
Machine	
 Learning	

Recap	
 of	
 main	
 issues/phases	

Recap: Phases/problems in
designing a ML algorithm

1.  Modeling the domain objects
2.  Choosing a learning experience
3.  Modeling the target function
4.  Defining a Learning Algorithm
5.  Performance Evaluation

2

Example : recognizing lions and
frogs

1. Representation: How do we
represent (model) our objects?

•  Simple: color! (e.g. a bitmap)
•  Less simple: silhouette

4

2. From what experience?
Types of learning:
•  Supervised learning
•  Unsupervised learning
•  Reinforcement learning

5

Learning paradigms
•  Supervised	
 learning:	
 someone	
 tells	
 you	
 what	
 to	
 do	
 for	
 a	

number	
 of	
 example	
 cases.	
 For	
 example,	
 the	
 system	
 is	

provided	
 with	
 a	
 dataset	
 of	
 images	
 already	
 classified	
 (cats,	

dogs,	
 frogs,	
 lions..)	
 an	
 must	
 learn	
 which	
 features	
 can	
 help	

to	
 disDnguish	
 between	
 types;	

•  Unsupervised:	
 There	
 is	
 no	
 “teacher”.	
 System	
 must	
 learn	

“regulariDes”	
 in	
 the	
 data.	
 For	
 example,	
 being	
 able	
 to	
 group	

users	
 according	
 to	
 their	
 tastes,	
 in	
 a	
 	
 restaurant	

recommendaDon	
 task	

•  Reinforcement	
 learning:	
 learning	
 by	
 doing.	
 No	
 teacher,	
 but	

some	
 target	
 objecDve.	
 System	
 must	
 learn	
 the	
 best	
 strategy	

towards	
 the	
 target.	
 For	
 example,	
 a	
 robot	
 moving	
 in	
 a	

hosDle	
 environment	
 may	
 learn	
 from	
 errors	
 and	

achievements.	
 	

6

Supervised learning
•  Either an

“expert” (e.g. ask
someone to
manually classified
examples) or some
available database
of already classified
examples

7

è	

è	

lion

frog	

Unsupervised learning
•  No examples are

available. The
learner must be able
to identify
distinguishing
features that
differentiate the
various classes

•  Note: system does
not learn who is a
frog and who is a
lion, but only to
assign an image to
cluster 1 or cluster 2

8

Reinforcement learning
•  No examples are

available, but some
function is provided
to associate a
reward (or
punishment) to a
good (bad) move

9 9

Frog!!	

WRONG!!!!	

Machine	
 learning	
 types	
 of	
 tasks	

•  Classifica3on/categoriza3on:	
 given	
 an	
 object,	
 learn	
 to	
 assign	
 this	
 object	

to	
 a	
 category	
 (chosen	
 from	
 a	
 pre-­‐defined	
 set)	
 or	
 to	
 “similarity”	
 classes	
 (not	

known	
 a	
 priori)	

–  Image	
 recogniDon:	
 given	
 a	
 set	
 of	
 images	
 and	
 	
 a	
 set	
 of	
 categories	
 (e.g.	
 dogs,	

cats,	
 lions,	
 frogs..)	
 assign	
 images	
 to	
 the	
 appropriate	
 category	

–  Grass	
 grubs	
 danger:	
 given	
 a	
 set	
 of	
 climaDc	
 condisDons	
 etc.	
 determine	
 wether	

it	
 is	
 advisable	
 or	
 not	
 to	
 use	
 pesDcides	
 (categories	
 are	
 “advisable”	
 “not	

advisable”)	

–  Medical	
 diagnosis:	
 given	
 a	
 set	
 of	
 possible	
 illnesses..	

•  Problem	
 solving:	
 given	
 a	
 task,	
 learn	
 a	
 strategy	
 (or	
 adapDve	
 strategy)	
 to	

perform	
 it	

–  Given	
 an	
 unknown	
 environment,	
 learn	
 to	
 explore	
 it	
 (robot	
 on	
 Mars)	

–  Given	
 a	
 physical	
 architecture	
 of	
 a	
 robot,	
 learn	
 a	
 strategy	
 (set	
 of	
 moves)	
 to	
 fly	

(run,	
 swim..)	

–  Self-­‐	
 driving	
 car:	
 given	
 an	
 environment	
 with	
 obstacles,	
 drive	
 from	
 X	
 to	
 Y	

stopping	
 and	
 turning	
 as	
 appropriate	

Summary
1.  Machine learning “general” tasks: classification,

problem solving
2.  Learning paradigms: supervised, unsupervised,

reinforcement
3.  Sub-problems:

–  representation: how to represent domain objects and
the target function

–  algorithm selection: how to learn the target function
–  evaluation: how to test the performance of the learner

11

Let’s	
 start!!	

12

Inductive Classification

Machine learning tasks

•  Classification
•  Problem Solving

– Classification/categorization: the set of categories is
given (e.g. lion, frog)

– Classification/clustering: the set of categories is not
known (we need to “cluster” instances by similarity)

–  First case is TRAINED or SUPERVISED
–  Second is UNSUPERVISED

13

Supervised categorization:
definition

•  Given:
–  A description of an instance (=the entities we want to classify),

x∈X, where X is the instance language or instance space (e.g.
a way of representing instances).

–  A fixed (known) set of categories: C={c1, c2,…cn}
•  Determine:

–  The category of x: c(x)∈C, where c(x) is a classification
function c: XàC whose domain is X and whose range is C.

–  If c(x) is a binary function C={0,1} ({true,false}, {positive,
negative}) then it is called a concept (and we talk about
CONCEPT LEARNING, or INDUCTIVE LEARNING)

–  In inductive learning, the system tries to induce a
GENERAL CLASSIFICATION RULE from a set of
available classified examples

15

Definiton of the supervised
classification task:

•  A training example is an instance x∈X, paired
with its correct category c(x): <x, c(x)> for
an unknown categorization function, c(x).

•  Usually, x is represented by a number of features
(more precisely, a feature vector x:<x1,x2..xn>)

•  Given a set of training examples, D (named
training set or learning set)

•  Find a hypothesized categorization function, h(x),
such that:)()(:)(, xcxhDxcx =∈><∀

Consistency: the hypothesis function must be
consistent with the learning set

Don’t	
 get	
 confused!	

