
Machine	
  Learning	
  

Recap	
  of	
  main	
  issues/phases	
  



Recap: Phases/problems in 
designing a ML algorithm 

1.  Modeling the domain objects 
2.  Choosing a learning experience 
3.  Modeling the target function 
4.  Defining a Learning Algorithm 
5.  Performance Evaluation 
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Example : recognizing lions and 
frogs 



1. Representation: How do we 
represent  (model) our objects? 

•  Simple: color! (e.g. a bitmap) 
•  Less simple: silhouette 

4 



2. From what experience? 
Types of learning: 
•  Supervised learning 
•  Unsupervised learning 
•  Reinforcement learning 
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Learning paradigms 
•  Supervised	
  learning:	
  someone	
  tells	
  you	
  what	
  to	
  do	
  for	
  a	
  

number	
  of	
  example	
  cases.	
  For	
  example,	
  the	
  system	
  is	
  
provided	
  with	
  a	
  dataset	
  of	
  images	
  already	
  classified	
  (cats,	
  
dogs,	
  frogs,	
  lions..)	
  an	
  must	
  learn	
  which	
  features	
  can	
  help	
  
to	
  disDnguish	
  between	
  types;	
  

•  Unsupervised:	
  There	
  is	
  no	
  “teacher”.	
  System	
  must	
  learn	
  
“regulariDes”	
  in	
  the	
  data.	
  For	
  example,	
  being	
  able	
  to	
  group	
  
users	
  according	
  to	
  their	
  tastes,	
  in	
  a	
  	
  restaurant	
  
recommendaDon	
  task	
  

•  Reinforcement	
  learning:	
  learning	
  by	
  doing.	
  No	
  teacher,	
  but	
  
some	
  target	
  objecDve.	
  System	
  must	
  learn	
  the	
  best	
  strategy	
  
towards	
  the	
  target.	
  For	
  example,	
  a	
  robot	
  moving	
  in	
  a	
  
hosDle	
  environment	
  may	
  learn	
  from	
  errors	
  and	
  
achievements.	
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Supervised learning 
•  Either an 

“expert” (e.g. ask 
someone to 
manually classified 
examples) or some 
available database 
of already classified 
examples 
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è	
  

è	
  

lion 

frog	
  



Unsupervised learning 
•  No examples are 

available. The 
learner must be able 
to identify 
distinguishing 
features that 
differentiate the 
various classes 

•  Note: system does 
not learn who is a 
frog and who is a 
lion, but only to 
assign an image to 
cluster 1 or cluster 2 
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Reinforcement learning 
•  No examples are 

available, but some 
function is provided 
to associate a 
reward (or 
punishment) to a 
good (bad) move 
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Frog!!	
  

WRONG!!!!	
  



Machine	
  learning	
  types	
  of	
  tasks	
  
•  Classifica3on/categoriza3on:	
  given	
  an	
  object,	
  learn	
  to	
  assign	
  this	
  object	
  

to	
  a	
  category	
  (chosen	
  from	
  a	
  pre-­‐defined	
  set)	
  or	
  to	
  “similarity”	
  classes	
  (not	
  
known	
  a	
  priori)	
  
–  Image	
  recogniDon:	
  given	
  a	
  set	
  of	
  images	
  and	
  	
  a	
  set	
  of	
  categories	
  (e.g.	
  dogs,	
  

cats,	
  lions,	
  frogs..)	
  assign	
  images	
  to	
  the	
  appropriate	
  category	
  
–  Grass	
  grubs	
  danger:	
  given	
  a	
  set	
  of	
  climaDc	
  condisDons	
  etc.	
  determine	
  wether	
  

it	
  is	
  advisable	
  or	
  not	
  to	
  use	
  pesDcides	
  (categories	
  are	
  “advisable”	
  “not	
  
advisable”)	
  

–  Medical	
  diagnosis:	
  given	
  a	
  set	
  of	
  possible	
  illnesses..	
  
•  Problem	
  solving:	
  given	
  a	
  task,	
  learn	
  a	
  strategy	
  (or	
  adapDve	
  strategy)	
  to	
  

perform	
  it	
  
–  Given	
  an	
  unknown	
  environment,	
  learn	
  to	
  explore	
  it	
  (robot	
  on	
  Mars)	
  
–  Given	
  a	
  physical	
  architecture	
  of	
  a	
  robot,	
  learn	
  a	
  strategy	
  (set	
  of	
  moves)	
  to	
  fly	
  

(run,	
  swim..)	
  
–  Self-­‐	
  driving	
  car:	
  given	
  an	
  environment	
  with	
  obstacles,	
  drive	
  from	
  X	
  to	
  Y	
  

stopping	
  and	
  turning	
  as	
  appropriate	
  



Summary 
1.  Machine learning “general” tasks: classification, 

problem solving 
2.  Learning paradigms: supervised, unsupervised, 

reinforcement 
3.  Sub-problems: 

–  representation: how to represent domain objects and 
the target function 

–  algorithm selection: how to learn the target function  
–  evaluation: how to test the performance of the learner 
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Let’s	
  start!!	
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Inductive Classification 



Machine learning tasks 

•  Classification 
•  Problem Solving 

– Classification/categorization: the set of categories is 
given (e.g. lion, frog) 

– Classification/clustering: the set of categories is not 
known (we need to “cluster” instances by similarity) 

–  First case is TRAINED or SUPERVISED 
–  Second is UNSUPERVISED  
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Supervised categorization: 
definition 

•  Given: 
–  A description of an instance (=the entities we want to classify), 

x∈X, where X is the instance language or instance space  (e.g. 
a way of representing instances). 

–  A fixed (known) set of categories: C={c1, c2,…cn} 
•  Determine: 

–  The category of x: c(x)∈C, where c(x) is a classification 
function c: XàC whose domain is X and whose range is C. 

–  If c(x) is a binary function C={0,1} ({true,false}, {positive, 
negative}) then it is called a concept (and we talk about 
CONCEPT LEARNING, or INDUCTIVE LEARNING) 

–  In inductive learning, the system tries to induce a 
GENERAL CLASSIFICATION RULE from a set of 
available classified examples 
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Definiton of the supervised 
classification task: 

•  A training example is an instance x∈X, paired 
with its correct category c(x):         <x, c(x)> for 
an unknown categorization function, c(x).  

•  Usually, x is represented by a number of features 
(more precisely, a feature vector x:<x1,x2..xn>) 

•  Given a set of training examples, D (named 
training set or learning set) 

•  Find a hypothesized categorization function, h(x), 
such that: )()(: )(, xcxhDxcx =∈><∀

Consistency: the hypothesis function must be  
consistent with the learning set 



Don’t	
  get	
  confused!	
  
