
Machine	  Learning	  

Recap	  of	  main	  issues/phases	  



Recap: Phases/problems in 
designing a ML algorithm 

1.  Modeling the domain objects 
2.  Choosing a learning experience 
3.  Modeling the target function 
4.  Defining a Learning Algorithm 
5.  Performance Evaluation 
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Example : recognizing lions and 
frogs 



1. Representation: How do we 
represent  (model) our objects? 

•  Simple: color! (e.g. a bitmap) 
•  Less simple: silhouette 
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2. From what experience? 
Types of learning: 
•  Supervised learning 
•  Unsupervised learning 
•  Reinforcement learning 
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Learning paradigms 
•  Supervised	  learning:	  someone	  tells	  you	  what	  to	  do	  for	  a	  

number	  of	  example	  cases.	  For	  example,	  the	  system	  is	  
provided	  with	  a	  dataset	  of	  images	  already	  classified	  (cats,	  
dogs,	  frogs,	  lions..)	  an	  must	  learn	  which	  features	  can	  help	  
to	  disDnguish	  between	  types;	  

•  Unsupervised:	  There	  is	  no	  “teacher”.	  System	  must	  learn	  
“regulariDes”	  in	  the	  data.	  For	  example,	  being	  able	  to	  group	  
users	  according	  to	  their	  tastes,	  in	  a	  	  restaurant	  
recommendaDon	  task	  

•  Reinforcement	  learning:	  learning	  by	  doing.	  No	  teacher,	  but	  
some	  target	  objecDve.	  System	  must	  learn	  the	  best	  strategy	  
towards	  the	  target.	  For	  example,	  a	  robot	  moving	  in	  a	  
hosDle	  environment	  may	  learn	  from	  errors	  and	  
achievements.	  	  
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Supervised learning 
•  Either an 

“expert” (e.g. ask 
someone to 
manually classified 
examples) or some 
available database 
of already classified 
examples 
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è	  

è	  

lion 

frog	  



Unsupervised learning 
•  No examples are 

available. The 
learner must be able 
to identify 
distinguishing 
features that 
differentiate the 
various classes 

•  Note: system does 
not learn who is a 
frog and who is a 
lion, but only to 
assign an image to 
cluster 1 or cluster 2 
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Reinforcement learning 
•  No examples are 

available, but some 
function is provided 
to associate a 
reward (or 
punishment) to a 
good (bad) move 
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Frog!!	  

WRONG!!!!	  



Machine	  learning	  types	  of	  tasks	  
•  Classifica3on/categoriza3on:	  given	  an	  object,	  learn	  to	  assign	  this	  object	  

to	  a	  category	  (chosen	  from	  a	  pre-‐defined	  set)	  or	  to	  “similarity”	  classes	  (not	  
known	  a	  priori)	  
–  Image	  recogniDon:	  given	  a	  set	  of	  images	  and	  	  a	  set	  of	  categories	  (e.g.	  dogs,	  

cats,	  lions,	  frogs..)	  assign	  images	  to	  the	  appropriate	  category	  
–  Grass	  grubs	  danger:	  given	  a	  set	  of	  climaDc	  condisDons	  etc.	  determine	  wether	  

it	  is	  advisable	  or	  not	  to	  use	  pesDcides	  (categories	  are	  “advisable”	  “not	  
advisable”)	  

–  Medical	  diagnosis:	  given	  a	  set	  of	  possible	  illnesses..	  
•  Problem	  solving:	  given	  a	  task,	  learn	  a	  strategy	  (or	  adapDve	  strategy)	  to	  

perform	  it	  
–  Given	  an	  unknown	  environment,	  learn	  to	  explore	  it	  (robot	  on	  Mars)	  
–  Given	  a	  physical	  architecture	  of	  a	  robot,	  learn	  a	  strategy	  (set	  of	  moves)	  to	  fly	  

(run,	  swim..)	  
–  Self-‐	  driving	  car:	  given	  an	  environment	  with	  obstacles,	  drive	  from	  X	  to	  Y	  

stopping	  and	  turning	  as	  appropriate	  



Summary 
1.  Machine learning “general” tasks: classification, 

problem solving 
2.  Learning paradigms: supervised, unsupervised, 

reinforcement 
3.  Sub-problems: 

–  representation: how to represent domain objects and 
the target function 

–  algorithm selection: how to learn the target function  
–  evaluation: how to test the performance of the learner 
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Let’s	  start!!	  



12 

 
Inductive Classification 



Machine learning tasks 

•  Classification 
•  Problem Solving 

– Classification/categorization: the set of categories is 
given (e.g. lion, frog) 

– Classification/clustering: the set of categories is not 
known (we need to “cluster” instances by similarity) 

–  First case is TRAINED or SUPERVISED 
–  Second is UNSUPERVISED  
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Supervised categorization: 
definition 

•  Given: 
–  A description of an instance (=the entities we want to classify), 

x∈X, where X is the instance language or instance space  (e.g. 
a way of representing instances). 

–  A fixed (known) set of categories: C={c1, c2,…cn} 
•  Determine: 

–  The category of x: c(x)∈C, where c(x) is a classification 
function c: XàC whose domain is X and whose range is C. 

–  If c(x) is a binary function C={0,1} ({true,false}, {positive, 
negative}) then it is called a concept (and we talk about 
CONCEPT LEARNING, or INDUCTIVE LEARNING) 

–  In inductive learning, the system tries to induce a 
GENERAL CLASSIFICATION RULE from a set of 
available classified examples 



15 

Definiton of the supervised 
classification task: 

•  A training example is an instance x∈X, paired 
with its correct category c(x):         <x, c(x)> for 
an unknown categorization function, c(x).  

•  Usually, x is represented by a number of features 
(more precisely, a feature vector x:<x1,x2..xn>) 

•  Given a set of training examples, D (named 
training set or learning set) 

•  Find a hypothesized categorization function, h(x), 
such that: )()(: )(, xcxhDxcx =∈><∀

Consistency: the hypothesis function must be  
consistent with the learning set 



Don’t	  get	  confused!	  
•  C(x)	  is	  a	  classificaDon	  funcDon,	  that	  we	  aim	  to	  learn	  with	  a	  ML	  

algorithm	  
•  When	  given	  an	  object	  x,	  C(x)	  always	  returns	  the	  right	  classificaDon	  
•  Unfortunately,	  perfect	  learning	  is	  impossible	  in	  the	  vast	  majority	  of	  

cases!	  We	  cannot	  learn	  C(x)	  
•  That’s	  why	  we	  talk	  about	  hypotheses	  h(x):	  the	  target	  is	  to	  learn	  a	  

funcDon	  h(x)	  which	  approximates	  at	  best	  the	  real	  (unknown)	  
funcDon	  

•  How	  do	  we	  know	  how	  good	  is	  a	  specific	  h(x)??	  We	  actually	  don’t..	  
We	  can	  only	  ESTIMATE	  the	  goodness,	  using	  a	  fragment	  of	  our	  
available	  classified	  data,	  named	  the	  test	  set	  T.	  	  

