
Machine	 Learning	

Recap	 of	 main	 issues/phases	

Recap: Phases/problems in
designing a ML algorithm

1.  Modeling the domain objects
2.  Choosing a learning experience
3.  Modeling the target function
4.  Defining a Learning Algorithm
5.  Performance Evaluation

2

Example : recognizing lions and
frogs

1. Representation: How do we
represent (model) our objects?

•  Simple: color! (e.g. a bitmap)
•  Less simple: silhouette

4

2. From what experience?
Types of learning:
•  Supervised learning
•  Unsupervised learning
•  Reinforcement learning

5

Learning paradigms
•  Supervised	 learning:	 someone	 tells	 you	 what	 to	 do	 for	 a	

number	 of	 example	 cases.	 For	 example,	 the	 system	 is	
provided	 with	 a	 dataset	 of	 images	 already	 classified	 (cats,	
dogs,	 frogs,	 lions..)	 an	 must	 learn	 which	 features	 can	 help	
to	 disDnguish	 between	 types;	

•  Unsupervised:	 There	 is	 no	 “teacher”.	 System	 must	 learn	
“regulariDes”	 in	 the	 data.	 For	 example,	 being	 able	 to	 group	
users	 according	 to	 their	 tastes,	 in	 a	 	 restaurant	
recommendaDon	 task	

•  Reinforcement	 learning:	 learning	 by	 doing.	 No	 teacher,	 but	
some	 target	 objecDve.	 System	 must	 learn	 the	 best	 strategy	
towards	 the	 target.	 For	 example,	 a	 robot	 moving	 in	 a	
hosDle	 environment	 may	 learn	 from	 errors	 and	
achievements.	 	

6

Supervised learning
•  Either an

“expert” (e.g. ask
someone to
manually classified
examples) or some
available database
of already classified
examples

7

è	

è	

lion

frog	

Unsupervised learning
•  No examples are

available. The
learner must be able
to identify
distinguishing
features that
differentiate the
various classes

•  Note: system does
not learn who is a
frog and who is a
lion, but only to
assign an image to
cluster 1 or cluster 2

8

Reinforcement learning
•  No examples are

available, but some
function is provided
to associate a
reward (or
punishment) to a
good (bad) move

9 9

Frog!!	

WRONG!!!!	

Machine	 learning	 types	 of	 tasks	
•  Classifica3on/categoriza3on:	 given	 an	 object,	 learn	 to	 assign	 this	 object	

to	 a	 category	 (chosen	 from	 a	 pre-‐defined	 set)	 or	 to	 “similarity”	 classes	 (not	
known	 a	 priori)	
–  Image	 recogniDon:	 given	 a	 set	 of	 images	 and	 	 a	 set	 of	 categories	 (e.g.	 dogs,	

cats,	 lions,	 frogs..)	 assign	 images	 to	 the	 appropriate	 category	
–  Grass	 grubs	 danger:	 given	 a	 set	 of	 climaDc	 condisDons	 etc.	 determine	 wether	

it	 is	 advisable	 or	 not	 to	 use	 pesDcides	 (categories	 are	 “advisable”	 “not	
advisable”)	

–  Medical	 diagnosis:	 given	 a	 set	 of	 possible	 illnesses..	
•  Problem	 solving:	 given	 a	 task,	 learn	 a	 strategy	 (or	 adapDve	 strategy)	 to	

perform	 it	
–  Given	 an	 unknown	 environment,	 learn	 to	 explore	 it	 (robot	 on	 Mars)	
–  Given	 a	 physical	 architecture	 of	 a	 robot,	 learn	 a	 strategy	 (set	 of	 moves)	 to	 fly	

(run,	 swim..)	
–  Self-‐	 driving	 car:	 given	 an	 environment	 with	 obstacles,	 drive	 from	 X	 to	 Y	

stopping	 and	 turning	 as	 appropriate	

Summary
1.  Machine learning “general” tasks: classification,

problem solving
2.  Learning paradigms: supervised, unsupervised,

reinforcement
3.  Sub-problems:

–  representation: how to represent domain objects and
the target function

–  algorithm selection: how to learn the target function
–  evaluation: how to test the performance of the learner

11

Let’s	 start!!	