•  C(x)	
  is	
  a	
  classificaDon	
  funcDon,	
  that	
  we	
  aim	
  to	
  learn	
  with	
  a	
  ML	
  

algorithm	
  
•  When	
  given	
  an	
  object	
  x,	
  C(x)	
  always	
  returns	
  the	
  right	
  classificaDon	
  
•  Unfortunately,	
  perfect	
  learning	
  is	
  impossible	
  in	
  the	
  vast	
  majority	
  of	
  

cases!	
  We	
  cannot	
  learn	
  C(x)	
  
•  That’s	
  why	
  we	
  talk	
  about	
  hypotheses	
  h(x):	
  the	
  target	
  is	
  to	
  learn	
  a	
  

funcDon	
  h(x)	
  which	
  approximates	
  at	
  best	
  the	
  real	
  (unknown)	
  
funcDon	
  

•  How	
  do	
  we	
  know	
  how	
  good	
  is	
  a	
  specific	
  h(x)??	
  We	
  actually	
  don’t..	
  
We	
  can	
  only	
  ESTIMATE	
  the	
  goodness,	
  using	
  a	
  fragment	
  of	
  our	
  
available	
  classified	
  data,	
  named	
  the	
  test	
  set	
  T.	
  	
  

•  However,	
  in	
  selecDng	
  our	
  data	
  for	
  learning	
  and	
  tesDng,	
  we	
  must	
  be	
  
careful..	
  	
  

•  So	
  we	
  are	
  ready	
  for	
  a	
  more	
  “formal”	
  statement:	
  	
  



Inductive Learning Hypothesis 
•  Any function that is found to approximate the target concept 

well on a sufficiently large set of training examples will also 
approximate the target function well on unobserved examples. 

•  Assumes that the training and test examples are drawn 
independently from the same underlying distribution  
(IID). 

•  What we are saying here is that 1) we need “enough” data; 
2)data must be representative of the domain  

•  However this is very vague (what is “well”? What is 
“sufficiently large”?) 

•  Additional assumptions are necessary about the target concept 
and the notion of “approximating the target function well on 
unobserved examples” should be  defined appropriately (cf. 
computational learning theory). 



Workflow of a Supervised Classifier 
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Data	
  on	
  the	
  domain	
  

Machine	
  learning	
  	
  
Algorithm	
  
(classifier)	
  

ClassificaDon	
  Model	
  

Performance	
  
evaluaDon	
  

the algorithm 
to learn C(x) 

An hypothesis 
h(x) for C(x) 

Training set 
<x,C(x)> 

Test set 
<x,?> 

How good is 
h(x)? 

Available	
  classified	
  data	
  D	
  are	
  split	
  in	
  learning	
  set	
  L	
  and	
  test	
  set	
  T.	
  	
  L	
  is	
  used	
  to	
  train	
  
the	
  classifier	
  (=ML	
  algorithm).	
  The	
  output	
  of	
  learning	
  is	
  an	
  hypothesis	
  funcDon	
  h(x),	
  i.e.,	
  
the	
  Classifica*on	
  Model.	
  To	
  verify	
  how	
  good	
  is	
  h(x)	
  we	
  use	
  it	
  to	
  classify	
  examples	
  in	
  the	
  
Test	
  set	
  T.	
  	
  The	
  error	
  rate	
  is	
  esDmated	
  by	
  the	
  number	
  of	
  cases	
  in	
  which	
  c(x)≠h(x)	
  for	
  x	
  in	
  T	
  	
  



19 

A Sample Concept Learning Problem 
•  Instance language: <size, color, shape> 

–  size ∈ {small, medium, large} 
–  color ∈ {red, blue, green} 
–  shape ∈ {square, circle, triangle 

•  C = {positive, negative} 
•  D: 

Instances Size Color Shape C(x) 
x1 small red circle positive 

x2 large red circle positive 

x3 small red triangle negative 

x4 large blue circle negative 

This	
  means	
  that	
  every	
  
instance	
  is	
  represented	
  
by	
  a	
  set	
  of	
  a^ributes,	
  
or	
  features,	
  each	
  taking	
  	
  
values	
  in	
  a	
  finite	
  set	
  
	
  

Training	
  
set	
  

LANGUAGE:	
  The	
  name	
  and	
  
values	
  of	
  features	
  used	
  to	
  
represent	
  domain	
  objects	
  	
  



Hypothesis representation: which set of functions 
can we use to represent C(x)? 

•  As we said, may representations are possible for C(x).  
•  For example, here we can represent an hypothesis h(x) for 

C(x) e.g. with a boolean expression, or a rule, e.g. 
•  If (color=red)&(shape=circle) THEN C=positive 
•  Or equivalently: red&circle  (if boolean expr. is true, then 

c(x)=1) 
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Example Size Color Shape Category 
1 small red circle positive 

2 large red circle positive 

3 small red triangle negative 

4 large blue circle negative 



Do	
  we	
  have	
  any	
  possible	
  choice	
  for	
  
c(x)?	
  

•  Of	
  course	
  NO!!	
  
•  In	
  general,	
  we	
  can	
  choose	
  boolean,	
  algebraic	
  or	
  
probabilisDc	
  funcDons,	
  BUT	
  possible	
  choices	
  
depend	
  on	
  the	
  domain	
  objects	
  and	
  their	
  
complexity	
  of	
  representaDon	
  (e.g.	
  if	
  features	
  are	
  
dependent	
  or	
  independent,	
  if	
  they	
  are	
  boolean	
  –
or	
  can	
  approximate	
  with	
  a	
  boolean-­‐	
  discrete,	
  or	
  
conDnuous,	
  etc.)	
  

•  In	
  induc3ve	
  learning	
  we	
  restrict	
  to	
  boolean	
  or	
  
discrete	
  feature	
  representa3on,	
  and	
  boolean	
  
func3ons	
  for	
  c(x)	
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Hypothesis Selection 
•  Many hypotheses are usually consistent with the 

training data (number of equivalent boolean 
expressions is infinite). 
–  red & circle 
–  (small & circle) or (large & red)  
–  (small & red & circle) or (large & red & circle) 
–  not [ ( red & triangle) or (blue & circle) ] 
–  not [ ( small & red & triangle) or (large & blue & circle) ] 

Notice that the first is the conjunctive normal form CNF  



You	
  should	
  know	
  (but	
  just	
  in	
  case..)	
  

 True	
  table	
  is	
  unique	
  

Infinite	
  
number	
  of	
  
equivalent	
  
boolean	
  

expressions	
  



So	
  how	
  to	
  choose	
  c(x)?	
  	
  

•  Bias 
–  Bias is any criterion other than “consistency with the 

training data” that is used to select alternative hypotheses. 
–  E.g: “preferring a conjunctive form” is an example of  bias. 

For example, we decide to learn a boolean function, but 
among the possible boolean functions, we select 
conjunctive forms.  
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Inductive Bias 
•  A hypothesis space that does not include all possible classification 

functions on the instance space is said to incorporates a bias in the 
type of classifiers it can learn (e.g. restricting to conjunctive functions 
is a bias in boolean concept learning) 

•  Any means that a learning system uses to choose between two functions 
that are both consistent with the training data is called inductive bias. 

•  Inductive bias can take two forms: 
–  Language bias: The language for representing concepts defines a 

hypothesis space that does not include all possible functions (e.g. 
linear vrs boolean functions). 