•  However,	  in	  selecDng	  our	  data	  for	  learning	  and	  tesDng,	  we	  must	  be	  
careful..	  	  

•  So	  we	  are	  ready	  for	  a	  more	  “formal”	  statement:	  	  



Inductive Learning Hypothesis 
•  Any function that is found to approximate the target concept 

well on a sufficiently large set of training examples will also 
approximate the target function well on unobserved examples. 

•  Assumes that the training and test examples are drawn 
independently from the same underlying distribution  
(IID). 

•  What we are saying here is that 1) we need “enough” data; 
2)data must be representative of the domain  

•  However this is very vague (what is “well”? What is 
“sufficiently large”?) 

•  Additional assumptions are necessary about the target concept 
and the notion of “approximating the target function well on 
unobserved examples” should be  defined appropriately (cf. 
computational learning theory). 



Workflow of a Supervised Classifier 
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Data	  on	  the	  domain	  

Machine	  learning	  	  
Algorithm	  
(classifier)	  

ClassificaDon	  Model	  

Performance	  
evaluaDon	  

the algorithm 
to learn C(x) 

An hypothesis 
h(x) for C(x) 

Training set 
<x,C(x)> 

Test set 
<x,?> 

How good is 
h(x)? 

Available	  classified	  data	  D	  are	  split	  in	  learning	  set	  L	  and	  test	  set	  T.	  	  L	  is	  used	  to	  train	  
the	  classifier	  (=ML	  algorithm).	  The	  output	  of	  learning	  is	  an	  hypothesis	  funcDon	  h(x),	  i.e.,	  
the	  Classifica*on	  Model.	  To	  verify	  how	  good	  is	  h(x)	  we	  use	  it	  to	  classify	  examples	  in	  the	  
Test	  set	  T.	  	  The	  error	  rate	  is	  esDmated	  by	  the	  number	  of	  cases	  in	  which	  c(x)≠h(x)	  for	  x	  in	  T	  	  
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A Sample Concept Learning Problem 
•  Instance language: <size, color, shape> 

–  size ∈ {small, medium, large} 
–  color ∈ {red, blue, green} 
–  shape ∈ {square, circle, triangle 

•  C = {positive, negative} 
•  D: 

Instances Size Color Shape C(x) 
x1 small red circle positive 

x2 large red circle positive 

x3 small red triangle negative 

x4 large blue circle negative 

This	  means	  that	  every	  
instance	  is	  represented	  
by	  a	  set	  of	  a^ributes,	  
or	  features,	  each	  taking	  	  
values	  in	  a	  finite	  set	  
	  

Training	  
set	  

LANGUAGE:	  The	  name	  and	  
values	  of	  features	  used	  to	  
represent	  domain	  objects	  	  



Hypothesis representation: which set of functions 
can we use to represent C(x)? 

•  As we said, may representations are possible for C(x).  
•  For example, here we can represent an hypothesis h(x) for 

C(x) e.g. with a boolean expression, or a rule, e.g. 
•  If (color=red)&(shape=circle) THEN C=positive 
•  Or equivalently: red&circle  (if boolean expr. is true, then 

c(x)=1) 

20 

Example Size Color Shape Category 
1 small red circle positive 

2 large red circle positive 

3 small red triangle negative 

4 large blue circle negative 



Do	  we	  have	  any	  possible	  choice	  for	  
c(x)?	  

•  Of	  course	  NO!!	  
•  In	  general,	  we	  can	  choose	  boolean,	  algebraic	  or	  
probabilisDc	  funcDons,	  BUT	  possible	  choices	  
depend	  on	  the	  domain	  objects	  and	  their	  
complexity	  of	  representaDon	  (e.g.	  if	  features	  are	  
dependent	  or	  independent,	  if	  they	  are	  boolean	  –
or	  can	  approximate	  with	  a	  boolean-‐	  discrete,	  or	  
conDnuous,	  etc.)	  

•  In	  induc3ve	  learning	  we	  restrict	  to	  boolean	  or	  
discrete	  feature	  representa3on,	  and	  boolean	  
func3ons	  for	  c(x)	  
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Hypothesis Selection 
•  Many hypotheses are usually consistent with the 

training data (number of equivalent boolean 
expressions is infinite). 
–  red & circle 
–  (small & circle) or (large & red)  
–  (small & red & circle) or (large & red & circle) 
–  not [ ( red & triangle) or (blue & circle) ] 
–  not [ ( small & red & triangle) or (large & blue & circle) ] 

Notice that the first is the conjunctive normal form CNF  



You	  should	  know	  (but	  just	  in	  case..)	  

 True	  table	  is	  unique	  

Infinite	  
number	  of	  
equivalent	  
boolean	  

expressions	  



So	  how	  to	  choose	  c(x)?	  	  

•  Bias 
–  Bias is any criterion other than “consistency with the 

training data” that is used to select alternative hypotheses. 
–  E.g: “preferring a conjunctive form” is an example of  bias. 

For example, we decide to learn a boolean function, but 
among the possible boolean functions, we select 
conjunctive forms.  
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Inductive Bias 
•  A hypothesis space that does not include all possible classification 

functions on the instance space is said to incorporates a bias in the 
type of classifiers it can learn (e.g. restricting to conjunctive functions 
is a bias in boolean concept learning) 

•  Any means that a learning system uses to choose between two functions 
that are both consistent with the training data is called inductive bias. 

•  Inductive bias can take two forms: 
–  Language bias: The language for representing concepts defines a 

hypothesis space that does not include all possible functions (e.g. 
linear vrs boolean functions). 

–  Search bias: The language is expressive enough to represent all 
possible functions (e.g. disjunctive normal form) but the search 
algorithm embodies a preference for certain functions over others 
(e.g. conjunctive functions, or unconsistent functions) This is called 
syntactic simplicity. 