12

Inductive Classification

Machine learning tasks

•  Classification
•  Problem Solving

– Classification/categorization: the set of categories is
given (e.g. lion, frog)

– Classification/clustering: the set of categories is not
known (we need to “cluster” instances by similarity)

–  First case is TRAINED or SUPERVISED
–  Second is UNSUPERVISED

13

Supervised categorization:
definition

•  Given:
–  A description of an instance (=the entities we want to classify),

x∈X, where X is the instance language or instance space (e.g.
a way of representing instances).

–  A fixed (known) set of categories: C={c1, c2,…cn}
•  Determine:

–  The category of x: c(x)∈C, where c(x) is a classification
function c: XàC whose domain is X and whose range is C.

–  If c(x) is a binary function C={0,1} ({true,false}, {positive,
negative}) then it is called a concept (and we talk about
CONCEPT LEARNING, or INDUCTIVE LEARNING)

–  In inductive learning, the system tries to induce a
GENERAL CLASSIFICATION RULE from a set of
available classified examples

15

Definiton of the supervised
classification task:

•  A training example is an instance x∈X, paired
with its correct category c(x): <x, c(x)> for
an unknown categorization function, c(x).

•  Usually, x is represented by a number of features
(more precisely, a feature vector x:<x1,x2..xn>)

•  Given a set of training examples, D (named
training set or learning set)

•  Find a hypothesized categorization function, h(x),
such that:)()(:)(, xcxhDxcx =∈><∀

Consistency: the hypothesis function must be
consistent with the learning set

Don’t	 get	 confused!	
•  C(x)	 is	 a	 classificaDon	 funcDon,	 that	 we	 aim	 to	 learn	 with	 a	 ML	

algorithm	
•  When	 given	 an	 object	 x,	 C(x)	 always	 returns	 the	 right	 classificaDon	
•  Unfortunately,	 perfect	 learning	 is	 impossible	 in	 the	 vast	 majority	 of	

cases!	 We	 cannot	 learn	 C(x)	
•  That’s	 why	 we	 talk	 about	 hypotheses	 h(x):	 the	 target	 is	 to	 learn	 a	

funcDon	 h(x)	 which	 approximates	 at	 best	 the	 real	 (unknown)	
funcDon	

•  How	 do	 we	 know	 how	 good	 is	 a	 specific	 h(x)??	 We	 actually	 don’t..	
We	 can	 only	 ESTIMATE	 the	 goodness,	 using	 a	 fragment	 of	 our	
available	 classified	 data,	 named	 the	 test	 set	 T.	 	

•  However,	 in	 selecDng	 our	 data	 for	 learning	 and	 tesDng,	 we	 must	 be	
careful..	 	

•  So	 we	 are	 ready	 for	 a	 more	 “formal”	 statement:	 	

Inductive Learning Hypothesis
•  Any function that is found to approximate the target concept

well on a sufficiently large set of training examples will also
approximate the target function well on unobserved examples.

•  Assumes that the training and test examples are drawn
independently from the same underlying distribution
(IID).

•  What we are saying here is that 1) we need “enough” data;
2)data must be representative of the domain

•  However this is very vague (what is “well”? What is
“sufficiently large”?)

•  Additional assumptions are necessary about the target concept
and the notion of “approximating the target function well on
unobserved examples” should be defined appropriately (cf.
computational learning theory).

Workflow of a Supervised Classifier

18

18

Data	 on	 the	 domain	

Machine	 learning	 	
Algorithm	
(classifier)	

ClassificaDon	 Model	

Performance	
evaluaDon	

the algorithm
to learn C(x)

An hypothesis
h(x) for C(x)

Training set
<x,C(x)>

Test set
<x,?>

How good is
h(x)?

Available	 classified	 data	 D	 are	 split	 in	 learning	 set	 L	 and	 test	 set	 T.	 	 L	 is	 used	 to	 train	
the	 classifier	 (=ML	 algorithm).	 The	 output	 of	 learning	 is	 an	 hypothesis	 funcDon	 h(x),	 i.e.,	
the	 Classifica*on	 Model.	 To	 verify	 how	 good	 is	 h(x)	 we	 use	 it	 to	 classify	 examples	 in	 the	
Test	 set	 T.	 	 The	 error	 rate	 is	 esDmated	 by	 the	 number	 of	 cases	 in	 which	 c(x)≠h(x)	 for	 x	 in	 T	 	

19

A Sample Concept Learning Problem
•  Instance language: <size, color, shape>

–  size ∈ {small, medium, large}
–  color ∈ {red, blue, green}
–  shape ∈ {square, circle, triangle

•  C = {positive, negative}
•  D:

Instances Size Color Shape C(x)
x1 small red circle positive

x2 large red circle positive

x3 small red triangle negative

x4 large blue circle negative

This	 means	 that	 every	
instance	 is	 represented	
by	 a	 set	 of	 a^ributes,	
or	 features,	 each	 taking	 	
values	 in	 a	 finite	 set	
	

Training	
set	

LANGUAGE:	 The	 name	 and	
values	 of	 features	 used	 to	
represent	 domain	 objects	 	

Hypothesis representation: which set of functions
can we use to represent C(x)?

