deviates from	that
distribution(s)	 is an	anomaly.	

• When we reframe our classification
problem into an	anomaly detection
problem,	we treat the	majority class
as the	“normal”	distribution of	
points,	and	the	minority as
anomalies.		

• We can	also simply ignore anomalies
(however,	 it depends on	application:	
if anomalies are,	e.g.	fraudolent
behaviors,	then this is exactly what
we may be	looking for!)

Inbalanced categories	(4)
• Cost-sensitive	 Learning		In	regular	learning,	we treat all misclassifications

equally (regardless of	the	class which is misclassified),	which causes
issues in	imbalanced classification problems,	as there is no	extra	reward
for	identifying the	minority class over	the	majority class.	

• Cost-sensitive	 learning changes this,	and	uses a	function C(p,	t)	(usually
represented as a	matrix)	that specifies the	cost of	misclassifying an	
instance of	class t as class p.

• The	algorithm,	in	the	attempt of	minimizing the	cost of	wrong decisions,	
will pay more	attention to	the	minority elements

Feature	engineering:	4	related	tasks

1. feature identification:	which descriptors are	
helpful for	the	task	(often not obvious)

2. feature extraction:	transformation of	raw data	
(e,g,	text)	into features suitable (e.g.,	numbers)	
for	modeling;

3. feature transformation:	transformation of	data	
to	improve the	accuracy of	the	algorithm (e.g.,	
normalization,	scaling..);

4. feature selection:	removing unnecessary
features.

Feature	selection

• How	many?	Are	there enough?	Are	there too many?
• For	any ML	task,	you can	easily come	up	with	dozens of	

features and	extract them from	various external sources.	
• However,	the	number and	complexity of	NEEDED	 features	

often	depend	on	the	specific	task	addressed	
• For	example,	if	you	need	to	distinguish	city	landscapes	from	

mountain	landscapes	you	don’t	need	pixel	features	(a	color	
histogram	would	do)

Feature	selection

• In	many	practical	cases,	one	may	come	out	with	
hundreds	–and	sometimes	more	– potentially	useful	
features	(so	the	“too	many”	is	the	most	frequent	case)

• Not	easy	to	say	what	is	truly	useful,	nor	if	some	
features	are	correlated
– Adding	many	potentially	correlated	features	can	decrease	
model	performance

– Too	many	features	make	models	less	interpretable	and	less	
generalizable

• So,	we	need	automatic	tools	for	feature	selection	
(filtering)	

58/54

Feature	Selection

The	abundance	of	data	in	contemporary	datasets	demands	development	
of	clever	algorithms	for	detecting	feature	 importance
If	we	have	too	many	features,	 it	is	hard	to	select	those	that	truly	impact	
on	performance	 (this	is	specially	true	for	deep	learning	and	neural	
algorithms)

X
m	features

n

m’

4.	Feature	selection	

• Since	exhaustive	search	for	optimal	feature	
subset	is	infeasible	in	most	cases,	many	search	
strategies	have	been	proposed	in	literature,	
often	classified	in	three	types:
– Filter	methods
–Wrapper	methods
– Embedded	and	hybrid	methods

a)	Filter	methods

• Filtermethods select features based on	a	
performance	measure regardless of	the	employed
data	classification algorithm.	

• Only after the	best	features are	found,	the	ML	
algorithms can	use	them.	

Filter	methods	(2)

• We can	roughly classify the	developed
measures for	feature filtering into:	
information,	distance,	consistency,	similarity,	
and	statistical measures.	

• Furthermore,	univariate feature filters
evaluate (and	usually rank)	a	single	feature,	
whilemultivariate filters evaluate an	entire
feature subset.	