BIAS 
•  More in general, bias is a criterion for preferring a set of hypoteses 

over another 

•  a and b belong to different languages (linear vrs. non-linear 
functions), b and c have a different search bias, since c relaxes 
consistency in favor of simplicity   

 

Here for example we relax the consistency 
criterion  

a c b 
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Ockham (Occam)’s Razor 
•  William of Ockham (1295-1349) was a Franciscan friar 

who applied the criteria to theology: 
–  “Entities should not be multiplied beyond 

necessity” (Classical version but not an actual quote, 
which is: entia non sunt multiplicanda praeter 
necessitatem) 

–  “The supreme goal of all theory is to make the 
irreducible basic elements as simple and as few as 
possible without having to surrender the adequate 
representation of a single datum of 
experience.” (Einstein) 

•  Requires a precise definition of “simplicity”. 
•  Acts as a bias which assumes that nature itself is simple. 
•  Role of Occam’s razor in machine learning remains 

controversial  (more on CLT course). 



BIAS 
•  More in general, bias is a criterion for preferring a set of hypoteses 

over another 

•  a and b belong to different languages (linear vrs. non-linear 
functions), b and c have a different search bias, since c relaxes 
consistency in favor of simplicity   

 

Here for example we relax the consistency 
criterion  

a c b 
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Ockham (Occam)’s Razor 
•  William of Ockham (1295-1349) was a Franciscan friar 

who applied the criteria to theology: 
–  “Entities should not be multiplied beyond 

necessity” (Classical version but not an actual quote, 
which is: entia non sunt multiplicanda praeter 
necessitatem) 

–  “The supreme goal of all theory is to make the 
irreducible basic elements as simple and as few as 
possible without having to surrender the adequate 
representation of a single datum of 
experience.” (Einstein) 

•  Requires a precise definition of “simplicity”. 
•  Acts as a bias which assumes that nature itself is simple. 
•  Role of Occam’s razor in machine learning remains 

controversial  (more on CLT course). 
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Hypothesis Space (1) 
•  How difficult is learning an hypothesis? It depends 

upon the number of alternatives! In other terms, it 
depends on the DIMENSION OF THE HYPOTHESIS 
SPACE 

•  Learned functions a priori restrict to a given hypothesis 
space, H, of functions h(x) that can be considered as 
possible hypotheses for c(x). 

•  Depending upon the chosen class of hypotheses 
(conjunctive forms, boolean expressions, algebraic 
functions, probabilities..) the hypothesis space can be 
small, large, or infinite!! (E.g. if c(x) is linear function, 
like c(x)=w1x1+w2x2+..wnxn – with xi real-valued  or 
discrete features and wi real-valued coefficients, there 
might be  infinite linear functions that correctly classify 
the examples in an available dataset!)  

•  In inductive learning, the hypothesis space is FINITE. 
But, how big? 



Hypothesis Space of boolean functions 
(1)	  

•  So	  how	  many	  hypotheses	  for	  a	  boolean	  funcDon	  
with	  n	  features,	  each	  of	  which	  can	  assume	  the	  
values	  0,	  1	  or	  “?”	  (don’t	  care)?	  

•  =number	  of	  disDnct	  truth	  tables	  with	  2n	  rows	  is	  
	  (remember:	  there	  is	  one	  truth	  table	  for	  any	  boolean	  
funcDon,	  but	  infinite	  number	  of	  equivalent	  logic	  
expressions)	  

•  Example	  n=2	  	  (boolean	  features	  are	  x,y)	  An	  
hypothesis	  is	  a	  specific	  truth	  table,	  with	  two	  
boolean	  	  variables.	  So,	  |H|=	  	  	  	  	  	  	  	  	  	  

22
n

22
2
= 24 =16



Hypothesis Space of boolean functions 
(1)	  

•  So	  how	  many	  hypotheses	  for	  a	  boolean	  funcDon	  
with	  n	  features,	  each	  of	  which	  can	  assume	  the	  
values	  0,	  1	  or	  “?”	  (don’t	  care)?	  

•  =number	  of	  disDnct	  truth	  tables	  with	  2n	  rows	  is	  
	  (remember:	  there	  is	  one	  truth	  table	  for	  any	  boolean	  
funcDon,	  but	  infinite	  number	  of	  equivalent	  logic	  
expressions)	  

•  Example	  n=2	  	  (boolean	  features	  are	  x,y)	  An	  
hypothesis	  is	  a	  specific	  truth	  table,	  with	  two	  
boolean	  	  variables.	  So,	  |H|=	  	  	  	  	  	  	  	  	  	  

22
n

22
2
= 24 =16



Example	  

xy	  	  	  	  h1	  	  h2	  	  h3	  	  h4	  	  h5	  	  h6	  	  h7	  	  h8	  	  h9	  	  h10	  h11	  h12………………	  	  	  	  	  
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Hypothesis Space of conjunctive 
functions (2) 

•  Let’s compute |H| for conjunctive functions like small&red 
•  To learn concepts on instances described by n discrete-valued features, consider 

the space of conjunctive hypotheses represented by a vector of n features 
    <f1, f2, … fn> where each fi is either: 

–  ?, a wild card indicating no constraint on the ith feature (= the feature is irrelevant) 
–  A specific value from the domain of the ith feature (ex: color=red) 
–  Ø indicating no value is acceptable (=there are NO objects belonging to the target class 

in the dataset) 
•  Sample conjunctive hypotheses have the following shape (wrt previous 

example): 
–  <big, red, ?>  (equivalent to big&red, or [size=big]&[color=red]) 
–  <?, ?, ?> (most general hypothesis,                                   )  
–  < Ø, Ø, Ø> (most specific hypothesis,                               ) 
 

•  Notation: I can represent both instances and hypotheses as VECTORS, e.g. 
•  x: < small,red,circle>è (size=small)&(color=red)&(shape=circle) 
•  h: <small,?,circle> è IF (size=small)&(color=don’t care)&(shape=circle) 

THEN True 

€ 

∀x, c(x) =1

€ 

∀x, c(x) = 0



Hypothesis Space of conjunctive 
functions (3)	  

•  How	  many	  conjuncDve	  funcDons?	  Any	  feature	  
can	  be	  0,	  1,	  always	  false	  (indicated	  with	  	  	  	  	  	  )	  or	  
always	  true	  (indicated	  with	  ?)	  therefore	  4n	  

•  However	  all	  hypotheses	  	  with	  at	  least	  one	  
feature	  equal	  to	  	  	  	  	  	  are	  equivalent	  (they	  are	  all	  
false)	  therefore	  |H|=	  3n+1	  

•  Example	  n=2	  	  H=	  	  	  	  	  	  ,	  ?,xy,xy,xy,xy,x?,?y,	  x?,?y	  
•  So	  10	  possible	  hypotheses	  for	  C(x)	  

∅

∅

∅
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Criteria to select best hypothesis: 
Generalization 

•  Even with a bias, a ML algorithm may output several 
different hypotheses, all consistent with the learning set. 
How do we choose? 