–  Search bias: The language is expressive enough to represent all 
possible functions (e.g. disjunctive normal form) but the search 
algorithm embodies a preference for certain functions over others 
(e.g. conjunctive functions, or unconsistent functions) This is called 
syntactic simplicity. 



BIAS 
•  More in general, bias is a criterion for preferring a set of hypoteses 

over another 

•  a and b belong to different languages (linear vrs. non-linear 
functions), b and c have a different search bias, since c relaxes 
consistency in favor of simplicity   

 

Here for example we relax the consistency 
criterion  

a c b 
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Ockham (Occam)’s Razor 
•  William of Ockham (1295-1349) was a Franciscan friar 

who applied the criteria to theology: 
–  “Entities should not be multiplied beyond 

necessity” (Classical version but not an actual quote, 
which is: entia non sunt multiplicanda praeter 
necessitatem) 

–  “The supreme goal of all theory is to make the 
irreducible basic elements as simple and as few as 
possible without having to surrender the adequate 
representation of a single datum of 
experience.” (Einstein) 

•  Requires a precise definition of “simplicity”. 
•  Acts as a bias which assumes that nature itself is simple. 
•  Role of Occam’s razor in machine learning remains 

controversial  (more on CLT course). 



BIAS 
•  More in general, bias is a criterion for preferring a set of hypoteses 

over another 

•  a and b belong to different languages (linear vrs. non-linear 
functions), b and c have a different search bias, since c relaxes 
consistency in favor of simplicity   

 

Here for example we relax the consistency 
criterion  

a c b 
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Ockham (Occam)’s Razor 
•  William of Ockham (1295-1349) was a Franciscan friar 

who applied the criteria to theology: 
–  “Entities should not be multiplied beyond 

necessity” (Classical version but not an actual quote, 
which is: entia non sunt multiplicanda praeter 
necessitatem) 

–  “The supreme goal of all theory is to make the 
irreducible basic elements as simple and as few as 
possible without having to surrender the adequate 
representation of a single datum of 
experience.” (Einstein) 

•  Requires a precise definition of “simplicity”. 
•  Acts as a bias which assumes that nature itself is simple. 
•  Role of Occam’s razor in machine learning remains 

controversial  (more on CLT course). 
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Hypothesis Space (1) 
•  How difficult is learning an hypothesis? It depends 

upon the number of alternatives! In other terms, it 
depends on the DIMENSION OF THE HYPOTHESIS 
SPACE 

•  Learned functions a priori restrict to a given hypothesis 
space, H, of functions h(x) that can be considered as 
possible hypotheses for c(x). 

•  Depending upon the chosen class of hypotheses 
(conjunctive forms, boolean expressions, algebraic 
functions, probabilities..) the hypothesis space can be 
small, large, or infinite!! (E.g. if c(x) is linear function, 
like c(x)=w1x1+w2x2+..wnxn – with xi real-valued  or 
discrete features and wi real-valued coefficients, there 
might be  infinite linear functions that correctly classify 
the examples in an available dataset!)  

•  In inductive learning, the hypothesis space is FINITE. 
But, how big? 



Hypothesis Space of boolean functions 
(1)	
  

•  So	
  how	
  many	
  hypotheses	
  for	
  a	
  boolean	
  funcDon	
  
with	
  n	
  features,	
  each	
  of	
  which	
  can	
  assume	
  the	
  
values	
  0,	
  1	
  or	
  “?”	
  (don’t	
  care)?	
  

•  =number	
  of	
  disDnct	
  truth	
  tables	
  with	
  2n	
  rows	
  is	
  
	
  (remember:	
  there	
  is	
  one	
  truth	
  table	
  for	
  any	
  boolean	
  
funcDon,	
  but	
  infinite	
  number	
  of	
  equivalent	
  logic	
  
expressions)	
  

•  Example	
  n=2	
  	
  (boolean	
  features	
  are	
  x,y)	
  An	
  
hypothesis	
  is	
  a	
  specific	
  truth	
  table,	
  with	
  two	
  
boolean	
  	
  variables.	
  So,	
  |H|=	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

22
n

22
2
= 24 =16



Hypothesis Space of boolean functions 
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  boolean	
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  for	
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  but	
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  number	
  of	
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•  Example	
  n=2	
  	
  (boolean	
  features	
  are	
  x,y)	
  An	
  
hypothesis	
  is	
  a	
  specific	
  truth	
  table,	
  with	
  two	
  
boolean	
  	
  variables.	
  So,	
  |H|=	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

22
n

22
2
= 24 =16



Example	
  

xy	
  	
  	
  	
  h1	
  	
  h2	
  	
  h3	
  	
  h4	
  	
  h5	
  	
  h6	
  	
  h7	
  	
  h8	
  	
  h9	
  	
  h10	
  h11	
  h12………………	
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Hypothesis Space of conjunctive 
functions (2) 

•  Let’s compute |H| for conjunctive functions like small&red 
•  To learn concepts on instances described by n discrete-valued features, consider 

the space of conjunctive hypotheses represented by a vector of n features 
    <f1, f2, … fn> where each fi is either: 

–  ?, a wild card indicating no constraint on the ith feature (= the feature is irrelevant) 
–  A specific value from the domain of the ith feature (ex: color=red) 
–  Ø indicating no value is acceptable (=there are NO objects belonging to the target class 

in the dataset) 
•  Sample conjunctive hypotheses have the following shape (wrt previous 

example): 
–  <big, red, ?>  (equivalent to big&red, or [size=big]&[color=red]) 
–  <?, ?, ?> (most general hypothesis,                                   )  
–  < Ø, Ø, Ø> (most specific hypothesis,                               ) 
 

•  Notation: I can represent both instances and hypotheses as VECTORS, e.g. 
•  x: < small,red,circle>è (size=small)&(color=red)&(shape=circle) 
•  h: <small,?,circle> è IF (size=small)&(color=don’t care)&(shape=circle) 

THEN True 

€ 

∀x, c(x) =1

€ 

∀x, c(x) = 0



Hypothesis Space of conjunctive 
functions (3)	
  

•  How	
  many	
  conjuncDve	
  funcDons?	
  Any	
  feature	
  
can	
  be	
  0,	
  1,	
  always	
  false	
  (indicated	
  with	
  	
  	
  	
  	
  	
  )	
  or	
  
always	
  true	
  (indicated	
  with	
  ?)	
  therefore	
  4n	
  

•  However	
  all	
  hypotheses	
  	
  with	
  at	
  least	
  one	
  
feature	
  equal	
  to	
  	
  	
  	
  	
  	
  are	
  equivalent	
  (they	
  are	
  all	
  
false)	
  therefore	
  |H|=	
  3n+1	
  

•  Example	
  n=2	
  	
  H=	
  	
  	
  	
  	
  	
  ,	
  ?,xy,xy,xy,xy,x?,?y,	
  x?,?y	
  
•  So	
  10	
  possible	
  hypotheses	
  for	
  C(x)	
  

∅

∅

∅
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Criteria to select best hypothesis: 
Generalization 

•  Even with a bias, a ML algorithm may output several 
different hypotheses, all consistent with the learning set. 
How do we choose? 