•  C(x)	
 is	
 a	
 classificaDon	
 funcDon,	
 that	
 we	
 aim	
 to	
 learn	
 with	
 a	
 ML	

algorithm	

•  When	
 given	
 an	
 object	
 x,	
 C(x)	
 always	
 returns	
 the	
 right	
 classificaDon	

•  Unfortunately,	
 perfect	
 learning	
 is	
 impossible	
 in	
 the	
 vast	
 majority	
 of	

cases!	
 We	
 cannot	
 learn	
 C(x)	

•  That’s	
 why	
 we	
 talk	
 about	
 hypotheses	
 h(x):	
 the	
 target	
 is	
 to	
 learn	
 a	

funcDon	
 h(x)	
 which	
 approximates	
 at	
 best	
 the	
 real	
 (unknown)	

funcDon	

•  How	
 do	
 we	
 know	
 how	
 good	
 is	
 a	
 specific	
 h(x)??	
 We	
 actually	
 don’t..	

We	
 can	
 only	
 ESTIMATE	
 the	
 goodness,	
 using	
 a	
 fragment	
 of	
 our	

available	
 classified	
 data,	
 named	
 the	
 test	
 set	
 T.	
 	

•  However,	
 in	
 selecDng	
 our	
 data	
 for	
 learning	
 and	
 tesDng,	
 we	
 must	
 be	

careful..	
 	

•  So	
 we	
 are	
 ready	
 for	
 a	
 more	
 “formal”	
 statement:	
 	

Inductive Learning Hypothesis
•  Any function that is found to approximate the target concept

well on a sufficiently large set of training examples will also
approximate the target function well on unobserved examples.

•  Assumes that the training and test examples are drawn
independently from the same underlying distribution
(IID).

•  What we are saying here is that 1) we need “enough” data;
2)data must be representative of the domain

•  However this is very vague (what is “well”? What is
“sufficiently large”?)

•  Additional assumptions are necessary about the target concept
and the notion of “approximating the target function well on
unobserved examples” should be defined appropriately (cf.
computational learning theory).

Workflow of a Supervised Classifier

18

18

Data	
 on	
 the	
 domain	

Machine	
 learning	
 	

Algorithm	

(classifier)	

ClassificaDon	
 Model	

Performance	

evaluaDon	

the algorithm
to learn C(x)

An hypothesis
h(x) for C(x)

Training set
<x,C(x)>

Test set
<x,?>

How good is
h(x)?

Available	
 classified	
 data	
 D	
 are	
 split	
 in	
 learning	
 set	
 L	
 and	
 test	
 set	
 T.	
 	
 L	
 is	
 used	
 to	
 train	

the	
 classifier	
 (=ML	
 algorithm).	
 The	
 output	
 of	
 learning	
 is	
 an	
 hypothesis	
 funcDon	
 h(x),	
 i.e.,	

the	
 Classifica*on	
 Model.	
 To	
 verify	
 how	
 good	
 is	
 h(x)	
 we	
 use	
 it	
 to	
 classify	
 examples	
 in	
 the	

Test	
 set	
 T.	
 	
 The	
 error	
 rate	
 is	
 esDmated	
 by	
 the	
 number	
 of	
 cases	
 in	
 which	
 c(x)≠h(x)	
 for	
 x	
 in	
 T	
 	

19

A Sample Concept Learning Problem
•  Instance language: <size, color, shape>

–  size ∈ {small, medium, large}
–  color ∈ {red, blue, green}
–  shape ∈ {square, circle, triangle

•  C = {positive, negative}
•  D:

Instances Size Color Shape C(x)
x1 small red circle positive

x2 large red circle positive

x3 small red triangle negative

x4 large blue circle negative

This	
 means	
 that	
 every	

instance	
 is	
 represented	

by	
 a	
 set	
 of	
 a^ributes,	

or	
 features,	
 each	
 taking	
 	

values	
 in	
 a	
 finite	
 set	

	

Training	

set	

LANGUAGE:	
 The	
 name	
 and	

values	
 of	
 features	
 used	
 to	

represent	
 domain	
 objects	
 	

Hypothesis representation: which set of functions
can we use to represent C(x)?

•  As we said, may representations are possible for C(x).
•  For example, here we can represent an hypothesis h(x) for

C(x) e.g. with a boolean expression, or a rule, e.g.
•  If (color=red)&(shape=circle) THEN C=positive
•  Or equivalently: red&circle (if boolean expr. is true, then

c(x)=1)

20

Example Size Color Shape Category
1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

Do	
 we	
 have	
 any	
 possible	
 choice	
 for	

c(x)?	

•  Of	
 course	
 NO!!	

•  In	
 general,	
 we	
 can	
 choose	
 boolean,	
 algebraic	
 or	

probabilisDc	
 funcDons,	
 BUT	
 possible	
 choices	

depend	
 on	
 the	
 domain	
 objects	
 and	
 their	

complexity	
 of	
 representaDon	
 (e.g.	
 if	
 features	
 are	

dependent	
 or	
 independent,	
 if	
 they	
 are	
 boolean	
 –
or	
 can	
 approximate	
 with	
 a	
 boolean-­‐	
 discrete,	
 or	

conDnuous,	
 etc.)	

•  In	
 induc3ve	
 learning	
 we	
 restrict	
 to	
 boolean	
 or	

discrete	
 feature	
 representa3on,	
 and	
 boolean	

func3ons	
 for	
 c(x)	

22

Hypothesis Selection
•  Many hypotheses are usually consistent with the

training data (number of equivalent boolean
expressions is infinite).
–  red & circle
–  (small & circle) or (large & red)
–  (small & red & circle) or (large & red & circle)
–  not [(red & triangle) or (blue & circle)]
–  not [(small & red & triangle) or (large & blue & circle)]

Notice that the first is the conjunctive normal form CNF

You	
 should	
 know	
 (but	
 just	
 in	
 case..)	

 True	
 table	
 is	
 unique	

Infinite	

number	
 of	

equivalent	

boolean	

expressions	

So	
 how	
 to	
 choose	
 c(x)?	
 	

•  Bias
–  Bias is any criterion other than “consistency with the

training data” that is used to select alternative hypotheses.
–  E.g: “preferring a conjunctive form” is an example of bias.

For example, we decide to learn a boolean function, but
among the possible boolean functions, we select
conjunctive forms.

25

Inductive Bias
•  A hypothesis space that does not include all possible classification

functions on the instance space is said to incorporates a bias in the
type of classifiers it can learn (e.g. restricting to conjunctive functions
is a bias in boolean concept learning)

•  Any means that a learning system uses to choose between two functions
that are both consistent with the training data is called inductive bias.

•  Inductive bias can take two forms:
–  Language bias: The language for representing concepts defines a

hypothesis space that does not include all possible functions (e.g.
linear vrs boolean functions).

–  Search bias: The language is expressive enough to represent all
possible functions (e.g. disjunctive normal form) but the search
algorithm embodies a preference for certain functions over others
(e.g. conjunctive functions, or unconsistent functions) This is called
syntactic simplicity.