•  As we said, may representations are possible for C(x).
•  For example, here we can represent an hypothesis h(x) for

C(x) e.g. with a boolean expression, or a rule, e.g.
•  If (color=red)&(shape=circle) THEN C=positive
•  Or equivalently: red&circle (if boolean expr. is true, then

c(x)=1)

20

Example Size Color Shape Category
1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

Do	 we	 have	 any	 possible	 choice	 for	
c(x)?	

•  Of	 course	 NO!!	
•  In	 general,	 we	 can	 choose	 boolean,	 algebraic	 or	
probabilisDc	 funcDons,	 BUT	 possible	 choices	
depend	 on	 the	 domain	 objects	 and	 their	
complexity	 of	 representaDon	 (e.g.	 if	 features	 are	
dependent	 or	 independent,	 if	 they	 are	 boolean	 –
or	 can	 approximate	 with	 a	 boolean-‐	 discrete,	 or	
conDnuous,	 etc.)	

•  In	 induc3ve	 learning	 we	 restrict	 to	 boolean	 or	
discrete	 feature	 representa3on,	 and	 boolean	
func3ons	 for	 c(x)	

22

Hypothesis Selection
•  Many hypotheses are usually consistent with the

training data (number of equivalent boolean
expressions is infinite).
–  red & circle
–  (small & circle) or (large & red)
–  (small & red & circle) or (large & red & circle)
–  not [(red & triangle) or (blue & circle)]
–  not [(small & red & triangle) or (large & blue & circle)]

Notice that the first is the conjunctive normal form CNF

You	 should	 know	 (but	 just	 in	 case..)	

 True	 table	 is	 unique	

Infinite	
number	 of	
equivalent	
boolean	

expressions	

So	 how	 to	 choose	 c(x)?	 	

•  Bias
–  Bias is any criterion other than “consistency with the

training data” that is used to select alternative hypotheses.
–  E.g: “preferring a conjunctive form” is an example of bias.

For example, we decide to learn a boolean function, but
among the possible boolean functions, we select
conjunctive forms.

25

Inductive Bias
•  A hypothesis space that does not include all possible classification

functions on the instance space is said to incorporates a bias in the
type of classifiers it can learn (e.g. restricting to conjunctive functions
is a bias in boolean concept learning)

•  Any means that a learning system uses to choose between two functions
that are both consistent with the training data is called inductive bias.

•  Inductive bias can take two forms:
–  Language bias: The language for representing concepts defines a

hypothesis space that does not include all possible functions (e.g.
linear vrs boolean functions).

–  Search bias: The language is expressive enough to represent all
possible functions (e.g. disjunctive normal form) but the search
algorithm embodies a preference for certain functions over others
(e.g. conjunctive functions, or unconsistent functions) This is called
syntactic simplicity.

BIAS
•  More in general, bias is a criterion for preferring a set of hypoteses

over another

•  a and b belong to different languages (linear vrs. non-linear
functions), b and c have a different search bias, since c relaxes
consistency in favor of simplicity

Here for example we relax the consistency
criterion

a c b

27

Ockham (Occam)’s Razor
•  William of Ockham (1295-1349) was a Franciscan friar

who applied the criteria to theology:
–  “Entities should not be multiplied beyond

necessity” (Classical version but not an actual quote,
which is: entia non sunt multiplicanda praeter
necessitatem)

–  “The supreme goal of all theory is to make the
irreducible basic elements as simple and as few as
possible without having to surrender the adequate
representation of a single datum of
experience.” (Einstein)

•  Requires a precise definition of “simplicity”.
•  Acts as a bias which assumes that nature itself is simple.
•  Role of Occam’s razor in machine learning remains

controversial (more on CLT course).