•  Hypotheses must generalize to correctly classify instances 
not in the training data. 

•  Simply memorizing training examples is a consistent 
hypothesis that does not generalize: 

((small&red&circle)or(large&red&circle))&(not((small & red & triangle) or (large 
& blue & circle)or…)) 

•  Occam’s razor: 
–  Finding a simple hypothesis helps to ensure generalization. 

•  BUT:	
  how	
  do	
  we	
  know	
  that	
  one	
  hyp.	
  is	
  more	
  general	
  than	
  
others? 
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Using the Generality Structure 

•  Given two hypotheses h1 and h2, h1 is more 
general than or equal to h2 (h1≥h2) iff every 
instance that satisfies h2 also satisfies h1. 

•  Given two hypotheses h1 and h2, h1 is (strictly) 
more general than h2 (h1>h2) iff h1≥h2 and it is 
not the case that h2 ≥ h1. 

•  Generality defines a partial order on 
hypotheses. 



Example hypothesis space for conjunctive 
functions (two binary features) ordered by 

generality 
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Ø	
  

T,T	
   T,F	
   F,T	
   F,F	
  

?,F	
  F,?	
   ?,T	
  T,?	
  

?	
  

Here	
  all	
  
hypotheses	
  
with	
  at	
  
least	
  one	
  	
  

“Ø”	
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Other examples of Generality 
•  Conjunctive feature vectors 

–  <?, red, ?> is more general than <?, red, circle>  (remember ?=“any 
value is ok”) 

–  Neither of <?, red, ?> and <?, ?, circle> is more general than the other. 
•  Example: Axis-parallel rectangles in 2-d space 

 

–  A is more general than B 
–  Neither of A and C are more general than the other. 

A 
B 

C 



Digression: What are these rectangles?  
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Suppose X axis is cholesterol and Y is age.  Green points are positive for  
illness  M and each rectangle represents the rule: if A<chol<B AND C<age<D then M 
Therefore (hyper)rectangles are a class of hypotheses represented by ranges. 



Question 

•  Consider h1: <big, red, circle> and  
   h2: <?, blue, ?> 
•  Is h2>h1? 
•  Given two hypotheses h1 and h2, h1 is more 

general than or equal to h2 (h1≥h2) iff every 
instance that satisfies h2 also satisfies h1. 

•  So, is h2>h1? 

41 
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Evaluation of hypotheses 
We need to evaluate how the selected hypothesis 
“approximates” the real (unknown) classification function 
How? We use the training set (a fraction of the original 
classified dataset D that we DID NOT USED during the 
learning phase) 
We need to measure:  
•  Classification accuracy (% of instances classified correctly). 

–  Measured on an independent test data. 
•  Training time (efficiency of training algorithm). 
•  Testing time (efficiency of subsequent classifications, when 

the system is “operative”). 
•  We will devote a lesson to ML systems evaluation 



Summary	
  so	
  far	
  
•  We	
  learned	
  the	
  workflow	
  of	
  a	
  ML	
  learning	
  system	
  	
  
•  We	
  have	
  seen	
  that	
  complexity	
  of	
  learning	
  depends	
  (also)	
  upon	
  the	
  

“shape”	
  of	
  the	
  classificaDon	
  funcDon	
  to	
  be	
  learned	
  
(boolean,algebraic,	
  probabilisDc)	
  and	
  on	
  the	
  complexity	
  of	
  
representaDon	
  of	
  the	
  objects	
  to	
  be	
  classified	
  (how	
  many	
  features?	
  
Boolean,	
  discrete	
  or	
  conDnuous?	
  Are	
  the	
  features	
  related	
  or	
  
independent?)	
  

•  We	
  measured	
  the	
  (a	
  priori)	
  dimension	
  of	
  the	
  hypothesis	
  space	
  for	
  
the	
  case	
  of	
  boolean	
  funcDons	
  and,	
  within	
  boolean	
  funcDons,	
  of	
  
conjuncDve	
  funcDons	
  

•  We	
  also	
  defined	
  the	
  noDon	
  of	
  generality	
  of	
  hypotheses	
  and	
  we	
  
have	
  shown	
  that,	
  for	
  conjuncDve	
  funcDons,	
  we	
  can	
  build	
  the	
  
hypothesis	
  space	
  as	
  a	
  tree	
  structure	
  

•  Generality	
  is	
  important,	
  but	
  the	
  goodness	
  of	
  an	
  hypothesis	
  needs	
  
to	
  be	
  evaluated	
  against	
  an	
  (independent)	
  test	
  set	
  



But	
  how	
  do	
  we	
  learn	
  an	
  hypothesis?	
  

•  We	
  know	
  that	
  hypotheses	
  can	
  have	
  different	
  
shapes,	
  can	
  be	
  finite	
  of	
  infinite,	
  can	
  be	
  
ordered	
  according	
  to	
  generality,	
  can	
  be	
  
evaluated	
  

•  BUT:	
  what	
  about	
  LEARNING	
  a	
  “good”	
  
hypothesis?	
  

•  Let’s	
  start	
  with	
  algorithms	
  (simple	
  algorithms	
  
for	
  conjuncDve	
  learning,	
  to	
  begin..)	
  



Concept	
  (or	
  InducDve)	
  learning	
  

Algorithms	
  to	
  learn	
  boolean	
  
classificaDons	
  



Concept	
  learning	
  (summary	
  so	
  
far)	
  

•  ObjecDve:	
  learn	
  a	
  boolean	
  classificaDon	
  c(x)	
  
for	
  objects	
  

•  Concept	
  learning	
  is	
  a	
  form	
  of	
  supervised	
  
learning:	
  we	
  are	
  given	
  a	
  set	
  D	
  of	
  pairs	
  <x,c(x)>	
  	
  
for	
  which	
  the	
  classificaDon	
  is	
  known.	
  

•  Every	
  object	
  x	
  is	
  described	
  by	
  a	
  set	
  of	
  features	
  
(also	
  called	
  a^ributes):	
  

•  Features	
  are	
  either	
  boolean	
  or	
  discrete-­‐valued	
  

x ∈ X

x : f1,.. fn



Boolean	
  funcDons	
  

•  Concept	
  learning	
  implies	
  learning	
  an	
  
hypothesis	
  h(x)	
  for	
  c(x)	
  

•  Perfect	
  learning	
  is	
  usually	
  impossible,	
  the	
  
objecDve	
  is	
  to	
  learn	
  a	
  “good”	
  approximaDon	
  

•  Consistent	
  learning	
  is	
  when:	
  	
  
∀x ∈ D h(x) = c(x)
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Conjunctive Rule Learning 
•  Conjunctive functions are easily learned by finding all 

commonalities shared by all positive examples. 

•  Must check consistency with negative examples. If 
inconsistent, no conjunctive rule exists.  