•  Hypotheses must generalize to correctly classify instances 
not in the training data. 

•  Simply memorizing training examples is a consistent 
hypothesis that does not generalize: 

((small&red&circle)or(large&red&circle))&(not((small & red & triangle) or (large 
& blue & circle)or…)) 

•  Occam’s razor: 
–  Finding a simple hypothesis helps to ensure generalization. 

•  BUT:	  how	  do	  we	  know	  that	  one	  hyp.	  is	  more	  general	  than	  
others? 



37 

Using the Generality Structure 

•  Given two hypotheses h1 and h2, h1 is more 
general than or equal to h2 (h1≥h2) iff every 
instance that satisfies h2 also satisfies h1. 

•  Given two hypotheses h1 and h2, h1 is (strictly) 
more general than h2 (h1>h2) iff h1≥h2 and it is 
not the case that h2 ≥ h1. 

•  Generality defines a partial order on 
hypotheses. 



Example hypothesis space for conjunctive 
functions (two binary features) ordered by 

generality 
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Ø	  

T,T	   T,F	   F,T	   F,F	  

?,F	  F,?	   ?,T	  T,?	  

?	  

Here	  all	  
hypotheses	  
with	  at	  
least	  one	  	  

“Ø”	  
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Other examples of Generality 
•  Conjunctive feature vectors 

–  <?, red, ?> is more general than <?, red, circle>  (remember ?=“any 
value is ok”) 

–  Neither of <?, red, ?> and <?, ?, circle> is more general than the other. 
•  Example: Axis-parallel rectangles in 2-d space 

 

–  A is more general than B 
–  Neither of A and C are more general than the other. 

A 
B 

C 



Digression: What are these rectangles?  
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Suppose X axis is cholesterol and Y is age.  Green points are positive for  
illness  M and each rectangle represents the rule: if A<chol<B AND C<age<D then M 
Therefore (hyper)rectangles are a class of hypotheses represented by ranges. 



Question 

•  Consider h1: <big, red, circle> and  
   h2: <?, blue, ?> 
•  Is h2>h1? 
•  Given two hypotheses h1 and h2, h1 is more 

general than or equal to h2 (h1≥h2) iff every 
instance that satisfies h2 also satisfies h1. 

•  So, is h2>h1? 

41 
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Evaluation of hypotheses 
We need to evaluate how the selected hypothesis 
“approximates” the real (unknown) classification function 
How? We use the training set (a fraction of the original 
classified dataset D that we DID NOT USED during the 
learning phase) 
We need to measure:  
•  Classification accuracy (% of instances classified correctly). 

–  Measured on an independent test data. 
•  Training time (efficiency of training algorithm). 
•  Testing time (efficiency of subsequent classifications, when 

the system is “operative”). 
•  We will devote a lesson to ML systems evaluation 



Summary	  so	  far	  
•  We	  learned	  the	  workflow	  of	  a	  ML	  learning	  system	  	  
•  We	  have	  seen	  that	  complexity	  of	  learning	  depends	  (also)	  upon	  the	  

“shape”	  of	  the	  classificaDon	  funcDon	  to	  be	  learned	  
(boolean,algebraic,	  probabilisDc)	  and	  on	  the	  complexity	  of	  
representaDon	  of	  the	  objects	  to	  be	  classified	  (how	  many	  features?	  
Boolean,	  discrete	  or	  conDnuous?	  Are	  the	  features	  related	  or	  
independent?)	  

•  We	  measured	  the	  (a	  priori)	  dimension	  of	  the	  hypothesis	  space	  for	  
the	  case	  of	  boolean	  funcDons	  and,	  within	  boolean	  funcDons,	  of	  
conjuncDve	  funcDons	  

•  We	  also	  defined	  the	  noDon	  of	  generality	  of	  hypotheses	  and	  we	  
have	  shown	  that,	  for	  conjuncDve	  funcDons,	  we	  can	  build	  the	  
hypothesis	  space	  as	  a	  tree	  structure	  

•  Generality	  is	  important,	  but	  the	  goodness	  of	  an	  hypothesis	  needs	  
to	  be	  evaluated	  against	  an	  (independent)	  test	  set	  



But	  how	  do	  we	  learn	  an	  hypothesis?	  

•  We	  know	  that	  hypotheses	  can	  have	  different	  
shapes,	  can	  be	  finite	  of	  infinite,	  can	  be	  
ordered	  according	  to	  generality,	  can	  be	  
evaluated	  

•  BUT:	  what	  about	  LEARNING	  a	  “good”	  
hypothesis?	  

•  Let’s	  start	  with	  algorithms	  (simple	  algorithms	  
for	  conjuncDve	  learning,	  to	  begin..)	  



Concept	  (or	  InducDve)	  learning	  

Algorithms	  to	  learn	  boolean	  
classificaDons	  



Concept	  learning	  (summary	  so	  
far)	  

•  ObjecDve:	  learn	  a	  boolean	  classificaDon	  c(x)	  
for	  objects	  

•  Concept	  learning	  is	  a	  form	  of	  supervised	  
learning:	  we	  are	  given	  a	  set	  D	  of	  pairs	  <x,c(x)>	  	  
for	  which	  the	  classificaDon	  is	  known.	  

•  Every	  object	  x	  is	  described	  by	  a	  set	  of	  features	  
(also	  called	  a^ributes):	  

•  Features	  are	  either	  boolean	  or	  discrete-‐valued	  

x ∈ X

x : f1,.. fn



Boolean	  funcDons	  

•  Concept	  learning	  implies	  learning	  an	  
hypothesis	  h(x)	  for	  c(x)	  

•  Perfect	  learning	  is	  usually	  impossible,	  the	  
objecDve	  is	  to	  learn	  a	  “good”	  approximaDon	  

•  Consistent	  learning	  is	  when:	  	  
∀x ∈ D h(x) = c(x)
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Conjunctive Rule Learning 
•  Conjunctive functions are easily learned by finding all 

commonalities shared by all positive examples. 

•  Must check consistency with negative examples. If 
inconsistent, no conjunctive rule exists.  