BIAS
•  More in general, bias is a criterion for preferring a set of hypoteses

over another

•  a and b belong to different languages (linear vrs. non-linear
functions), b and c have a different search bias, since c relaxes
consistency in favor of simplicity

Here for example we relax the consistency
criterion

a c b

29

Ockham (Occam)’s Razor
•  William of Ockham (1295-1349) was a Franciscan friar

who applied the criteria to theology:
–  “Entities should not be multiplied beyond

necessity” (Classical version but not an actual quote,
which is: entia non sunt multiplicanda praeter
necessitatem)

–  “The supreme goal of all theory is to make the
irreducible basic elements as simple and as few as
possible without having to surrender the adequate
representation of a single datum of
experience.” (Einstein)

•  Requires a precise definition of “simplicity”.
•  Acts as a bias which assumes that nature itself is simple.
•  Role of Occam’s razor in machine learning remains

controversial (more on CLT course).

30

Hypothesis Space (1)
•  How difficult is learning an hypothesis? It depends

upon the number of alternatives! In other terms, it
depends on the DIMENSION OF THE HYPOTHESIS
SPACE

•  Learned functions a priori restrict to a given hypothesis
space, H, of functions h(x) that can be considered as
possible hypotheses for c(x).

•  Depending upon the chosen class of hypotheses
(conjunctive forms, boolean expressions, algebraic
functions, probabilities..) the hypothesis space can be
small, large, or infinite!! (E.g. if c(x) is linear function,
like c(x)=w1x1+w2x2+..wnxn – with xi real-valued or
discrete features and wi real-valued coefficients, there
might be infinite linear functions that correctly classify
the examples in an available dataset!)

•  In inductive learning, the hypothesis space is FINITE.
But, how big?

Hypothesis Space of boolean functions
(1)	

•  So	 how	 many	 hypotheses	 for	 a	 boolean	 funcDon	
with	 n	 features,	 each	 of	 which	 can	 assume	 the	
values	 0,	 1	 or	 “?”	 (don’t	 care)?	

•  =number	 of	 disDnct	 truth	 tables	 with	 2n	 rows	 is	
	 (remember:	 there	 is	 one	 truth	 table	 for	 any	 boolean	
funcDon,	 but	 infinite	 number	 of	 equivalent	 logic	
expressions)	

•  Example	 n=2	 	 (boolean	 features	 are	 x,y)	 An	
hypothesis	 is	 a	 specific	 truth	 table,	 with	 two	
boolean	 	 variables.	 So,	 |H|=	 	 	 	 	 	 	 	 	 	

22
n

22
2
= 24 =16

Hypothesis Space of boolean functions
(1)	

•  So	 how	 many	 hypotheses	 for	 a	 boolean	 funcDon	
with	 n	 features,	 each	 of	 which	 can	 assume	 the	
values	 0,	 1	 or	 “?”	 (don’t	 care)?	

•  =number	 of	 disDnct	 truth	 tables	 with	 2n	 rows	 is	
	 (remember:	 there	 is	 one	 truth	 table	 for	 any	 boolean	
funcDon,	 but	 infinite	 number	 of	 equivalent	 logic	
expressions)	

•  Example	 n=2	 	 (boolean	 features	 are	 x,y)	 An	
hypothesis	 is	 a	 specific	 truth	 table,	 with	 two	
boolean	 	 variables.	 So,	 |H|=	 	 	 	 	 	 	 	 	 	

22
n

22
2
= 24 =16

Example	

xy	 	 	 	 h1	 	 h2	 	 h3	 	 h4	 	 h5	 	 h6	 	 h7	 	 h8	 	 h9	 	 h10	 h11	 h12………………	 	 	 	 	

34

Hypothesis Space of conjunctive
functions (2)

•  Let’s compute |H| for conjunctive functions like small&red
•  To learn concepts on instances described by n discrete-valued features, consider

the space of conjunctive hypotheses represented by a vector of n features
 <f1, f2, … fn> where each fi is either:

–  ?, a wild card indicating no constraint on the ith feature (= the feature is irrelevant)
–  A specific value from the domain of the ith feature (ex: color=red)
–  Ø indicating no value is acceptable (=there are NO objects belonging to the target class

in the dataset)
•  Sample conjunctive hypotheses have the following shape (wrt previous

example):
–  <big, red, ?> (equivalent to big&red, or [size=big]&[color=red])
–  <?, ?, ?> (most general hypothesis,)
–  < Ø, Ø, Ø> (most specific hypothesis,)