 

 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 

Learned rule: red & circle → positive  
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Limitations of Conjunctive Rules 
•  If a concept does not have a single set of 

necessary and sufficient conditions, conjunctive 
learning fails. 
Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 

Learned rule: red & circle → positive  
Inconsistent with negative example #5! 
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Disjunctive Concepts 
•  Concept may be disjunctive (in this case a 

conjunctive hypthesis cannot be found!) 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 

Learned rules:  

small & circle → positive          large & red → positive 

h(x)= (small & circle) or (large & red)  



Concept Learning as Search 
•  Conjunctive hypotheses are a small subset of 

the space of possible boolean functions 
•  We can see conjunctive learning as the task of 

searching the best hypothesis while travelling 
in the search space 

51 
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Generalization Lattice 

< Ø, Ø, Ø> 

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 
 

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr> 

<?, ?, ?> 

Size: {small, big}     Color: {red, blue}     Shape: {circle, square} 

Number of hypotheses = 33 + 1 = 28 

Let’s	
  consider	
  a	
  simpler	
  case	
  wrt	
  previous	
  example,	
  now	
  features	
  are	
  all	
  boolean	
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Algorithm 1: Most Specific Learner 
(Find-S) 

•  Find the most-specific hypothesis (least-general generalization, 
LGG) that is consistent with the training data. 

•  Incrementally update hypothesis h(x) after every positive example, 
generalizing it “just enough” to be consistent with the new 
example (we also say that h(x) “does not satisfies x”). 

•  For conjunctive feature vectors, this is easy: 
      Initialize h = <Ø, Ø,… Ø> 
      For each positive training instance x in D  
             For each feature fi 
                            If the constraint on fi in h is not satisfied by x 
                           If fi in h is Ø 
                                  then set fi in h to the value of fi in x  
                                  else set fi in h to “?” 
      If h is consistent with all negative training instances in D 
           then return h 
           else no consistent hypothesis exists 

Time complexity: 
O(|D| n) 
if n is the number  
of features 

f
i
h ≡ f

i
x



(an odd) Example: learning a user profile 
 

•  We assume there are no errors in D (often not true!) 
•  “Click” is the classification function defined in (0,1) 
      (will the user click on the page?) 

domain	

 platform	

 Browser	

 day	

 screen	

 country	

 Click?	



edu	


com	


com	


org	



Mac	


Mac	


PC	


Unix	



Net3	


NetCom	


IExpl	


Net2	



Lu	


Lu	


Sab	


Gio	



XVGA	


XVGA	


VGA	


XVGA	



America	


America	


Asia	


Europa	



Si	


Si	


No	


Si	



features 

values 
C(x) 

Tr
an

in
g 

se
t  

D
 



Find-S 

h2,3 

h1 

X H 

generality 
h4 

h0 

Training set D Hypohesis space H 
X1=	
  (<edu,mac,Net3,Lun,XVGA,America>,1)	
  	
   h0	
  =	
  <Ø,	
  Ø,	
  Ø,	
  Ø,	
  Ø,	
  Ø>	
  
X2=(<com,mac,Net3,Mar,XVGA,America>1)	
  	
   h1=<edu,mac,Net3,Lun,XVGA,America>	
  
X3=	
  (<com,PC,IE,Sab,VGA,Eur>,0) 	
  	
  

X4=	
  (<org,Unix,Net2,Mer,XVGA,America>,1)	
  	
  	
  
h2=<?,mac,Net3,?,XVGA,America>	
  
h3=<?,mac,Net3,?,XVGA,America>	
  
h4=<?,?,?,?,XVGA,America>	
  

1=	
  posiDve,	
  c(x)=true;	
  0=negaDve,	
  c(x)=false	
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Properties of Find-S 
•  For conjunctive feature vectors, the most-specific hypothesis is 

unique and found by Find-S (if enough examples are 
provided). 

•  If the most specific hypothesis is not consistent with the 
negative examples, then there is no consistent function in the 
hypothesis space, since, by definition, it cannot be made more 
specific and retain consistency with the positive examples. 

•  Notice however that FIND S does not consider negative 
examples! (consistency is checked for at the end) 

•  For conjunctive feature vectors, if the most-specific hypothesis 
is inconsistent, then the target concept must be disjunctive. 
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Issues with Find-S 
•  Given sufficient training examples, does Find-S converge to a 

correct definition of the target concept (assuming it is in the 
hypothesis space)? 

•  How do we know when the hypothesis has converged to a 
correct definition? 

•  Why prefer the most-specific hypothesis? Are more general 
hypotheses consistent? What about the most-general 
hypothesis? What about the simplest hypothesis? 

•  If the least general generalization LGG is not unique 
–  Which LGG should be chosen? 
–  How can a single consistent LGG be efficiently computed or 

determined not to exist? 
•  What if there is noise in the training data and some training 

examples are incorrectly labeled? 
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Effect of Noise in Training Data 
•  Frequently realistic training data is corrupted by errors 

(noise) in the features or class values. 
•  Such noise can result in missing valid generalizations. 

–  For example, imagine there are many positive examples like #1 
and #2, but out of many negative examples, only one like #5 that 
actually resulted from a error in labeling. 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 
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Algorithm 2: Version Space 

•  Given an hypothesis space, H, and training data, 
D, the version space is the complete subset of H 
that is consistent (compatible)with D. 

•  The version space can be naively generated for 
any finite H by enumerating all hypotheses and 
eliminating the inconsistent ones. 

•  Can one compute the version space more 
efficiently than using enumeration (considering all 
hypothesis space and ordering hi?) 
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Version Space with S and G 
•  The version space can be represented in a more compact way 

by maintaining two boundary  sets of hypotheses, S, the set of 
most specific consistent hypotheses, and G, the set of most 
general consistent hypotheses: 

 
•  S and G represent the entire version space via its boundaries in 

the generalization lattice: 

)]},([),(|{ DsConsistentssHsDsConsistentHsS ʹ′∧ʹ′>∈ʹ′¬∃∧∈=
)]},([),(|{ DsConsistentggHgDgConsistentHgG ʹ′∧>ʹ′∈ʹ′¬∃∧∈=

version 
space 

G 

S 
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Version Space Lattice 

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr> 

< Ø, Ø, Ø> 

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 
 

<?, ?, ?> 

Size: {sm, big}     Color: {red, blue}     Shape: {circ, squr} 

<<big, red, squr>, 1> 
<<sm, blue, circ>, 0> 

Color Code: 
G 
S 

other VS 
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Candidate Elimination (Version Space) 
Algorithm 

Initialize G to the set of most-general hypotheses in H 
Initialize S to the set of most-specific hypotheses in H 
For each training example, d, do: 
       If d is a positive example then: 
             Remove from G any hypotheses that do not match d 
             For each hypothesis s in S that does not match d 
                    Remove s from S 
                    Add to S all minimal generalizations, h, of s such that: 
                             1)  h matches d 
                             2) some member of G is more general than h 
              Remove from S any h that is more general than another hypothesis in S 
       If d is a negative example then: 
             Remove from S any hypotheses that match d 
             For each hypothesis g in G that matches d 
                    Remove g from G 
                    Add to G all minimal specializations, h, of g such that: 
                             1) h does not match d 
                             2) some member of S is more specific than h 
              Remove from G any h that is more specific than another hypothesis in G 
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Sample VS Trace 
S= {< Ø, Ø, Ø>}; G= {<?, ?, ?>} 
SIZE: (big,small) COLOR: (red, blue) SHAPE: (circ, square, triangle) 
 