 

 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 

Learned rule: red & circle → positive  
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Limitations of Conjunctive Rules 
•  If a concept does not have a single set of 

necessary and sufficient conditions, conjunctive 
learning fails. 
Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 

Learned rule: red & circle → positive  
Inconsistent with negative example #5! 
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Disjunctive Concepts 
•  Concept may be disjunctive (in this case a 

conjunctive hypthesis cannot be found!) 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 

Learned rules:  

small & circle → positive          large & red → positive 

h(x)= (small & circle) or (large & red)  



Concept Learning as Search 
•  Conjunctive hypotheses are a small subset of 

the space of possible boolean functions 
•  We can see conjunctive learning as the task of 

searching the best hypothesis while travelling 
in the search space 
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Generalization Lattice 

< Ø, Ø, Ø> 

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 
 

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr> 

<?, ?, ?> 

Size: {small, big}     Color: {red, blue}     Shape: {circle, square} 

Number of hypotheses = 33 + 1 = 28 

Let’s	  consider	  a	  simpler	  case	  wrt	  previous	  example,	  now	  features	  are	  all	  boolean	  



53 

Algorithm 1: Most Specific Learner 
(Find-S) 

•  Find the most-specific hypothesis (least-general generalization, 
LGG) that is consistent with the training data. 

•  Incrementally update hypothesis h(x) after every positive example, 
generalizing it “just enough” to be consistent with the new 
example (we also say that h(x) “does not satisfies x”). 

•  For conjunctive feature vectors, this is easy: 
      Initialize h = <Ø, Ø,… Ø> 
      For each positive training instance x in D  
             For each feature fi 
                            If the constraint on fi in h is not satisfied by x 
                           If fi in h is Ø 
                                  then set fi in h to the value of fi in x  
                                  else set fi in h to “?” 
      If h is consistent with all negative training instances in D 
           then return h 
           else no consistent hypothesis exists 

Time complexity: 
O(|D| n) 
if n is the number  
of features 

f
i
h ≡ f

i
x



(an odd) Example: learning a user profile 
 

•  We assume there are no errors in D (often not true!) 
•  “Click” is the classification function defined in (0,1) 
      (will the user click on the page?) 

domain	
 platform	
 Browser	
 day	
 screen	
 country	
 Click?	


edu	

com	

com	

org	


Mac	

Mac	

PC	

Unix	


Net3	

NetCom	

IExpl	

Net2	


Lu	

Lu	

Sab	

Gio	


XVGA	

XVGA	

VGA	

XVGA	


America	

America	

Asia	

Europa	


Si	

Si	

No	

Si	


features 

values 
C(x) 

Tr
an

in
g 

se
t  

D
 



Find-S 

h2,3 

h1 

X H 

generality 
h4 

h0 

Training set D Hypohesis space H 
X1=	  (<edu,mac,Net3,Lun,XVGA,America>,1)	  	   h0	  =	  <Ø,	  Ø,	  Ø,	  Ø,	  Ø,	  Ø>	  
X2=(<com,mac,Net3,Mar,XVGA,America>1)	  	   h1=<edu,mac,Net3,Lun,XVGA,America>	  
X3=	  (<com,PC,IE,Sab,VGA,Eur>,0) 	  	  

X4=	  (<org,Unix,Net2,Mer,XVGA,America>,1)	  	  	  
h2=<?,mac,Net3,?,XVGA,America>	  
h3=<?,mac,Net3,?,XVGA,America>	  
h4=<?,?,?,?,XVGA,America>	  

1=	  posiDve,	  c(x)=true;	  0=negaDve,	  c(x)=false	  
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Properties of Find-S 
•  For conjunctive feature vectors, the most-specific hypothesis is 

unique and found by Find-S (if enough examples are 
provided). 

•  If the most specific hypothesis is not consistent with the 
negative examples, then there is no consistent function in the 
hypothesis space, since, by definition, it cannot be made more 
specific and retain consistency with the positive examples. 

•  Notice however that FIND S does not consider negative 
examples! (consistency is checked for at the end) 

•  For conjunctive feature vectors, if the most-specific hypothesis 
is inconsistent, then the target concept must be disjunctive. 
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Issues with Find-S 
•  Given sufficient training examples, does Find-S converge to a 

correct definition of the target concept (assuming it is in the 
hypothesis space)? 

•  How do we know when the hypothesis has converged to a 
correct definition? 

•  Why prefer the most-specific hypothesis? Are more general 
hypotheses consistent? What about the most-general 
hypothesis? What about the simplest hypothesis? 

•  If the least general generalization LGG is not unique 
–  Which LGG should be chosen? 
–  How can a single consistent LGG be efficiently computed or 

determined not to exist? 
•  What if there is noise in the training data and some training 

examples are incorrectly labeled? 
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Effect of Noise in Training Data 
•  Frequently realistic training data is corrupted by errors 

(noise) in the features or class values. 
•  Such noise can result in missing valid generalizations. 

–  For example, imagine there are many positive examples like #1 
and #2, but out of many negative examples, only one like #5 that 
actually resulted from a error in labeling. 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 
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Algorithm 2: Version Space 

•  Given an hypothesis space, H, and training data, 
D, the version space is the complete subset of H 
that is consistent (compatible)with D. 

•  The version space can be naively generated for 
any finite H by enumerating all hypotheses and 
eliminating the inconsistent ones. 

•  Can one compute the version space more 
efficiently than using enumeration (considering all 
hypothesis space and ordering hi?) 
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Version Space with S and G 
•  The version space can be represented in a more compact way 

by maintaining two boundary  sets of hypotheses, S, the set of 
most specific consistent hypotheses, and G, the set of most 
general consistent hypotheses: 

 
•  S and G represent the entire version space via its boundaries in 

the generalization lattice: 

)]},([),(|{ DsConsistentssHsDsConsistentHsS ʹ′∧ʹ′>∈ʹ′¬∃∧∈=
)]},([),(|{ DsConsistentggHgDgConsistentHgG ʹ′∧>ʹ′∈ʹ′¬∃∧∈=

version 
space 

G 

S 
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Version Space Lattice 

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr> 

< Ø, Ø, Ø> 

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 
 

<?, ?, ?> 

Size: {sm, big}     Color: {red, blue}     Shape: {circ, squr} 

<<big, red, squr>, 1> 
<<sm, blue, circ>, 0> 

Color Code: 
G 
S 

other VS 
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Candidate Elimination (Version Space) 
Algorithm 

Initialize G to the set of most-general hypotheses in H 
Initialize S to the set of most-specific hypotheses in H 
For each training example, d, do: 
       If d is a positive example then: 
             Remove from G any hypotheses that do not match d 
             For each hypothesis s in S that does not match d 
                    Remove s from S 
                    Add to S all minimal generalizations, h, of s such that: 
                             1)  h matches d 
                             2) some member of G is more general than h 
              Remove from S any h that is more general than another hypothesis in S 
       If d is a negative example then: 
             Remove from S any hypotheses that match d 
             For each hypothesis g in G that matches d 
                    Remove g from G 
                    Add to G all minimal specializations, h, of g such that: 
                             1) h does not match d 
                             2) some member of S is more specific than h 
              Remove from G any h that is more specific than another hypothesis in G 
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Sample VS Trace 
S= {< Ø, Ø, Ø>}; G= {<?, ?, ?>} 
SIZE: (big,small) COLOR: (red, blue) SHAPE: (circ, square, triangle) 
 