•  Notation: I can represent both instances and hypotheses as VECTORS, e.g.
•  x: < small,red,circle>è (size=small)&(color=red)&(shape=circle)
•  h: <small,?,circle> è IF (size=small)&(color=don’t care)&(shape=circle)

THEN True

€

∀x, c(x) =1

€

∀x, c(x) = 0

Hypothesis Space of conjunctive
functions (3)	

•  How	 many	 conjuncDve	 funcDons?	 Any	 feature	
can	 be	 0,	 1,	 always	 false	 (indicated	 with)	 or	
always	 true	 (indicated	 with	 ?)	 therefore	 4n	

•  However	 all	 hypotheses	 	 with	 at	 least	 one	
feature	 equal	 to	 	 	 	 	 	 are	 equivalent	 (they	 are	 all	
false)	 therefore	 |H|=	 3n+1	

•  Example	 n=2	 	 H=	 	 	 	 	 	 ,	 ?,xy,xy,xy,xy,x?,?y,	 x?,?y	
•  So	 10	 possible	 hypotheses	 for	 C(x)	

∅

∅

∅

36

Criteria to select best hypothesis:
Generalization

•  Even with a bias, a ML algorithm may output several
different hypotheses, all consistent with the learning set.
How do we choose?

•  Hypotheses must generalize to correctly classify instances
not in the training data.

•  Simply memorizing training examples is a consistent
hypothesis that does not generalize:

((small&red&circle)or(large&red&circle))&(not((small & red & triangle) or (large
& blue & circle)or…))

•  Occam’s razor:
–  Finding a simple hypothesis helps to ensure generalization.

•  BUT:	 how	 do	 we	 know	 that	 one	 hyp.	 is	 more	 general	 than	
others?

37

Using the Generality Structure

•  Given two hypotheses h1 and h2, h1 is more
general than or equal to h2 (h1≥h2) iff every
instance that satisfies h2 also satisfies h1.

•  Given two hypotheses h1 and h2, h1 is (strictly)
more general than h2 (h1>h2) iff h1≥h2 and it is
not the case that h2 ≥ h1.

•  Generality defines a partial order on
hypotheses.

Example hypothesis space for conjunctive
functions (two binary features) ordered by

generality

38

Ø	

T,T	 T,F	 F,T	 F,F	

?,F	 F,?	 ?,T	 T,?	

?	

Here	 all	
hypotheses	
with	 at	
least	 one	 	

“Ø”	
	

39

Other examples of Generality
•  Conjunctive feature vectors

–  <?, red, ?> is more general than <?, red, circle> (remember ?=“any
value is ok”)

–  Neither of <?, red, ?> and <?, ?, circle> is more general than the other.
•  Example: Axis-parallel rectangles in 2-d space

–  A is more general than B
–  Neither of A and C are more general than the other.

A
B

C

Digression: What are these rectangles?

40

Suppose X axis is cholesterol and Y is age. Green points are positive for
illness M and each rectangle represents the rule: if A<chol<B AND C<age<D then M
Therefore (hyper)rectangles are a class of hypotheses represented by ranges.

Question

•  Consider h1: <big, red, circle> and
 h2: <?, blue, ?>
•  Is h2>h1?
•  Given two hypotheses h1 and h2, h1 is more

general than or equal to h2 (h1≥h2) iff every
instance that satisfies h2 also satisfies h1.

•  So, is h2>h1?

41

42

Evaluation of hypotheses
We need to evaluate how the selected hypothesis
“approximates” the real (unknown) classification function
How? We use the training set (a fraction of the original
classified dataset D that we DID NOT USED during the
learning phase)
We need to measure:
•  Classification accuracy (% of instances classified correctly).

–  Measured on an independent test data.
•  Training time (efficiency of training algorithm).
•  Testing time (efficiency of subsequent classifications, when

the system is “operative”).
•  We will devote a lesson to ML systems evaluation

Summary	 so	 far	
•  We	 learned	 the	 workflow	 of	 a	 ML	 learning	 system	 	
•  We	 have	 seen	 that	 complexity	 of	 learning	 depends	 (also)	 upon	 the	

“shape”	 of	 the	 classificaDon	 funcDon	 to	 be	 learned	
(boolean,algebraic,	 probabilisDc)	 and	 on	 the	 complexity	 of	
representaDon	 of	 the	 objects	 to	 be	 classified	 (how	 many	 features?	
Boolean,	 discrete	 or	 conDnuous?	 Are	 the	 features	 related	 or	
independent?)	