BIAS
•  More in general, bias is a criterion for preferring a set of hypoteses

over another

•  a and b belong to different languages (linear vrs. non-linear
functions), b and c have a different search bias, since c relaxes
consistency in favor of simplicity

Here for example we relax the consistency
criterion

a c b

27

Ockham (Occam)’s Razor
•  William of Ockham (1295-1349) was a Franciscan friar

who applied the criteria to theology:
–  “Entities should not be multiplied beyond

necessity” (Classical version but not an actual quote,
which is: entia non sunt multiplicanda praeter
necessitatem)

–  “The supreme goal of all theory is to make the
irreducible basic elements as simple and as few as
possible without having to surrender the adequate
representation of a single datum of
experience.” (Einstein)

•  Requires a precise definition of “simplicity”.
•  Acts as a bias which assumes that nature itself is simple.
•  Role of Occam’s razor in machine learning remains

controversial (more on CLT course).

BIAS
•  More in general, bias is a criterion for preferring a set of hypoteses

over another

•  a and b belong to different languages (linear vrs. non-linear
functions), b and c have a different search bias, since c relaxes
consistency in favor of simplicity

Here for example we relax the consistency
criterion

a c b

29

Ockham (Occam)’s Razor
•  William of Ockham (1295-1349) was a Franciscan friar

who applied the criteria to theology:
–  “Entities should not be multiplied beyond

necessity” (Classical version but not an actual quote,
which is: entia non sunt multiplicanda praeter
necessitatem)

–  “The supreme goal of all theory is to make the
irreducible basic elements as simple and as few as
possible without having to surrender the adequate
representation of a single datum of
experience.” (Einstein)

•  Requires a precise definition of “simplicity”.
•  Acts as a bias which assumes that nature itself is simple.
•  Role of Occam’s razor in machine learning remains

controversial (more on CLT course).

30

Hypothesis Space (1)
•  How difficult is learning an hypothesis? It depends

upon the number of alternatives! In other terms, it
depends on the DIMENSION OF THE HYPOTHESIS
SPACE

•  Learned functions a priori restrict to a given hypothesis
space, H, of functions h(x) that can be considered as
possible hypotheses for c(x).

•  Depending upon the chosen class of hypotheses
(conjunctive forms, boolean expressions, algebraic
functions, probabilities..) the hypothesis space can be
small, large, or infinite!! (E.g. if c(x) is linear function,
like c(x)=w1x1+w2x2+..wnxn – with xi real-valued or
discrete features and wi real-valued coefficients, there
might be infinite linear functions that correctly classify
the examples in an available dataset!)

•  In inductive learning, the hypothesis space is FINITE.
But, how big?

Hypothesis Space of boolean functions
(1)	

•  So	
 how	
 many	
 hypotheses	
 for	
 a	
 boolean	
 funcDon	

with	
 n	
 features,	
 each	
 of	
 which	
 can	
 assume	
 the	

values	
 0,	
 1	
 or	
 “?”	
 (don’t	
 care)?	

•  =number	
 of	
 disDnct	
 truth	
 tables	
 with	
 2n	
 rows	
 is	

	
 (remember:	
 there	
 is	
 one	
 truth	
 table	
 for	
 any	
 boolean	

funcDon,	
 but	
 infinite	
 number	
 of	
 equivalent	
 logic	

expressions)	

•  Example	
 n=2	
 	
 (boolean	
 features	
 are	
 x,y)	
 An	

hypothesis	
 is	
 a	
 specific	
 truth	
 table,	
 with	
 two	

boolean	
 	
 variables.	
 So,	
 |H|=	
 	
 	
 	
 	
 	
 	
 	
 	
 	

22
n

22
2
= 24 =16

Hypothesis Space of boolean functions
(1)	

•  So	
 how	
 many	
 hypotheses	
 for	
 a	
 boolean	
 funcDon	

with	
 n	
 features,	
 each	
 of	
 which	
 can	
 assume	
 the	

values	
 0,	
 1	
 or	
 “?”	
 (don’t	
 care)?	

•  =number	
 of	
 disDnct	
 truth	
 tables	
 with	
 2n	
 rows	
 is	

	
 (remember:	
 there	
 is	
 one	
 truth	
 table	
 for	
 any	
 boolean	

funcDon,	
 but	
 infinite	
 number	
 of	
 equivalent	
 logic	

expressions)	

•  Example	
 n=2	
 	
 (boolean	
 features	
 are	
 x,y)	
 An	

hypothesis	
 is	
 a	
 specific	
 truth	
 table,	
 with	
 two	

boolean	
 	
 variables.	
 So,	
 |H|=	
 	
 	
 	
 	
 	
 	
 	
 	
 	

22
n

22
2
= 24 =16

Example	

xy	
 	
 	
 	
 h1	
 	
 h2	
 	
 h3	
 	
 h4	
 	
 h5	
 	
 h6	
 	
 h7	
 	
 h8	
 	
 h9	
 	
 h10	
 h11	
 h12………………	
 	
 	
 	
 	

34

Hypothesis Space of conjunctive
functions (2)

•  Let’s compute |H| for conjunctive functions like small&red
•  To learn concepts on instances described by n discrete-valued features, consider

the space of conjunctive hypotheses represented by a vector of n features
 <f1, f2, … fn> where each fi is either:

–  ?, a wild card indicating no constraint on the ith feature (= the feature is irrelevant)
–  A specific value from the domain of the ith feature (ex: color=red)
–  Ø indicating no value is acceptable (=there are NO objects belonging to the target class

in the dataset)
•  Sample conjunctive hypotheses have the following shape (wrt previous

example):
–  <big, red, ?> (equivalent to big&red, or [size=big]&[color=red])
–  <?, ?, ?> (most general hypothesis,)
–  < Ø, Ø, Ø> (most specific hypothesis,)

•  Notation: I can represent both instances and hypotheses as VECTORS, e.g.
•  x: < small,red,circle>è (size=small)&(color=red)&(shape=circle)
•  h: <small,?,circle> è IF (size=small)&(color=don’t care)&(shape=circle)

THEN True

€

∀x, c(x) =1

€

∀x, c(x) = 0

Hypothesis Space of conjunctive
functions (3)	

•  How	
 many	
 conjuncDve	
 funcDons?	
 Any	
 feature	

can	
 be	
 0,	
 1,	
 always	
 false	
 (indicated	
 with	
 	
 	
 	
 	
 	
)	
 or	

always	
 true	
 (indicated	
 with	
 ?)	
 therefore	
 4n	

•  However	
 all	
 hypotheses	
 	
 with	
 at	
 least	
 one	

feature	
 equal	
 to	
 	
 	
 	
 	
 	
 are	
 equivalent	
 (they	
 are	
 all	

false)	
 therefore	
 |H|=	
 3n+1	

•  Example	
 n=2	
 	
 H=	
 	
 	
 	
 	
 	
 ,	
 ?,xy,xy,xy,xy,x?,?y,	
 x?,?y	

•  So	
 10	
 possible	
 hypotheses	
 for	
 C(x)	

∅

∅

∅

36

Criteria to select best hypothesis:
Generalization

•  Even with a bias, a ML algorithm may output several
different hypotheses, all consistent with the learning set.
How do we choose?