Positive: X: <big, red, circle> 
Nothing to remove from G (X is compatible with G, G would “accept” X) 
Minimal generalization of only S element is <big, red, circle> which is more 
specific than G. 
S={<big, red, circle>}; G={<?, ?, ?>} 
 
Negative: Y: <small, red, triangle> 
Nothing to remove from S.  (Y is compatible with S={<big, red, circle>}, S 
would reject Y) 
Minimal specializations of <?, ?, ?> that would reject the negative example 
are: <big, ?, ?>,  <?, blue, ?>, <?, ?, circle>, <?, ?, square> but some are not 
more general than some element of S hence the final set G is  <big, ?, ?>, 
<?, ?, circle> 
S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>} 
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Sample VS Trace (cont) 
S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>} 
 
Positive: Z: <small, red, circle> 
Remove <big, ?, ?> from G (it would erroneously reject the example) 
Minimal generalization of S: <big, red, circle> that would accept the positive 
example is <?, red, circle> 
S={<?, red, circle>}; G={<?, ?, circle>} 
 
Negative: N: <big, blue, circle> 
Nothing to remove from S  (S would correctly reject the example) 
G: Minimal specializations of  <?, ?, circle> that would reject the example 
are: <small, ? circle>, <?, red, circle>, but one is not more general than some 
element of S. 
S={<?, red, circle>}; G={<?, red, circle>} 
 
S=G; Converged! 
 



Example 2 (a generic 3-monomial conjunctive function) 

TRUE 

  zzyyxx

xyzzxyzyxzyxyzxzyxzyxzyx 

FALSE 

xzxyzxyxyzyxzyyxzyzxzyzxyx

< (x, y−),+ >

>−< ),,,( zyx

S0 

S1 

G0 

G1 

Note	  
that	  x	  
and	  z	  
are	  
NOT	  
compa
Dble	  
with	  
S1!!	  
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Properties of VS Algorithm 
•  S summarizes the relevant information in the positive 

examples (relative to H) so that positive examples do not need 
to be retained. 

•  G summarizes the relevant information in the negative 
examples, so that negative examples do not need to be 
retained. 

•  Result is not affected by the order in which examples are 
processes but computational efficiency may. 

•  Positive examples move the S boundary up; Negative 
examples move the G boundary down. 

•  If S and G converge to the same hypothesis, then it is the only 
one in H that is consistent with the data. 

•  If S and G become empty (if one does the other must also) 
then there is no hypothesis in H consistent with the data. 
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Correctness of Learning 

•  Since the entire version space is maintained, given a 
continuous stream of noise-free training examples, 
the VS algorithm will eventually converge to the 
correct target concept if it is in the hypothesis space, 
H, or eventually correctly determine that it is not in 
H. 

•  Convergence is correctly indicated when S=G.  
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Computational Complexity of VS 
•  Computing the S set for conjunctive feature vectors is 

linear in the number of features and the number of 
training examples. 

•  Computing the G set for conjunctive feature vectors 
is exponential in the number of training examples 
in the worst case. 

•  In more expressive languages (than conjunctive 
rules), both S and G can grow exponentially. 

•  The order in which examples are processed can 
significantly affect computational complexity. 



Before we start presenting new (and 
more practical) ML algorithms.. 
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A number of relevant issues that apply 
to any ML problem/algorithm 

1.  Feature selection and object representatzion 
2.  Best order to present training examples  
3.  Multiple categories 

70 



1. Feature Selection 

•  Many factors affect the success of machine 
learning on a given task.  

•  The representation and quality of the 
example data is first and foremost. 

•  In theory, having more features should result in 
more discriminating power.  

•  However, practical experience with machine 
learning algorithms has shown that this is not 
always the case. 
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The importance of features (attributes) 
selection 

•  Reduce the cost of learning by reducing the 
number of attributes. 

•  Provide better learning performance compared 
to using full attribute set. 



Feature selection is task dependent 
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To classify lions and frogs in the appropriate category,  
a simple color histogram could perform very well:   
f=color 



Feature selection is task dependent 
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To classify horses and lions, more features are needed.  
Some would be useless, e.g Color, Number-of-legs..since 
they would not help to differentiate the 2 categories 



Feature selection methods 

  There are two approach for attribute selection. 
•  Filter approach attempt to assess the merits of 

attributes from the data, ignoring learning 
algorithm. 

•  Wrapper approach the selection of a subset of 
attributes is done using the learning algorithm 
as a black box. 



Filtering 
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Filtering 

•  A feature fi is said to be strongly relevant to the 
target concept(s) if the probability distribution 
of the class values, given the full feature set, 
changes when fi is removed.  

 
•  A feature fi  is said to be weakly relevant if it is 

not strongly relevant and the probability 
distribution of the class values, given some subset 
S (containing fi ) of the full feature set, does not 
changes when fi  is removed. 
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Example: want to learn chair(x)  
(chair(x)=true if x=chair) 
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Prior probability of instances in D 
P(chair)=8/16=0,5 
P(table)=P(not(chair))=8/16=0,5 
So we have the maximum uncertainty. 
If we classify at random, our  
probability of error is 50% 

Consider the feature: 
4-legs (boolean) 
 

x=(color,	  has-‐back,4-‐legs)	  	  (3	  boolean	  features	  to	  describe	  instances)	  



Example 
•  If we group instances according to the 4-legs 

feature, we have : 
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4-‐legs=true	  

4-‐legs=false	   Grouping instances 
according to 4-legs does 
not vary the probability 
distribution of the 2 
categories: it remains 0,5!! 



What about other features? 
•  “4-legs” is not a good feature to correctly classify tables and 

chairs!! It leaves you with the same uncertainty (0.5) 
•  Instead “has-back” would be enough to perfectly separate the 

2 categories (given the trainig set of instances of the example) 
•  In fact has-back=true would group only chairs, has-

back=false would group only tables) 
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Has_back=yes	   Has_back=no	  



Are	  we	  sure?	  

•  So,	  given	  our	  data,	  we	  could	  use	  the	  simple	  
rule:	  IF	  has-‐back	  =	  yes	  THEN	  chair(x)=YES	  

•  But	  what	  about	  “unseen”	  instances?	  



This	  was	  simple	  example..	  