•  We	 measured	 the	 (a	 priori)	 dimension	 of	 the	 hypothesis	 space	 for	
the	 case	 of	 boolean	 funcDons	 and,	 within	 boolean	 funcDons,	 of	
conjuncDve	 funcDons	

•  We	 also	 defined	 the	 noDon	 of	 generality	 of	 hypotheses	 and	 we	
have	 shown	 that,	 for	 conjuncDve	 funcDons,	 we	 can	 build	 the	
hypothesis	 space	 as	 a	 tree	 structure	

•  Generality	 is	 important,	 but	 the	 goodness	 of	 an	 hypothesis	 needs	
to	 be	 evaluated	 against	 an	 (independent)	 test	 set	

But	 how	 do	 we	 learn	 an	 hypothesis?	

•  We	 know	 that	 hypotheses	 can	 have	 different	
shapes,	 can	 be	 finite	 of	 infinite,	 can	 be	
ordered	 according	 to	 generality,	 can	 be	
evaluated	

•  BUT:	 what	 about	 LEARNING	 a	 “good”	
hypothesis?	

•  Let’s	 start	 with	 algorithms	 (simple	 algorithms	
for	 conjuncDve	 learning,	 to	 begin..)	

Concept	 (or	 InducDve)	 learning	

Algorithms	 to	 learn	 boolean	
classificaDons	

Concept	 learning	 (summary	 so	
far)	

•  ObjecDve:	 learn	 a	 boolean	 classificaDon	 c(x)	
for	 objects	

•  Concept	 learning	 is	 a	 form	 of	 supervised	
learning:	 we	 are	 given	 a	 set	 D	 of	 pairs	 <x,c(x)>	 	
for	 which	 the	 classificaDon	 is	 known.	

•  Every	 object	 x	 is	 described	 by	 a	 set	 of	 features	
(also	 called	 a^ributes):	

•  Features	 are	 either	 boolean	 or	 discrete-‐valued	

x ∈ X

x : f1,.. fn

Boolean	 funcDons	

•  Concept	 learning	 implies	 learning	 an	
hypothesis	 h(x)	 for	 c(x)	

•  Perfect	 learning	 is	 usually	 impossible,	 the	
objecDve	 is	 to	 learn	 a	 “good”	 approximaDon	

•  Consistent	 learning	 is	 when:	 	
∀x ∈ D h(x) = c(x)

48

Conjunctive Rule Learning
•  Conjunctive functions are easily learned by finding all

commonalities shared by all positive examples.

•  Must check consistency with negative examples. If
inconsistent, no conjunctive rule exists.

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative

Learned rule: red & circle → positive

49

Limitations of Conjunctive Rules
•  If a concept does not have a single set of

necessary and sufficient conditions, conjunctive
learning fails.
Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative
5 medium red circle negative

Learned rule: red & circle → positive
Inconsistent with negative example #5!

50

Disjunctive Concepts
•  Concept may be disjunctive (in this case a

conjunctive hypthesis cannot be found!)

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative
5 medium red circle negative

Learned rules:

small & circle → positive large & red → positive

h(x)= (small & circle) or (large & red)

Concept Learning as Search
•  Conjunctive hypotheses are a small subset of

the space of possible boolean functions
•  We can see conjunctive learning as the task of

searching the best hypothesis while travelling
in the search space

51

52

Generalization Lattice

< Ø, Ø, Ø>

<?,?,circ> <big,?,?> <?,red,?> <?,blue,?> <sm,?,?> <?,?,squr>

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr>

<?, ?, ?>

Size: {small, big} Color: {red, blue} Shape: {circle, square}

Number of hypotheses = 33 + 1 = 28

Let’s	 consider	 a	 simpler	 case	 wrt	 previous	 example,	 now	 features	 are	 all	 boolean	

53

Algorithm 1: Most Specific Learner
(Find-S)

•  Find the most-specific hypothesis (least-general generalization,
LGG) that is consistent with the training data.

•  Incrementally update hypothesis h(x) after every positive example,
generalizing it “just enough” to be consistent with the new
example (we also say that h(x) “does not satisfies x”).