•  Hypotheses must generalize to correctly classify instances
not in the training data.

•  Simply memorizing training examples is a consistent
hypothesis that does not generalize:

((small&red&circle)or(large&red&circle))&(not((small & red & triangle) or (large
& blue & circle)or…))

•  Occam’s razor:
–  Finding a simple hypothesis helps to ensure generalization.

•  BUT:	
 how	
 do	
 we	
 know	
 that	
 one	
 hyp.	
 is	
 more	
 general	
 than	

others?

37

Using the Generality Structure

•  Given two hypotheses h1 and h2, h1 is more
general than or equal to h2 (h1≥h2) iff every
instance that satisfies h2 also satisfies h1.

•  Given two hypotheses h1 and h2, h1 is (strictly)
more general than h2 (h1>h2) iff h1≥h2 and it is
not the case that h2 ≥ h1.

•  Generality defines a partial order on
hypotheses.

Example hypothesis space for conjunctive
functions (two binary features) ordered by

generality

38

Ø	

T,T	
 T,F	
 F,T	
 F,F	

?,F	
 F,?	
 ?,T	
 T,?	

?	

Here	
 all	

hypotheses	

with	
 at	

least	
 one	
 	

“Ø”	

	

39

Other examples of Generality
•  Conjunctive feature vectors

–  <?, red, ?> is more general than <?, red, circle> (remember ?=“any
value is ok”)

–  Neither of <?, red, ?> and <?, ?, circle> is more general than the other.
•  Example: Axis-parallel rectangles in 2-d space

–  A is more general than B
–  Neither of A and C are more general than the other.

A
B

C

Digression: What are these rectangles?

40

Suppose X axis is cholesterol and Y is age. Green points are positive for
illness M and each rectangle represents the rule: if A<chol<B AND C<age<D then M
Therefore (hyper)rectangles are a class of hypotheses represented by ranges.

Question

•  Consider h1: <big, red, circle> and
 h2: <?, blue, ?>
•  Is h2>h1?
•  Given two hypotheses h1 and h2, h1 is more

general than or equal to h2 (h1≥h2) iff every
instance that satisfies h2 also satisfies h1.

•  So, is h2>h1?

41

42

Evaluation of hypotheses
We need to evaluate how the selected hypothesis
“approximates” the real (unknown) classification function
How? We use the training set (a fraction of the original
classified dataset D that we DID NOT USED during the
learning phase)
We need to measure:
•  Classification accuracy (% of instances classified correctly).

–  Measured on an independent test data.
•  Training time (efficiency of training algorithm).
•  Testing time (efficiency of subsequent classifications, when

the system is “operative”).
•  We will devote a lesson to ML systems evaluation

Summary	
 so	
 far	

•  We	
 learned	
 the	
 workflow	
 of	
 a	
 ML	
 learning	
 system	
 	

•  We	
 have	
 seen	
 that	
 complexity	
 of	
 learning	
 depends	
 (also)	
 upon	
 the	

“shape”	
 of	
 the	
 classificaDon	
 funcDon	
 to	
 be	
 learned	

(boolean,algebraic,	
 probabilisDc)	
 and	
 on	
 the	
 complexity	
 of	

representaDon	
 of	
 the	
 objects	
 to	
 be	
 classified	
 (how	
 many	
 features?	

Boolean,	
 discrete	
 or	
 conDnuous?	
 Are	
 the	
 features	
 related	
 or	

independent?)	

•  We	
 measured	
 the	
 (a	
 priori)	
 dimension	
 of	
 the	
 hypothesis	
 space	
 for	

the	
 case	
 of	
 boolean	
 funcDons	
 and,	
 within	
 boolean	
 funcDons,	
 of	

conjuncDve	
 funcDons	

•  We	
 also	
 defined	
 the	
 noDon	
 of	
 generality	
 of	
 hypotheses	
 and	
 we	

have	
 shown	
 that,	
 for	
 conjuncDve	
 funcDons,	
 we	
 can	
 build	
 the	

hypothesis	
 space	
 as	
 a	
 tree	
 structure	

•  Generality	
 is	
 important,	
 but	
 the	
 goodness	
 of	
 an	
 hypothesis	
 needs	

to	
 be	
 evaluated	
 against	
 an	
 (independent)	
 test	
 set	

But	
 how	
 do	
 we	
 learn	
 an	
 hypothesis?	

•  We	
 know	
 that	
 hypotheses	
 can	
 have	
 different	

shapes,	
 can	
 be	
 finite	
 of	
 infinite,	
 can	
 be	

ordered	
 according	
 to	
 generality,	
 can	
 be	

evaluated	

•  BUT:	
 what	
 about	
 LEARNING	
 a	
 “good”	

hypothesis?	

•  Let’s	
 start	
 with	
 algorithms	
 (simple	
 algorithms	

for	
 conjuncDve	
 learning,	
 to	
 begin..)	

Concept	
 (or	
 InducDve)	
 learning	

Algorithms	
 to	
 learn	
 boolean	

classificaDons	

Concept	
 learning	
 (summary	
 so	

far)	

•  ObjecDve:	
 learn	
 a	
 boolean	
 classificaDon	
 c(x)	

for	
 objects	

•  Concept	
 learning	
 is	
 a	
 form	
 of	
 supervised	

learning:	
 we	
 are	
 given	
 a	
 set	
 D	
 of	
 pairs	
 <x,c(x)>	
 	

for	
 which	
 the	
 classificaDon	
 is	
 known.	

•  Every	
 object	
 x	
 is	
 described	
 by	
 a	
 set	
 of	
 features	

(also	
 called	
 a^ributes):	

•  Features	
 are	
 either	
 boolean	
 or	
 discrete-­‐valued	

x ∈ X

x : f1,.. fn

Boolean	
 funcDons	

•  Concept	
 learning	
 implies	
 learning	
 an	

hypothesis	
 h(x)	
 for	
 c(x)	

•  Perfect	
 learning	
 is	
 usually	
 impossible,	
 the	

objecDve	
 is	
 to	
 learn	
 a	
 “good”	
 approximaDon	

•  Consistent	
 learning	
 is	
 when:	
 	

∀x ∈ D h(x) = c(x)

48

Conjunctive Rule Learning
•  Conjunctive functions are easily learned by finding all

commonalities shared by all positive examples.