•  In	  previous	  example,	  one	  feature	  was	  useless,	  
the	  other	  was	  100%	  useful	  (could	  use	  that	  
single	  feature	  to	  decide	  the	  correct	  class)	  

•  In	  general,	  the	  problem	  is	  to	  automaDcally	  
analyze	  all	  features	  and	  order	  them	  according	  
to	  the	  REDUCTION	  OF	  UNCERTAINTY	  we	  get	  
when	  grouping	  our	  dataset	  according	  to	  the	  
values	  of	  each	  instance	  



Measuring the “probability 
distribution”: Entropy filtering 

•  Ranking according to entropy gain of attributes. 
•  Entropy for given set of data with 2 classes can be 

defined as 
 
 
     
•  p(j) is the probability of class j, estimated by 

the relativefrequency of elements classified as 
“j” in the training set 

 



Example	  
•  Learning	  set	  D	  includes	  5	  istances,	  2	  classified	  as	  posiDves	  3	  

negaDves	  
•  Probability	  of	  posiDve	  (esDmate)	  p+=2/5	  
•  Probability	  of	  negaDve	  (esDmate)	  p-‐=3/5	  
•  Entropy	  of	  the	  training	  set	  is:	  
•  E(D)=-‐(2/5)log2(2/5)-‐(3/5)log2(3/5)	  =	  	  

(0.4)x1.32	  +	  (0.6)x0.737=	  0.528+0.44=0.97	  
•  Note:	  if	  instances	  in	  D	  are	  equally	  distributed	  between	  posiDve	  

and	  negaDve,	  Entropy	  is	  1	  
•  E(D)=	  -‐0.5log(0.5)-‐0.5log(0.5)=0.5+0.5=1	  
•  If	  all	  instances	  are	  	  classified	  THE	  SAME	  8all	  are	  posiDve	  or	  all	  are	  

negaDve)	  Entropy	  is	  0	  
•  E(D)=	  -‐1log(1)	  =0	  	  



Entropy	  Filtering	  
After classification using one specific feature j, we can 
calculate the gain of feature j: 
 
 
•  where ni/n is an estimate of the probability that the considered 

feature has value i. ni is the number of instances in the learning 
set D having the value of feature j equal to the value i 
 (e.g. for the chairs case, there are 8/16 instances with feature  
 4-legs=yes, and 8/16 with 4-legs=no) 

•  Entropy(i) is the entropy of the subset Di with fj=i 
•  Larger value of gain better attribute. 
 



Wrt previous example of tables and chairs 

•  E=-0.5log2(0.5) -0.5log2(0.5)= 1 (initial entropy, 
since there are 50% tables, 50% chairs) 

•  If we classify according to feature 4-legs: 
–  E(4-legs=true)=1 since out of 12 objects with 4 legs, we 

have 6 chairs and 6 tables  
–  E(4-legs=false)=1 since out of 4 objects without 4 legs, 

we have 2 chairs and 2 tables  
–  GAIN=1-((12/16) E(4-legs=true) +(4/16) E(4-

legs=false))=1-1=0   NO GAIN!! 
•  If we instead classify according to has-back:  

–  E(has-back=true)=0  (they are all chairs) 
–  E(has-back=false)=0  (they are all tables) 
–  Hence GAIN=1-0=1   
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In previous example we had two extremes: perfectly 
useless (4-legs) and perfectly useful (has-back) features 

At each step, choose 
the feature that 
“reduces entropy” 
most. Work towards 
“node purity”. 

Pure nodes are those 
including instances with 
a unique classification 
(e.g. all tables) 

 

All	  the	  
data	  

f1	  

f2	  

Choose	  f1	  

Choose	  f2	  

Common case is that entropy changes, but not from 1 to 0!! 
Ex. black instances positive, white are negative 

Partition the data set in two groups according to f1=1: positive and negative 

e.g.	  in	  this	  set	  we	  group	  
all	  instances	  with	  f1=0	  	  

f1=1	   f1=0	  

Now	  we	  parDDon	  according	  to	  f2	  



Summary	  on	  filtering	  

•  Filtering	  is	  a	  method	  to	  order	  features	  according	  
to	  relevance	  	  

•  The	  Entropy	  filtering	  order	  the	  features	  according	  
to	  informaDon	  gain	  

•  Perfect	  features	  are	  those	  with	  gain	  1,	  useless	  
features	  are	  those	  with	  gain	  0,	  most	  features	  are	  
somewhere	  in	  between	  

•  Note	  that	  filtering,	  as	  we	  said	  iniDally,	  only	  looks	  
at	  the	  distribuDon	  of	  feature	  values	  in	  the	  
dataset,	  NOT	  at	  the	  machine	  learning	  algorithm	  



Wrappers 

•  Employs the target learning algorithm to 
evaluate feature sets 

•  Uses an induction algorithm along with a 
statistical re-sampling technique such as cross-
validation to estimate the final accuracy of 
feature subsets 
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Wrappers 
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Wrappers 

Say	  we	  have	  features	  A,	  B,	  C	  and	  classifier	  M.	  We	  want	  to	  predict	  C(X)	  given	  the	  
smallest	  possible	  subset	  of	  {A,B,C},	  while	  achieving	  maximal	  performance	  
(accuracy)	  

	  	  	  	  	  	  	  FEATURE	  SET 	  	  CLASSIFIER	  	   	  PERFORMANCE	  

	  {A,B,C} 	   	  M 	  	  	  	  	  	  	  	  	  	   	  98%	  

	  {A,B} 	   	  M 	   	   	  98%	  

	  {A,C}	   	  	  	  	  	  	  	  	  	  	  M 	   	   	  77%	  

	  {B,C}	   	  	  	  	  	  	  	  	  	  	  M 	   	   	  56%	  

	  {A} 	   	  	  	  	  	  	  	  	  	  	  M 	   	   	  89%	  

	  {B} 	   	  	  	  	  	  	  	  	  	  	  M 	   	   	  90%	  

	  {C} 	   	  	  	  	  	  	  	  	  	  	  M 	   	   	  91%	  

	  {.} 	   	  	  	  	  	  	  	  	  	  	  M 	   	   	  85%	  

The	  third	  column	  is	  the	  number	  of	  
correctly	  classified	  istances	  by	  the	  
classifier	  M	  when	  using	  the	  set	  of	  
features	  in	  column1	  

When	  zero	  features	  are	  used,	  the	  
classifier	  performs	  a	  random	  guess.	  In	  
this	  case,	  P=85%	  means	  that	  the	  prior	  
probability	  of	  C(X)=true	  is	  0,85	  



Wrappers (2) 

The	  set	  of	  all	  subsets	  is	  the	  power	  set	  and	  its	  size	  is	  2|V|	  (V=	  number	  of	  features).	  
Hence	  for	  large	  V	  we	  cannot	  do	  this	  procedure	  exhaus3vely;	  instead	  we	  rely	  on	  
heuris3c	  search	  of	  the	  space	  of	  all	  possible	  feature	  subsets.	  