•  For conjunctive feature vectors, this is easy:
 Initialize h = <Ø, Ø,… Ø>
 For each positive training instance x in D
 For each feature fi
 If the constraint on fi in h is not satisfied by x
 If fi in h is Ø
 then set fi in h to the value of fi in x
 else set fi in h to “?”
 If h is consistent with all negative training instances in D
 then return h
 else no consistent hypothesis exists

Time complexity:
O(|D| n)
if n is the number
of features

f
i
h ≡ f

i
x

(an odd) Example: learning a user profile

•  We assume there are no errors in D (often not true!)
•  “Click” is the classification function defined in (0,1)
 (will the user click on the page?)

domain	
 platform	
 Browser	
 day	
 screen	
 country	
 Click?	

edu	

com	

com	

org	

Mac	

Mac	

PC	

Unix	

Net3	

NetCom	

IExpl	

Net2	

Lu	

Lu	

Sab	

Gio	

XVGA	

XVGA	

VGA	

XVGA	

America	

America	

Asia	

Europa	

Si	

Si	

No	

Si	

features

values
C(x)

Tr
an

in
g

se
t

D

Find-S

h2,3

h1

X H

generality
h4

h0

Training set D Hypohesis space H
X1=	 (<edu,mac,Net3,Lun,XVGA,America>,1)	 	 h0	 =	 <Ø,	 Ø,	 Ø,	 Ø,	 Ø,	 Ø>	
X2=(<com,mac,Net3,Mar,XVGA,America>1)	 	 h1=<edu,mac,Net3,Lun,XVGA,America>	
X3=	 (<com,PC,IE,Sab,VGA,Eur>,0) 	 	

X4=	 (<org,Unix,Net2,Mer,XVGA,America>,1)	 	 	
h2=<?,mac,Net3,?,XVGA,America>	
h3=<?,mac,Net3,?,XVGA,America>	
h4=<?,?,?,?,XVGA,America>	

1=	 posiDve,	 c(x)=true;	 0=negaDve,	 c(x)=false	

56

Properties of Find-S
•  For conjunctive feature vectors, the most-specific hypothesis is

unique and found by Find-S (if enough examples are
provided).

•  If the most specific hypothesis is not consistent with the
negative examples, then there is no consistent function in the
hypothesis space, since, by definition, it cannot be made more
specific and retain consistency with the positive examples.

•  Notice however that FIND S does not consider negative
examples! (consistency is checked for at the end)

•  For conjunctive feature vectors, if the most-specific hypothesis
is inconsistent, then the target concept must be disjunctive.

57

Issues with Find-S
•  Given sufficient training examples, does Find-S converge to a

correct definition of the target concept (assuming it is in the
hypothesis space)?

•  How do we know when the hypothesis has converged to a
correct definition?

•  Why prefer the most-specific hypothesis? Are more general
hypotheses consistent? What about the most-general
hypothesis? What about the simplest hypothesis?

•  If the least general generalization LGG is not unique
–  Which LGG should be chosen?
–  How can a single consistent LGG be efficiently computed or

determined not to exist?
•  What if there is noise in the training data and some training

examples are incorrectly labeled?

58

Effect of Noise in Training Data
•  Frequently realistic training data is corrupted by errors

(noise) in the features or class values.
•  Such noise can result in missing valid generalizations.

–  For example, imagine there are many positive examples like #1
and #2, but out of many negative examples, only one like #5 that
actually resulted from a error in labeling.

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative
5 medium red circle negative

59

Algorithm 2: Version Space

•  Given an hypothesis space, H, and training data,
D, the version space is the complete subset of H
that is consistent (compatible)with D.

•  The version space can be naively generated for
any finite H by enumerating all hypotheses and
eliminating the inconsistent ones.

•  Can one compute the version space more
efficiently than using enumeration (considering all
hypothesis space and ordering hi?)

60

Version Space with S and G
•  The version space can be represented in a more compact way

by maintaining two boundary sets of hypotheses, S, the set of
most specific consistent hypotheses, and G, the set of most
general consistent hypotheses:

•  S and G represent the entire version space via its boundaries in

the generalization lattice:

)]},([),(|{ DsConsistentssHsDsConsistentHsS ʹ′∧ʹ′>∈ʹ′¬∃∧∈=
)]},([),(|{ DsConsistentggHgDgConsistentHgG ʹ′∧>ʹ′∈ʹ′¬∃∧∈=