•  Must check consistency with negative examples. If
inconsistent, no conjunctive rule exists.

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative

Learned rule: red & circle → positive

49

Limitations of Conjunctive Rules
•  If a concept does not have a single set of

necessary and sufficient conditions, conjunctive
learning fails.
Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative
5 medium red circle negative

Learned rule: red & circle → positive
Inconsistent with negative example #5!

50

Disjunctive Concepts
•  Concept may be disjunctive (in this case a

conjunctive hypthesis cannot be found!)

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative
5 medium red circle negative

Learned rules:

small & circle → positive large & red → positive

h(x)= (small & circle) or (large & red)

Concept Learning as Search
•  Conjunctive hypotheses are a small subset of

the space of possible boolean functions
•  We can see conjunctive learning as the task of

searching the best hypothesis while travelling
in the search space

51

52

Generalization Lattice

< Ø, Ø, Ø>

<?,?,circ> <big,?,?> <?,red,?> <?,blue,?> <sm,?,?> <?,?,squr>

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr>

<?, ?, ?>

Size: {small, big} Color: {red, blue} Shape: {circle, square}

Number of hypotheses = 33 + 1 = 28

Let’s	
 consider	
 a	
 simpler	
 case	
 wrt	
 previous	
 example,	
 now	
 features	
 are	
 all	
 boolean	

53

Algorithm 1: Most Specific Learner
(Find-S)

•  Find the most-specific hypothesis (least-general generalization,
LGG) that is consistent with the training data.

•  Incrementally update hypothesis h(x) after every positive example,
generalizing it “just enough” to be consistent with the new
example (we also say that h(x) “does not satisfies x”).

•  For conjunctive feature vectors, this is easy:
 Initialize h = <Ø, Ø,… Ø>
 For each positive training instance x in D
 For each feature fi
 If the constraint on fi in h is not satisfied by x
 If fi in h is Ø
 then set fi in h to the value of fi in x
 else set fi in h to “?”
 If h is consistent with all negative training instances in D
 then return h
 else no consistent hypothesis exists

Time complexity:
O(|D| n)
if n is the number
of features

f
i
h ≡ f

i
x

(an odd) Example: learning a user profile

•  We assume there are no errors in D (often not true!)
•  “Click” is the classification function defined in (0,1)
 (will the user click on the page?)

domain	

 platform	

 Browser	

 day	

 screen	

 country	

 Click?	

edu	

com	

com	

org	

Mac	

Mac	

PC	

Unix	

Net3	

NetCom	

IExpl	

Net2	

Lu	

Lu	

Sab	

Gio	

XVGA	

XVGA	

VGA	

XVGA	

America	

America	

Asia	

Europa	

Si	

Si	

No	

Si	

features

values
C(x)

Tr
an

in
g

se
t

D

Find-S

h2,3

h1

X H

generality
h4

h0

Training set D Hypohesis space H
X1=	
 (<edu,mac,Net3,Lun,XVGA,America>,1)	
 	
 h0	
 =	
 <Ø,	
 Ø,	
 Ø,	
 Ø,	
 Ø,	
 Ø>	

X2=(<com,mac,Net3,Mar,XVGA,America>1)	
 	
 h1=<edu,mac,Net3,Lun,XVGA,America>	

X3=	
 (<com,PC,IE,Sab,VGA,Eur>,0) 	
 	

X4=	
 (<org,Unix,Net2,Mer,XVGA,America>,1)	
 	
 	

h2=<?,mac,Net3,?,XVGA,America>	

h3=<?,mac,Net3,?,XVGA,America>	

h4=<?,?,?,?,XVGA,America>	

1=	
 posiDve,	
 c(x)=true;	
 0=negaDve,	
 c(x)=false	

56

Properties of Find-S
•  For conjunctive feature vectors, the most-specific hypothesis is

unique and found by Find-S (if enough examples are
provided).

•  If the most specific hypothesis is not consistent with the
negative examples, then there is no consistent function in the
hypothesis space, since, by definition, it cannot be made more
specific and retain consistency with the positive examples.

•  Notice however that FIND S does not consider negative
examples! (consistency is checked for at the end)

•  For conjunctive feature vectors, if the most-specific hypothesis
is inconsistent, then the target concept must be disjunctive.

57

Issues with Find-S
•  Given sufficient training examples, does Find-S converge to a

correct definition of the target concept (assuming it is in the
hypothesis space)?

•  How do we know when the hypothesis has converged to a
correct definition?

•  Why prefer the most-specific hypothesis? Are more general
hypotheses consistent? What about the most-general
hypothesis? What about the simplest hypothesis?

•  If the least general generalization LGG is not unique
–  Which LGG should be chosen?
–  How can a single consistent LGG be efficiently computed or

determined not to exist?
•  What if there is noise in the training data and some training

examples are incorrectly labeled?

58

Effect of Noise in Training Data
•  Frequently realistic training data is corrupted by errors

(noise) in the features or class values.
•  Such noise can result in missing valid generalizations.

–  For example, imagine there are many positive examples like #1
and #2, but out of many negative examples, only one like #5 that
actually resulted from a error in labeling.

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative
5 medium red circle negative

59

Algorithm 2: Version Space

•  Given an hypothesis space, H, and training data,
D, the version space is the complete subset of H
that is consistent (compatible)with D.

•  The version space can be naively generated for
any finite H by enumerating all hypotheses and
eliminating the inconsistent ones.

•  Can one compute the version space more
efficiently than using enumeration (considering all
hypothesis space and ordering hi?)

60

Version Space with S and G
•  The version space can be represented in a more compact way

by maintaining two boundary sets of hypotheses, S, the set of
most specific consistent hypotheses, and G, the set of most
general consistent hypotheses:

•  S and G represent the entire version space via its boundaries in

the generalization lattice:

)]},([),(|{ DsConsistentssHsDsConsistentHsS ʹ′∧ʹ′>∈ʹ′¬∃∧∈=
)]},([),(|{ DsConsistentggHgDgConsistentHgG ʹ′∧>ʹ′∈ʹ′¬∃∧∈=

version
space

G

S

61

Version Space Lattice

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr>

< Ø, Ø, Ø>

<?,?,circ> <big,?,?> <?,red,?> <?,blue,?> <sm,?,?> <?,?,squr>

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

<?, ?, ?>

Size: {sm, big} Color: {red, blue} Shape: {circ, squr}

<<big, red, squr>, 1>
<<sm, blue, circ>, 0>

Color Code:
G
S

other VS

62

Candidate Elimination (Version Space)
Algorithm

Initialize G to the set of most-general hypotheses in H
Initialize S to the set of most-specific hypotheses in H
For each training example, d, do:
 If d is a positive example then:
 Remove from G any hypotheses that do not match d
 For each hypothesis s in S that does not match d
 Remove s from S
 Add to S all minimal generalizations, h, of s such that:
 1) h matches d
 2) some member of G is more general than h
 Remove from S any h that is more general than another hypothesis in S
 If d is a negative example then:
 Remove from S any hypotheses that match d
 For each hypothesis g in G that matches d
 Remove g from G
 Add to G all minimal specializations, h, of g such that:
 1) h does not match d
 2) some member of S is more specific than h
 Remove from G any h that is more specific than another hypothesis in G