{}	  85%	  

{A}	  89%	  

{B}	  90%	  

{A,B}	  98%	  

{A,B,C}98%	  

{C}	  91%	  

{A,C}	  77%	  

{B,C}	  56%	  

start	  

{A,B}98%	  

{B,C}56%	  

{A,C}77%	  
end	  

this	  is	  the	  esDmate	  of	  prior	  
probability	  of	  C(X)=true	  



Wrappers: Hill climbing 

A common example of  heuristic search is hill climbing: 
keep adding features one at a time until no further 
improvement can be achieved. 

We	  start	  with	  an	  empty	  set	  of	  a^ributes.	  At	  each	  step	  k,	  we	  consider	  all	  possible	  	  
combinaDons	  of	  k	  a^ributes.	  f(v)	  is	  any	  evaluaDon	  funcDon	  (e.g.,	  precision)	  
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Hill Climbing 

{}	  85	  

{A}	  89	  

{B}	  90	  

{A,B}	  98	  

{A,B,C}98	  

{C}	  91	  

{A,C}	  77	  

{B,C}	  56	  

start	  

{A,B}98	  

{B,C}56	  

{A,C}77	  
end	  

Start with empty set of attributes  
Step 1: with first expansion (add one attribute in each node) f(v’)>f(v) for all nodes 
Step 2: node C is expanded first (since had highest perf), but condition is not met, so  
backtrack to second best (B) 
Step 3: B is expanded and nodes A,B and B,C are generated; A,B is the best 
Step 4: A,B is expanded but  condition is not met; OUTPUT is {A,B} 



Empty	  subset	  of	  a^ributes	  

Full	  set	  of	  a^ributes	  

Ex:	  A^ribute	  tree	  with	  4	  binary	  a^ributes	  (=	  features)	  

NOTE:	  terms	  “ATTRIBUTE”	  and	  “FEATURE”	  can	  be	  used	  interchangeably.	  Same	  meaning!	  



A number of relevant issues that apply 
to any ML problem/algorithm 

1.  Feature selection and object representation 
2.  Best order to present training examples  
3.  Multiple categories 
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Best way to select examples: Active 
Learning 

•  In active learning, the system is responsible for selecting 
good training examples and asking a teacher (oracle) to 
provide a class label. 

•  Goal is to minimize the number of examples required 
to learn an accurate concept description. 

•  The general idea is to select the training examples in a 
“smart” way 

•  Note: only applicable if we have lots of examples, target 
is to avoid loosing time with examples which are less 
useful (e.g. too similar to already analyzed ones), OR if 
we need the help of an expert to label examples in the 
appropriate class (experts have a cost!) 



Toy Example: 1D classifier	  

•  ObjecDve:	  learning	  a	  threshold	  funcDon	  (if	  x>w	  then	  true	  else	  
false).	  The	  threshold	  w	  is	  unknown	  ..	  It	  is	  what	  we	  want	  to	  
learn	  

•  Example:	  we	  want	  to	  learn	  the	  body	  mass	  index	  above	  which	  
there	  is	  a	  high	  risk	  of	  diabetes	  

•  To	  train	  the	  system	  we	  need	  to	  “label”	  a	  training	  set	  (we	  need	  
to	  idenDfy	  people	  with	  and	  without	  diabetes,	  and	  then	  
measure	  their	  BMI).	  	  

•  The	  number	  of	  examples	  N	  depends	  on	  the	  number	  of	  
possible	  values	  of	  x	  (possibly	  discreDzed).	  For	  the	  BMI,	  values	  
go	  from	  10	  to	  40	  (N=30).	  	  



Toy Example: 1D classifier 

x x x x x x x x x x 

Naïve method: choose points to label at random on line (choose 
patients from a record database at random) 

•  Requires O(N) training data to find underlying classifier 

Better method: binary search for transition between 0 and 1 
•  Requires O(log N) training data to find underlying classifier 
•  Exponential reduction in training data size! 

Goal: given the training set, find transition between  
0 and 1 labels (e.g. find w)  in minimum steps 

0 0 0 0 0 1 1 1 1 1 

w 



Active learning: choose labeled 
examples 
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Active learning strategies 
•  Uncertainty sampling: label those points for which the current model 

is least certain as to what the correct output should be (if model is 
probabilistic) 

•  Query by committee: a variety of models are trained on the current 
labeled data, and vote on the output for unlabeled data; label those 
points for which the "committee" disagrees the most (most 
complex cases) 

•  Expected model change: label those points that would most change 
the current model 

•  Expected error reduction: label those points that would most reduce 
the model's generalization error 

•  Variance reduction: label those points that would minimize output 
variance, which is one of the components of error 
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A common method is: take the 
example that “mostly differs” from 

those seen so far 
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Typical heuristics for active learning 
•  Start with a pool of unlabeled data 
•  Pick a few points at random and get their labels 
•  Repeat 

–  Pick the unlabeled point that is closest to the boundary 
(or most uncertain, or most likely to decrease overall 
uncertainty,...) 
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Knowing the label of the first 
two instances is more helpful 
at determining the positive/negative 
boundary than the third instance. 

1	  

2	  

3	  
Which of the following 
instances would be 
an interesting example?  



A number of relevant issues that apply 
to any ML problem/algorithm 

1.  Feature selection and object representatzion√ 
2.  Best order to present training examples √ 
3.  Multiple categories 
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Learning for Multiple Categories 
•  What if the classification problem is not concept learning and involves 

more than two categories (e.g. select among several possible 
illnesses, given the symptoms)? 

•  Can treat as a series of concept learning problems (e.g. we use n 
independent classifiers), where for each classifier Ci, all                                

 are treated as positive and all other instances in categories Cj, j≠i are 
treated as negative (one-versus-all). 

•  This will assign a unique category to each training instance but may 
assign a novel instance to zero or multiple categories. 

•  If the binary classifier produces confidence estimates (e.g. based on 
voting), then a novel instance can be assigned to the category with the 
highest confidence. 

€ 

x ∈D, s.t. ci(x) =1



Example 
•  Classifier 1: red or 

not-red 
•  Classifier 2: blue or 

not-blue 
•  Classifier 3: yellow 

or not-yellow 
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