Positive: X: <big, red, circle> 
Nothing to remove from G (X is compatible with G, G would “accept” X) 
Minimal generalization of only S element is <big, red, circle> which is more 
specific than G. 
S={<big, red, circle>}; G={<?, ?, ?>} 
 
Negative: Y: <small, red, triangle> 
Nothing to remove from S.  (Y is compatible with S={<big, red, circle>}, S 
would reject Y) 
Minimal specializations of <?, ?, ?> that would reject the negative example 
are: <big, ?, ?>,  <?, blue, ?>, <?, ?, circle>, <?, ?, square> but some are not 
more general than some element of S hence the final set G is  <big, ?, ?>, 
<?, ?, circle> 
S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>} 
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Sample VS Trace (cont) 
S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>} 
 
Positive: Z: <small, red, circle> 
Remove <big, ?, ?> from G (it would erroneously reject the example) 
Minimal generalization of S: <big, red, circle> that would accept the positive 
example is <?, red, circle> 
S={<?, red, circle>}; G={<?, ?, circle>} 
 
Negative: N: <big, blue, circle> 
Nothing to remove from S  (S would correctly reject the example) 
G: Minimal specializations of  <?, ?, circle> that would reject the example 
are: <small, ? circle>, <?, red, circle>, but one is not more general than some 
element of S. 
S={<?, red, circle>}; G={<?, red, circle>} 
 
S=G; Converged! 
 



Example 2 (a generic 3-monomial conjunctive function) 

TRUE 

  zzyyxx

xyzzxyzyxzyxyzxzyxzyxzyx 

FALSE 

xzxyzxyxyzyxzyyxzyzxzyzxyx

< (x, y−),+ >

>−< ),,,( zyx

S0 

S1 

G0 

G1 

Note	
  
that	
  x	
  
and	
  z	
  
are	
  
NOT	
  
compa
Dble	
  
with	
  
S1!!	
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Properties of VS Algorithm 
•  S summarizes the relevant information in the positive 

examples (relative to H) so that positive examples do not need 
to be retained. 

•  G summarizes the relevant information in the negative 
examples, so that negative examples do not need to be 
retained. 

•  Result is not affected by the order in which examples are 
processes but computational efficiency may. 

•  Positive examples move the S boundary up; Negative 
examples move the G boundary down. 

•  If S and G converge to the same hypothesis, then it is the only 
one in H that is consistent with the data. 

•  If S and G become empty (if one does the other must also) 
then there is no hypothesis in H consistent with the data. 
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Correctness of Learning 

•  Since the entire version space is maintained, given a 
continuous stream of noise-free training examples, 
the VS algorithm will eventually converge to the 
correct target concept if it is in the hypothesis space, 
H, or eventually correctly determine that it is not in 
H. 

•  Convergence is correctly indicated when S=G.  
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Computational Complexity of VS 
•  Computing the S set for conjunctive feature vectors is 

linear in the number of features and the number of 
training examples. 

•  Computing the G set for conjunctive feature vectors 
is exponential in the number of training examples 
in the worst case. 

•  In more expressive languages (than conjunctive 
rules), both S and G can grow exponentially. 

•  The order in which examples are processed can 
significantly affect computational complexity. 



Before we start presenting new (and 
more practical) ML algorithms.. 
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A number of relevant issues that apply 
to any ML problem/algorithm 

1.  Feature selection and object representatzion 
2.  Best order to present training examples  
3.  Multiple categories 

70 



1. Feature Selection 

•  Many factors affect the success of machine 
learning on a given task.  

•  The representation and quality of the 
example data is first and foremost. 

•  In theory, having more features should result in 
more discriminating power.  

•  However, practical experience with machine 
learning algorithms has shown that this is not 
always the case. 
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The importance of features (attributes) 
selection 

•  Reduce the cost of learning by reducing the 
number of attributes. 

•  Provide better learning performance compared 
to using full attribute set. 



Feature selection is task dependent 
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To classify lions and frogs in the appropriate category,  
a simple color histogram could perform very well:   
f=color 



Feature selection is task dependent 
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To classify horses and lions, more features are needed.  
Some would be useless, e.g Color, Number-of-legs..since 
they would not help to differentiate the 2 categories 



Feature selection methods 

  There are two approach for attribute selection. 
•  Filter approach attempt to assess the merits of 

attributes from the data, ignoring learning 
algorithm. 

•  Wrapper approach the selection of a subset of 
attributes is done using the learning algorithm 
as a black box. 



Filtering 
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Filtering 

•  A feature fi is said to be strongly relevant to the 
target concept(s) if the probability distribution 
of the class values, given the full feature set, 
changes when fi is removed.  

 
•  A feature fi  is said to be weakly relevant if it is 

not strongly relevant and the probability 
distribution of the class values, given some subset 
S (containing fi ) of the full feature set, does not 
changes when fi  is removed. 
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Example: want to learn chair(x)  
(chair(x)=true if x=chair) 

78 

Prior probability of instances in D 
P(chair)=8/16=0,5 
P(table)=P(not(chair))=8/16=0,5 
So we have the maximum uncertainty. 
If we classify at random, our  
probability of error is 50% 

Consider the feature: 
4-legs (boolean) 
 

x=(color,	
  has-­‐back,4-­‐legs)	
  	
  (3	
  boolean	
  features	
  to	
  describe	
  instances)	
  



Example 
•  If we group instances according to the 4-legs 

feature, we have : 
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4-­‐legs=true	
  

4-­‐legs=false	
   Grouping instances 
according to 4-legs does 
not vary the probability 
distribution of the 2 
categories: it remains 0,5!! 



What about other features? 
•  “4-legs” is not a good feature to correctly classify tables and 

chairs!! It leaves you with the same uncertainty (0.5) 
•  Instead “has-back” would be enough to perfectly separate the 

2 categories (given the trainig set of instances of the example) 
•  In fact has-back=true would group only chairs, has-

back=false would group only tables) 

80 
Has_back=yes	
   Has_back=no	
  



Are	
  we	
  sure?	
  

•  So,	
  given	
  our	
  data,	
  we	
  could	
  use	
  the	
  simple	
  
rule:	
  IF	
  has-­‐back	
  =	
  yes	
  THEN	
  chair(x)=YES	
  

•  But	
  what	
  about	
  “unseen”	
  instances?	
  



This	
  was	
  simple	
  example..	
  