63

Sample VS Trace
S= {< Ø, Ø, Ø>}; G= {<?, ?, ?>}
SIZE: (big,small) COLOR: (red, blue) SHAPE: (circ, square, triangle)

Positive: X: <big, red, circle>
Nothing to remove from G (X is compatible with G, G would “accept” X)
Minimal generalization of only S element is <big, red, circle> which is more
specific than G.
S={<big, red, circle>}; G={<?, ?, ?>}

Negative: Y: <small, red, triangle>
Nothing to remove from S. (Y is compatible with S={<big, red, circle>}, S
would reject Y)
Minimal specializations of <?, ?, ?> that would reject the negative example
are: <big, ?, ?>, <?, blue, ?>, <?, ?, circle>, <?, ?, square> but some are not
more general than some element of S hence the final set G is <big, ?, ?>,
<?, ?, circle>
S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>}

64

Sample VS Trace (cont)
S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>}

Positive: Z: <small, red, circle>
Remove <big, ?, ?> from G (it would erroneously reject the example)
Minimal generalization of S: <big, red, circle> that would accept the positive
example is <?, red, circle>
S={<?, red, circle>}; G={<?, ?, circle>}

Negative: N: <big, blue, circle>
Nothing to remove from S (S would correctly reject the example)
G: Minimal specializations of <?, ?, circle> that would reject the example
are: <small, ? circle>, <?, red, circle>, but one is not more general than some
element of S.
S={<?, red, circle>}; G={<?, red, circle>}

S=G; Converged!

Example 2 (a generic 3-monomial conjunctive function)

TRUE

 zzyyxx

xyzzxyzyxzyxyzxzyxzyxzyx 

FALSE

xzxyzxyxyzyxzyyxzyzxzyzxyx

< (x, y−),+ >

>−<),,,(zyx

S0

S1

G0

G1

Note	

that	
 x	

and	
 z	

are	

NOT	

compa
Dble	

with	

S1!!	

66

Properties of VS Algorithm
•  S summarizes the relevant information in the positive

examples (relative to H) so that positive examples do not need
to be retained.

•  G summarizes the relevant information in the negative
examples, so that negative examples do not need to be
retained.

•  Result is not affected by the order in which examples are
processes but computational efficiency may.

•  Positive examples move the S boundary up; Negative
examples move the G boundary down.

•  If S and G converge to the same hypothesis, then it is the only
one in H that is consistent with the data.

•  If S and G become empty (if one does the other must also)
then there is no hypothesis in H consistent with the data.

67

Correctness of Learning

•  Since the entire version space is maintained, given a
continuous stream of noise-free training examples,
the VS algorithm will eventually converge to the
correct target concept if it is in the hypothesis space,
H, or eventually correctly determine that it is not in
H.

•  Convergence is correctly indicated when S=G.

68

Computational Complexity of VS
•  Computing the S set for conjunctive feature vectors is

linear in the number of features and the number of
training examples.

•  Computing the G set for conjunctive feature vectors
is exponential in the number of training examples
in the worst case.

•  In more expressive languages (than conjunctive
rules), both S and G can grow exponentially.

•  The order in which examples are processed can
significantly affect computational complexity.

Before we start presenting new (and
more practical) ML algorithms..

69

A number of relevant issues that apply
to any ML problem/algorithm

1.  Feature selection and object representatzion
2.  Best order to present training examples
3.  Multiple categories

70

1. Feature Selection

•  Many factors affect the success of machine
learning on a given task.

•  The representation and quality of the
example data is first and foremost.

•  In theory, having more features should result in
more discriminating power.

•  However, practical experience with machine
learning algorithms has shown that this is not
always the case.

71

The importance of features (attributes)
selection

•  Reduce the cost of learning by reducing the
number of attributes.

•  Provide better learning performance compared
to using full attribute set.

Feature selection is task dependent

73

To classify lions and frogs in the appropriate category,
a simple color histogram could perform very well:
f=color

Feature selection is task dependent

74

To classify horses and lions, more features are needed.
Some would be useless, e.g Color, Number-of-legs..since
they would not help to differentiate the 2 categories

Feature selection methods

 There are two approach for attribute selection.
•  Filter approach attempt to assess the merits of

attributes from the data, ignoring learning
algorithm.

•  Wrapper approach the selection of a subset of
attributes is done using the learning algorithm
as a black box.

Filtering

76

Filtering

•  A feature fi is said to be strongly relevant to the
target concept(s) if the probability distribution
of the class values, given the full feature set,
changes when fi is removed.

•  A feature fi is said to be weakly relevant if it is

not strongly relevant and the probability
distribution of the class values, given some subset
S (containing fi) of the full feature set, does not
changes when fi is removed.

77

Example: want to learn chair(x)
(chair(x)=true if x=chair)

78

Prior probability of instances in D
P(chair)=8/16=0,5
P(table)=P(not(chair))=8/16=0,5
So we have the maximum uncertainty.
If we classify at random, our
probability of error is 50%

Consider the feature:
4-legs (boolean)

x=(color,	
 has-­‐back,4-­‐legs)	
 	
 (3	
 boolean	
 features	
 to	
 describe	
 instances)	

Example
•  If we group instances according to the 4-legs

feature, we have :

79

4-­‐legs=true	

4-­‐legs=false	
 Grouping instances
according to 4-legs does
not vary the probability
distribution of the 2
categories: it remains 0,5!!

What about other features?
•  “4-legs” is not a good feature to correctly classify tables and

chairs!! It leaves you with the same uncertainty (0.5)
•  Instead “has-back” would be enough to perfectly separate the

2 categories (given the trainig set of instances of the example)
•  In fact has-back=true would group only chairs, has-

back=false would group only tables)

80
Has_back=yes	
 Has_back=no	

Are	
 we	
 sure?	

•  So,	
 given	
 our	
 data,	
 we	
 could	
 use	
 the	
 simple	

rule:	
 IF	
 has-­‐back	
 =	
 yes	
 THEN	
 chair(x)=YES	

•  But	
 what	
 about	
 “unseen”	
 instances?	