A	list	of	
common
filter
methods

Examples	of	filters
• Information	gain	(information,	univariate)	YOU	KNOW!
• Relief(F)	(distance,	univariate):	consider	all	features	as	independent	

ones	and	estimate	the	relevance	(quality)	of	a	feature	based	on	its	
ability	to	distinguish	instances	located	near each	other.	
– the	algorithm	iteratively	selects	a	random	instance	and	then	searches	

for	its	two	nearest	neighbors:	a	nearest	hit	(from	the	same	class,	e.g.,	
negative)	and	a	nearest	miss	(from	the	different	class).	

– For	each	feature xi the	estimation	of	its	quality	(weight		Wi)	is	updated	
depending	on	the	differences	 between	the	current	instance	and	its	
nearest	hit	and	miss	along	the	corresponding	attribute	axis.	

– Several	measures	 to	compute	difference	 (euclidean distance,	
Manhattan	distance..)

– An	implementation	is	described	 in	
http://www.ijird.com/index.php/ijird/article/viewFile/81772/63106

Example	(Relief)

b)	Wrappers

• Wrappers consider
feature subsets by	the	
quality of	the	
performance	on	a	
specific ML	algorithm,	
which is taken as a	
“black box”	evaluator.	

Wrappers	(2)

• Thus,	for	classification tasks,	a	wrapper will
evaluate subsets of	features based on	the	
classifier performance	(e.g.	Naïve Bayes or	
Decision Forestor		Neural Networks).	

• The	evaluation is repeated for	each subset,	and	
the	subset	generation	is dependenton	the	search
strategy,	in	the	sameway	as with	filters.	

• Wrappers are	much slower than filters in	finding
sufficiently good subsets because they depend on	
the	the	considered algorithm.	

Wrappers	(3)

• Wrapper methods:
• recursive	feature elimination
• sequential feature selection algorithms
• genetic algorithms

68

Wrappers	(sequential)

The	task:	Say	we	have	features	A,	B,	C	and	a	classifier	M.	We	
want	to	predict	T	(the	class)	given	the	smallest	possible	
subset	of	features	{A,B,C},	while	achieving	maximal	
performance	(accuracy)

FEATURE	SET CLASSIFIER		 PERFORMANCE
{A,B,C} M 98%
{A,B} M 98%
{A,C} M 77%
{B,C} M 56%
{A} M 89%
{B} M 90%
{C} M 91%
{.} M 85%

69

Wrappers	(sequential)
The	set	of	all	subsets	of	features	is	the	power	set	and	its	size	
is	2|V| .	Hence	for	large	V	we	cannot	do	this	procedure	
exhaustively;	instead	we	rely	on	heuristic	search	of	the	space	
of	all	possible	feature	subsets.

{}	85

{A}	89

{B}	90

{A,B}	98

{A,B,C}98

{C}	91

{A,C}	77

{B,C}	56

start

{A,B}98

{B,C}56

{A,C}77
end

70

Wrappers	(5)

A	common	example	of		heuristic	search is	hill	climbing:	keep	
adding	features	one	at	a	time	until	no	further	improvement	
can	be	achieved.

{}	85

{A}	89

{B}	90

{A,B}	98

{A,B,C}98

{C}	91

{A,C}	77

{B,C}	56

start

{A,B}98

{B,C}56

{A,C}77
end

Greedy	search:	Add	a	
feature	and	evaluate	
performance,	then	
select	best	(local)	

choice	

3)	Embedded	methods

• Embedded	methods perform feature selection during the	
modelling algorithm's execution.	

• In	contrast	with	filter	(a)		and	wrapper	(b)	approaches,	in	
embedded	methods	(c)	the	features	selection	part	can	not	be	
separated	from	the	learning	part.

• Most	embedded	methods	are	model-dependent,	 they	depend	
on	the	class	of	algorithms	chosen

Embedded	methods	(2)

• Most common	methods are	(advanced
readings):	

• Perturbation-based approaches (Lundberg
and	Lee,	2017:	A	Unified Approach to	
interpretingmodel	decisions)

• Gradient approaches (Selvaraju et	al.,	2016:		
Grad-cam:	Why say you that?	Visual	
explantions from	deep networks	via	gradient-
based localization)	