•  In	
  previous	
  example,	
  one	
  feature	
  was	
  useless,	
  
the	
  other	
  was	
  100%	
  useful	
  (could	
  use	
  that	
  
single	
  feature	
  to	
  decide	
  the	
  correct	
  class)	
  

•  In	
  general,	
  the	
  problem	
  is	
  to	
  automaDcally	
  
analyze	
  all	
  features	
  and	
  order	
  them	
  according	
  
to	
  the	
  REDUCTION	
  OF	
  UNCERTAINTY	
  we	
  get	
  
when	
  grouping	
  our	
  dataset	
  according	
  to	
  the	
  
values	
  of	
  each	
  instance	
  



Measuring the “probability 
distribution”: Entropy filtering 

•  Ranking according to entropy gain of attributes. 
•  Entropy for given set of data with 2 classes can be 

defined as 
 
 
     
•  p(j) is the probability of class j, estimated by 

the relativefrequency of elements classified as 
“j” in the training set 

 



Example	
  
•  Learning	
  set	
  D	
  includes	
  5	
  istances,	
  2	
  classified	
  as	
  posiDves	
  3	
  

negaDves	
  
•  Probability	
  of	
  posiDve	
  (esDmate)	
  p+=2/5	
  
•  Probability	
  of	
  negaDve	
  (esDmate)	
  p-­‐=3/5	
  
•  Entropy	
  of	
  the	
  training	
  set	
  is:	
  
•  E(D)=-­‐(2/5)log2(2/5)-­‐(3/5)log2(3/5)	
  =	
  	
  

(0.4)x1.32	
  +	
  (0.6)x0.737=	
  0.528+0.44=0.97	
  
•  Note:	
  if	
  instances	
  in	
  D	
  are	
  equally	
  distributed	
  between	
  posiDve	
  

and	
  negaDve,	
  Entropy	
  is	
  1	
  
•  E(D)=	
  -­‐0.5log(0.5)-­‐0.5log(0.5)=0.5+0.5=1	
  
•  If	
  all	
  instances	
  are	
  	
  classified	
  THE	
  SAME	
  8all	
  are	
  posiDve	
  or	
  all	
  are	
  

negaDve)	
  Entropy	
  is	
  0	
  
•  E(D)=	
  -­‐1log(1)	
  =0	
  	
  



Entropy	
  Filtering	
  
After classification using one specific feature j, we can 
calculate the gain of feature j: 
 
 
•  where ni/n is an estimate of the probability that the considered 

feature has value i. ni is the number of instances in the learning 
set D having the value of feature j equal to the value i 
 (e.g. for the chairs case, there are 8/16 instances with feature  
 4-legs=yes, and 8/16 with 4-legs=no) 

•  Entropy(i) is the entropy of the subset Di with fj=i 
•  Larger value of gain better attribute. 
 



Wrt previous example of tables and chairs 

•  E=-0.5log2(0.5) -0.5log2(0.5)= 1 (initial entropy, 
since there are 50% tables, 50% chairs) 

•  If we classify according to feature 4-legs: 
–  E(4-legs=true)=1 since out of 12 objects with 4 legs, we 

have 6 chairs and 6 tables  
–  E(4-legs=false)=1 since out of 4 objects without 4 legs, 

we have 2 chairs and 2 tables  
–  GAIN=1-((12/16) E(4-legs=true) +(4/16) E(4-

legs=false))=1-1=0   NO GAIN!! 
•  If we instead classify according to has-back:  

–  E(has-back=true)=0  (they are all chairs) 
–  E(has-back=false)=0  (they are all tables) 
–  Hence GAIN=1-0=1   
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In previous example we had two extremes: perfectly 
useless (4-legs) and perfectly useful (has-back) features 

At each step, choose 
the feature that 
“reduces entropy” 
most. Work towards 
“node purity”. 

Pure nodes are those 
including instances with 
a unique classification 
(e.g. all tables) 

 

All	
  the	
  
data	
  

f1	
  

f2	
  

Choose	
  f1	
  

Choose	
  f2	
  

Common case is that entropy changes, but not from 1 to 0!! 
Ex. black instances positive, white are negative 

Partition the data set in two groups according to f1=1: positive and negative 

e.g.	
  in	
  this	
  set	
  we	
  group	
  
all	
  instances	
  with	
  f1=0	
  	
  

f1=1	
   f1=0	
  

Now	
  we	
  parDDon	
  according	
  to	
  f2	
  



Summary	
  on	
  filtering	
  

•  Filtering	
  is	
  a	
  method	
  to	
  order	
  features	
  according	
  
to	
  relevance	
  	
  

•  The	
  Entropy	
  filtering	
  order	
  the	
  features	
  according	
  
to	
  informaDon	
  gain	
  

•  Perfect	
  features	
  are	
  those	
  with	
  gain	
  1,	
  useless	
  
features	
  are	
  those	
  with	
  gain	
  0,	
  most	
  features	
  are	
  
somewhere	
  in	
  between	
  

•  Note	
  that	
  filtering,	
  as	
  we	
  said	
  iniDally,	
  only	
  looks	
  
at	
  the	
  distribuDon	
  of	
  feature	
  values	
  in	
  the	
  
dataset,	
  NOT	
  at	
  the	
  machine	
  learning	
  algorithm	
  



Wrappers 

•  Employs the target learning algorithm to 
evaluate feature sets 

•  Uses an induction algorithm along with a 
statistical re-sampling technique such as cross-
validation to estimate the final accuracy of 
feature subsets 
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Wrappers 
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Wrappers 

Say	
  we	
  have	
  features	
  A,	
  B,	
  C	
  and	
  classifier	
  M.	
  We	
  want	
  to	
  predict	
  C(X)	
  given	
  the	
  
smallest	
  possible	
  subset	
  of	
  {A,B,C},	
  while	
  achieving	
  maximal	
  performance	
  
(accuracy)	
  

	
  	
  	
  	
  	
  	
  	
  FEATURE	
  SET 	
  	
  CLASSIFIER	
  	
   	
  PERFORMANCE	
  

	
  {A,B,C} 	
   	
  M 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  98%	
  

	
  {A,B} 	
   	
  M 	
   	
   	
  98%	
  

	
  {A,C}	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  M 	
   	
   	
  77%	
  

	
  {B,C}	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  M 	
   	
   	
  56%	
  

	
  {A} 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  M 	
   	
   	
  89%	
  

	
  {B} 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  M 	
   	
   	
  90%	
  

	
  {C} 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  M 	
   	
   	
  91%	
  

	
  {.} 	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  M 	
   	
   	
  85%	
  

The	
  third	
  column	
  is	
  the	
  number	
  of	
  
correctly	
  classified	
  istances	
  by	
  the	
  
classifier	
  M	
  when	
  using	
  the	
  set	
  of	
  
features	
  in	
  column1	
  

When	
  zero	
  features	
  are	
  used,	
  the	
  
classifier	
  performs	
  a	
  random	
  guess.	
  In	
  
this	
  case,	
  P=85%	
  means	
  that	
  the	
  prior	
  
probability	
  of	
  C(X)=true	
  is	
  0,85	
  



Wrappers (2) 

The	
  set	
  of	
  all	
  subsets	
  is	
  the	
  power	
  set	
  and	
  its	
  size	
  is	
  2|V|	
  (V=	
  number	
  of	
  features).	
  