This	
 was	
 simple	
 example..	

•  In	
 previous	
 example,	
 one	
 feature	
 was	
 useless,	

the	
 other	
 was	
 100%	
 useful	
 (could	
 use	
 that	

single	
 feature	
 to	
 decide	
 the	
 correct	
 class)	

•  In	
 general,	
 the	
 problem	
 is	
 to	
 automaDcally	

analyze	
 all	
 features	
 and	
 order	
 them	
 according	

to	
 the	
 REDUCTION	
 OF	
 UNCERTAINTY	
 we	
 get	

when	
 grouping	
 our	
 dataset	
 according	
 to	
 the	

values	
 of	
 each	
 instance	

Measuring the “probability
distribution”: Entropy filtering

•  Ranking according to entropy gain of attributes.
•  Entropy for given set of data with 2 classes can be

defined as

•  p(j) is the probability of class j, estimated by

the relativefrequency of elements classified as
“j” in the training set

Example	

•  Learning	
 set	
 D	
 includes	
 5	
 istances,	
 2	
 classified	
 as	
 posiDves	
 3	

negaDves	

•  Probability	
 of	
 posiDve	
 (esDmate)	
 p+=2/5	

•  Probability	
 of	
 negaDve	
 (esDmate)	
 p-­‐=3/5	

•  Entropy	
 of	
 the	
 training	
 set	
 is:	

•  E(D)=-­‐(2/5)log2(2/5)-­‐(3/5)log2(3/5)	
 =	
 	

(0.4)x1.32	
 +	
 (0.6)x0.737=	
 0.528+0.44=0.97	

•  Note:	
 if	
 instances	
 in	
 D	
 are	
 equally	
 distributed	
 between	
 posiDve	

and	
 negaDve,	
 Entropy	
 is	
 1	

•  E(D)=	
 -­‐0.5log(0.5)-­‐0.5log(0.5)=0.5+0.5=1	

•  If	
 all	
 instances	
 are	
 	
 classified	
 THE	
 SAME	
 8all	
 are	
 posiDve	
 or	
 all	
 are	

negaDve)	
 Entropy	
 is	
 0	

•  E(D)=	
 -­‐1log(1)	
 =0	
 	

Entropy	
 Filtering	

After classification using one specific feature j, we can
calculate the gain of feature j:

•  where ni/n is an estimate of the probability that the considered

feature has value i. ni is the number of instances in the learning
set D having the value of feature j equal to the value i
 (e.g. for the chairs case, there are 8/16 instances with feature
 4-legs=yes, and 8/16 with 4-legs=no)

•  Entropy(i) is the entropy of the subset Di with fj=i
•  Larger value of gain better attribute.

Wrt previous example of tables and chairs

•  E=-0.5log2(0.5) -0.5log2(0.5)= 1 (initial entropy,
since there are 50% tables, 50% chairs)

•  If we classify according to feature 4-legs:
–  E(4-legs=true)=1 since out of 12 objects with 4 legs, we

have 6 chairs and 6 tables
–  E(4-legs=false)=1 since out of 4 objects without 4 legs,

we have 2 chairs and 2 tables
–  GAIN=1-((12/16) E(4-legs=true) +(4/16) E(4-

legs=false))=1-1=0 NO GAIN!!
•  If we instead classify according to has-back:

–  E(has-back=true)=0 (they are all chairs)
–  E(has-back=false)=0 (they are all tables)
–  Hence GAIN=1-0=1

86

In previous example we had two extremes: perfectly
useless (4-legs) and perfectly useful (has-back) features

At each step, choose
the feature that
“reduces entropy”
most. Work towards
“node purity”.

Pure nodes are those
including instances with
a unique classification
(e.g. all tables)

All	
 the	

data	

f1	

f2	

Choose	
 f1	

Choose	
 f2	

Common case is that entropy changes, but not from 1 to 0!!
Ex. black instances positive, white are negative

Partition the data set in two groups according to f1=1: positive and negative

e.g.	
 in	
 this	
 set	
 we	
 group	

all	
 instances	
 with	
 f1=0	
 	

f1=1	
 f1=0	

Now	
 we	
 parDDon	
 according	
 to	
 f2	

Summary	
 on	
 filtering	

•  Filtering	
 is	
 a	
 method	
 to	
 order	
 features	
 according	

to	
 relevance	
 	

•  The	
 Entropy	
 filtering	
 order	
 the	
 features	
 according	

to	
 informaDon	
 gain	

•  Perfect	
 features	
 are	
 those	
 with	
 gain	
 1,	
 useless	

features	
 are	
 those	
 with	
 gain	
 0,	
 most	
 features	
 are	

somewhere	
 in	
 between	

•  Note	
 that	
 filtering,	
 as	
 we	
 said	
 iniDally,	
 only	
 looks	

at	
 the	
 distribuDon	
 of	
 feature	
 values	
 in	
 the	

dataset,	
 NOT	
 at	
 the	
 machine	
 learning	
 algorithm	

Wrappers

•  Employs the target learning algorithm to
evaluate feature sets

•  Uses an induction algorithm along with a
statistical re-sampling technique such as cross-
validation to estimate the final accuracy of
feature subsets

89

Wrappers

90

• 91

Wrappers

Say	
 we	
 have	
 features	
 A,	
 B,	
 C	
 and	
 classifier	
 M.	
 We	
 want	
 to	
 predict	
 C(X)	
 given	
 the	

smallest	
 possible	
 subset	
 of	
 {A,B,C},	
 while	
 achieving	
 maximal	
 performance	

(accuracy)	

	
 	
 	
 	
 	
 	
 	
 FEATURE	
 SET 	
 	
 CLASSIFIER	
 	
 	
 PERFORMANCE	

	
 {A,B,C} 	
 	
 M 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 98%	

	
 {A,B} 	
 	
 M 	
 	
 	
 98%	

	
 {A,C}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 M 	
 	
 	
 77%	

	
 {B,C}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 M 	
 	
 	
 56%	

	
 {A} 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 M 	
 	
 	
 89%	

	
 {B} 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 M 	
 	
 	
 90%	

	
 {C} 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 M 	
 	
 	
 91%	

	
 {.} 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 M 	
 	
 	
 85%	

The	
 third	
 column	
 is	
 the	
 number	
 of	

correctly	
 classified	
 istances	
 by	
 the	

classifier	
 M	
 when	
 using	
 the	
 set	
 of	

features	
 in	
 column1	

When	
 zero	
 features	
 are	
 used,	
 the	

classifier	
 performs	
 a	
 random	
 guess.	
 In	

this	
 case,	
 P=85%	
 means	
 that	
 the	
 prior	

probability	
 of	
 C(X)=true	
 is	
 0,85	

Wrappers (2)

The	
 set	
 of	
 all	
 subsets	
 is	
 the	
 power	
 set	
 and	
 its	
 size	
 is	
 2|V|	
 (V=	
 number	
 of	
 features).	