Hence	
  for	
  large	
  V	
  we	
  cannot	
  do	
  this	
  procedure	
  exhaus3vely;	
  instead	
  we	
  rely	
  on	
  
heuris3c	
  search	
  of	
  the	
  space	
  of	
  all	
  possible	
  feature	
  subsets.	
  

{}	
  85%	
  

{A}	
  89%	
  

{B}	
  90%	
  

{A,B}	
  98%	
  

{A,B,C}98%	
  

{C}	
  91%	
  

{A,C}	
  77%	
  

{B,C}	
  56%	
  

start	
  

{A,B}98%	
  

{B,C}56%	
  

{A,C}77%	
  
end	
  

this	
  is	
  the	
  esDmate	
  of	
  prior	
  
probability	
  of	
  C(X)=true	
  



Wrappers: Hill climbing 

A common example of  heuristic search is hill climbing: 
keep adding features one at a time until no further 
improvement can be achieved. 

We	
  start	
  with	
  an	
  empty	
  set	
  of	
  a^ributes.	
  At	
  each	
  step	
  k,	
  we	
  consider	
  all	
  possible	
  	
  
combinaDons	
  of	
  k	
  a^ributes.	
  f(v)	
  is	
  any	
  evaluaDon	
  funcDon	
  (e.g.,	
  precision)	
  

v
k

!

"
#
$

%
&
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Hill Climbing 

{}	
  85	
  

{A}	
  89	
  

{B}	
  90	
  

{A,B}	
  98	
  

{A,B,C}98	
  

{C}	
  91	
  

{A,C}	
  77	
  

{B,C}	
  56	
  

start	
  

{A,B}98	
  

{B,C}56	
  

{A,C}77	
  
end	
  

Start with empty set of attributes  
Step 1: with first expansion (add one attribute in each node) f(v’)>f(v) for all nodes 
Step 2: node C is expanded first (since had highest perf), but condition is not met, so  
backtrack to second best (B) 
Step 3: B is expanded and nodes A,B and B,C are generated; A,B is the best 
Step 4: A,B is expanded but  condition is not met; OUTPUT is {A,B} 



Empty	
  subset	
  of	
  a^ributes	
  

Full	
  set	
  of	
  a^ributes	
  

Ex:	
  A^ribute	
  tree	
  with	
  4	
  binary	
  a^ributes	
  (=	
  features)	
  

NOTE:	
  terms	
  “ATTRIBUTE”	
  and	
  “FEATURE”	
  can	
  be	
  used	
  interchangeably.	
  Same	
  meaning!	
  



A number of relevant issues that apply 
to any ML problem/algorithm 

1.  Feature selection and object representation 
2.  Best order to present training examples  
3.  Multiple categories 
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Best way to select examples: Active 
Learning 

•  In active learning, the system is responsible for selecting 
good training examples and asking a teacher (oracle) to 
provide a class label. 

•  Goal is to minimize the number of examples required 
to learn an accurate concept description. 

•  The general idea is to select the training examples in a 
“smart” way 

•  Note: only applicable if we have lots of examples, target 
is to avoid loosing time with examples which are less 
useful (e.g. too similar to already analyzed ones), OR if 
we need the help of an expert to label examples in the 
appropriate class (experts have a cost!) 



Toy Example: 1D classifier	
  

•  ObjecDve:	
  learning	
  a	
  threshold	
  funcDon	
  (if	
  x>w	
  then	
  true	
  else	
  
false).	
  The	
  threshold	
  w	
  is	
  unknown	
  ..	
  It	
  is	
  what	
  we	
  want	
  to	
  
learn	
  

•  Example:	
  we	
  want	
  to	
  learn	
  the	
  body	
  mass	
  index	
  above	
  which	
  
there	
  is	
  a	
  high	
  risk	
  of	
  diabetes	
  

•  To	
  train	
  the	
  system	
  we	
  need	
  to	
  “label”	
  a	
  training	
  set	
  (we	
  need	
  
to	
  idenDfy	
  people	
  with	
  and	
  without	
  diabetes,	
  and	
  then	
  
measure	
  their	
  BMI).	
  	
  

•  The	
  number	
  of	
  examples	
  N	
  depends	
  on	
  the	
  number	
  of	
  
possible	
  values	
  of	
  x	
  (possibly	
  discreDzed).	
  For	
  the	
  BMI,	
  values	
  
go	
  from	
  10	
  to	
  40	
  (N=30).	
  	
  



Toy Example: 1D classifier 

x x x x x x x x x x 

Naïve method: choose points to label at random on line (choose 
patients from a record database at random) 

•  Requires O(N) training data to find underlying classifier 

Better method: binary search for transition between 0 and 1 
•  Requires O(log N) training data to find underlying classifier 
•  Exponential reduction in training data size! 

Goal: given the training set, find transition between  
0 and 1 labels (e.g. find w)  in minimum steps 

0 0 0 0 0 1 1 1 1 1 

w 



Active learning: choose labeled 
examples 
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Active learning strategies 
•  Uncertainty sampling: label those points for which the current model 

is least certain as to what the correct output should be (if model is 
probabilistic) 

•  Query by committee: a variety of models are trained on the current 
labeled data, and vote on the output for unlabeled data; label those 
points for which the "committee" disagrees the most (most 
complex cases) 

•  Expected model change: label those points that would most change 
the current model 

•  Expected error reduction: label those points that would most reduce 
the model's generalization error 

•  Variance reduction: label those points that would minimize output 
variance, which is one of the components of error 
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A common method is: take the 
example that “mostly differs” from 

those seen so far 
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Typical heuristics for active learning 
•  Start with a pool of unlabeled data 
•  Pick a few points at random and get their labels 
•  Repeat 

–  Pick the unlabeled point that is closest to the boundary 
(or most uncertain, or most likely to decrease overall 
uncertainty,...) 
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Knowing the label of the first 
two instances is more helpful 
at determining the positive/negative 
boundary than the third instance. 

1	
  

2	
  

3	
  
Which of the following 
instances would be 
an interesting example?  



A number of relevant issues that apply 
to any ML problem/algorithm 

1.  Feature selection and object representatzion√ 
2.  Best order to present training examples √ 
3.  Multiple categories 
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Learning for Multiple Categories 
•  What if the classification problem is not concept learning and involves 

more than two categories (e.g. select among several possible 
illnesses, given the symptoms)? 

•  Can treat as a series of concept learning problems (e.g. we use n 
independent classifiers), where for each classifier Ci, all                                

 are treated as positive and all other instances in categories Cj, j≠i are 
treated as negative (one-versus-all). 

•  This will assign a unique category to each training instance but may 
assign a novel instance to zero or multiple categories. 

•  If the binary classifier produces confidence estimates (e.g. based on 
voting), then a novel instance can be assigned to the category with the 
highest confidence. 

€ 

x ∈D, s.t. ci(x) =1



Example 
•  Classifier 1: red or 

not-red 
•  Classifier 2: blue or 

not-blue 
•  Classifier 3: yellow 

or not-yellow 
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