Hence	
 for	
 large	
 V	
 we	
 cannot	
 do	
 this	
 procedure	
 exhaus3vely;	
 instead	
 we	
 rely	
 on	

heuris3c	
 search	
 of	
 the	
 space	
 of	
 all	
 possible	
 feature	
 subsets.	

{}	
 85%	

{A}	
 89%	

{B}	
 90%	

{A,B}	
 98%	

{A,B,C}98%	

{C}	
 91%	

{A,C}	
 77%	

{B,C}	
 56%	

start	

{A,B}98%	

{B,C}56%	

{A,C}77%	

end	

this	
 is	
 the	
 esDmate	
 of	
 prior	

probability	
 of	
 C(X)=true	

Wrappers: Hill climbing

A common example of heuristic search is hill climbing:
keep adding features one at a time until no further
improvement can be achieved.

We	
 start	
 with	
 an	
 empty	
 set	
 of	
 a^ributes.	
 At	
 each	
 step	
 k,	
 we	
 consider	
 all	
 possible	
 	

combinaDons	
 of	
 k	
 a^ributes.	
 f(v)	
 is	
 any	
 evaluaDon	
 funcDon	
 (e.g.,	
 precision)	

v
k

!

"
#
$

%
&

• 94

Hill Climbing

{}	
 85	

{A}	
 89	

{B}	
 90	

{A,B}	
 98	

{A,B,C}98	

{C}	
 91	

{A,C}	
 77	

{B,C}	
 56	

start	

{A,B}98	

{B,C}56	

{A,C}77	

end	

Start with empty set of attributes
Step 1: with first expansion (add one attribute in each node) f(v’)>f(v) for all nodes
Step 2: node C is expanded first (since had highest perf), but condition is not met, so
backtrack to second best (B)
Step 3: B is expanded and nodes A,B and B,C are generated; A,B is the best
Step 4: A,B is expanded but condition is not met; OUTPUT is {A,B}

Empty	
 subset	
 of	
 a^ributes	

Full	
 set	
 of	
 a^ributes	

Ex:	
 A^ribute	
 tree	
 with	
 4	
 binary	
 a^ributes	
 (=	
 features)	

NOTE:	
 terms	
 “ATTRIBUTE”	
 and	
 “FEATURE”	
 can	
 be	
 used	
 interchangeably.	
 Same	
 meaning!	

A number of relevant issues that apply
to any ML problem/algorithm

1.  Feature selection and object representation
2.  Best order to present training examples
3.  Multiple categories

96

√	

97

Best way to select examples: Active
Learning

•  In active learning, the system is responsible for selecting
good training examples and asking a teacher (oracle) to
provide a class label.

•  Goal is to minimize the number of examples required
to learn an accurate concept description.

•  The general idea is to select the training examples in a
“smart” way

•  Note: only applicable if we have lots of examples, target
is to avoid loosing time with examples which are less
useful (e.g. too similar to already analyzed ones), OR if
we need the help of an expert to label examples in the
appropriate class (experts have a cost!)

Toy Example: 1D classifier	

•  ObjecDve:	
 learning	
 a	
 threshold	
 funcDon	
 (if	
 x>w	
 then	
 true	
 else	

false).	
 The	
 threshold	
 w	
 is	
 unknown	
 ..	
 It	
 is	
 what	
 we	
 want	
 to	

learn	

•  Example:	
 we	
 want	
 to	
 learn	
 the	
 body	
 mass	
 index	
 above	
 which	

there	
 is	
 a	
 high	
 risk	
 of	
 diabetes	

•  To	
 train	
 the	
 system	
 we	
 need	
 to	
 “label”	
 a	
 training	
 set	
 (we	
 need	

to	
 idenDfy	
 people	
 with	
 and	
 without	
 diabetes,	
 and	
 then	

measure	
 their	
 BMI).	
 	

•  The	
 number	
 of	
 examples	
 N	
 depends	
 on	
 the	
 number	
 of	

possible	
 values	
 of	
 x	
 (possibly	
 discreDzed).	
 For	
 the	
 BMI,	
 values	

go	
 from	
 10	
 to	
 40	
 (N=30).	
 	

Toy Example: 1D classifier

x x x x x x x x x x

Naïve method: choose points to label at random on line (choose
patients from a record database at random)

•  Requires O(N) training data to find underlying classifier

Better method: binary search for transition between 0 and 1
•  Requires O(log N) training data to find underlying classifier
•  Exponential reduction in training data size!

Goal: given the training set, find transition between
0 and 1 labels (e.g. find w) in minimum steps

0 0 0 0 0 1 1 1 1 1

w

Active learning: choose labeled
examples

100

Active learning strategies
•  Uncertainty sampling: label those points for which the current model

is least certain as to what the correct output should be (if model is
probabilistic)

•  Query by committee: a variety of models are trained on the current
labeled data, and vote on the output for unlabeled data; label those
points for which the "committee" disagrees the most (most
complex cases)

•  Expected model change: label those points that would most change
the current model

•  Expected error reduction: label those points that would most reduce
the model's generalization error

•  Variance reduction: label those points that would minimize output
variance, which is one of the components of error

101

A common method is: take the
example that “mostly differs” from

those seen so far

102

Typical heuristics for active learning
•  Start with a pool of unlabeled data
•  Pick a few points at random and get their labels
•  Repeat

–  Pick the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

103

Knowing the label of the first
two instances is more helpful
at determining the positive/negative
boundary than the third instance.

1	

2	

3	

Which of the following
instances would be
an interesting example?

A number of relevant issues that apply
to any ML problem/algorithm

1.  Feature selection and object representatzion√
2.  Best order to present training examples √
3.  Multiple categories

104

105

Learning for Multiple Categories
•  What if the classification problem is not concept learning and involves

more than two categories (e.g. select among several possible
illnesses, given the symptoms)?

•  Can treat as a series of concept learning problems (e.g. we use n
independent classifiers), where for each classifier Ci, all

 are treated as positive and all other instances in categories Cj, j≠i are
treated as negative (one-versus-all).

•  This will assign a unique category to each training instance but may
assign a novel instance to zero or multiple categories.

•  If the binary classifier produces confidence estimates (e.g. based on
voting), then a novel instance can be assigned to the category with the
highest confidence.

€

x ∈D, s.t. ci(x) =1

Example
•  Classifier 1: red or

not-red
•  Classifier 2: blue or

not-blue
•  Classifier 3: yellow

or not-yellow

106

D T