version
space

G

S

61

Version Space Lattice

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr>

< Ø, Ø, Ø>

<?,?,circ> <big,?,?> <?,red,?> <?,blue,?> <sm,?,?> <?,?,squr>

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

<?, ?, ?>

Size: {sm, big} Color: {red, blue} Shape: {circ, squr}

<<big, red, squr>, 1>
<<sm, blue, circ>, 0>

Color Code:
G
S

other VS

62

Candidate Elimination (Version Space)
Algorithm

Initialize G to the set of most-general hypotheses in H
Initialize S to the set of most-specific hypotheses in H
For each training example, d, do:
 If d is a positive example then:
 Remove from G any hypotheses that do not match d
 For each hypothesis s in S that does not match d
 Remove s from S
 Add to S all minimal generalizations, h, of s such that:
 1) h matches d
 2) some member of G is more general than h
 Remove from S any h that is more general than another hypothesis in S
 If d is a negative example then:
 Remove from S any hypotheses that match d
 For each hypothesis g in G that matches d
 Remove g from G
 Add to G all minimal specializations, h, of g such that:
 1) h does not match d
 2) some member of S is more specific than h
 Remove from G any h that is more specific than another hypothesis in G

63

Sample VS Trace
S= {< Ø, Ø, Ø>}; G= {<?, ?, ?>}
SIZE: (big,small) COLOR: (red, blue) SHAPE: (circ, square, triangle)

Positive: X: <big, red, circle>
Nothing to remove from G (X is compatible with G, G would “accept” X)
Minimal generalization of only S element is <big, red, circle> which is more
specific than G.
S={<big, red, circle>}; G={<?, ?, ?>}

Negative: Y: <small, red, triangle>
Nothing to remove from S. (Y is compatible with S={<big, red, circle>}, S
would reject Y)
Minimal specializations of <?, ?, ?> that would reject the negative example
are: <big, ?, ?>, <?, blue, ?>, <?, ?, circle>, <?, ?, square> but some are not
more general than some element of S hence the final set G is <big, ?, ?>,
<?, ?, circle>
S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>}

64

Sample VS Trace (cont)
S={<big, red, circle>}; G={<big, ?, ?>, <?, ?, circle>}

Positive: Z: <small, red, circle>
Remove <big, ?, ?> from G (it would erroneously reject the example)
Minimal generalization of S: <big, red, circle> that would accept the positive
example is <?, red, circle>
S={<?, red, circle>}; G={<?, ?, circle>}

Negative: N: <big, blue, circle>
Nothing to remove from S (S would correctly reject the example)
G: Minimal specializations of <?, ?, circle> that would reject the example
are: <small, ? circle>, <?, red, circle>, but one is not more general than some
element of S.
S={<?, red, circle>}; G={<?, red, circle>}

S=G; Converged!

Example 2 (a generic 3-monomial conjunctive function)

TRUE

 zzyyxx

xyzzxyzyxzyxyzxzyxzyxzyx

FALSE

xzxyzxyxyzyxzyyxzyzxzyzxyx

< (x, y−),+ >

>−<),,,(zyx

S0

S1

G0

G1

Note	
that	 x	
and	 z	
are	
NOT	
compa
Dble	
with	
S1!!	

66

Properties of VS Algorithm
•  S summarizes the relevant information in the positive

examples (relative to H) so that positive examples do not need
to be retained.

•  G summarizes the relevant information in the negative
examples, so that negative examples do not need to be
retained.

•  Result is not affected by the order in which examples are
processes but computational efficiency may.

•  Positive examples move the S boundary up; Negative
examples move the G boundary down.

•  If S and G converge to the same hypothesis, then it is the only
one in H that is consistent with the data.

•  If S and G become empty (if one does the other must also)
then there is no hypothesis in H consistent with the data.

67

Correctness of Learning

•  Since the entire version space is maintained, given a
continuous stream of noise-free training examples,
the VS algorithm will eventually converge to the
correct target concept if it is in the hypothesis space,
H, or eventually correctly determine that it is not in
H.

•  Convergence is correctly indicated when S=G.

68

Computational Complexity of VS
•  Computing the S set for conjunctive feature vectors is

linear in the number of features and the number of
training examples.

•  Computing the G set for conjunctive feature vectors
is exponential in the number of training examples
in the worst case.

•  In more expressive languages (than conjunctive
rules), both S and G can grow exponentially.

•  The order in which examples are processed can
significantly affect computational complexity.

Before we start presenting new (and
more practical) ML algorithms..

69

A number of relevant issues that apply
to any ML problem/algorithm

1.  Feature selection and object representatzion
2.  Best order to present training examples
3.  Multiple categories

70

1. Feature Selection

•  Many factors affect the success of machine
learning on a given task.

•  The representation and quality of the
example data is first and foremost.

•  In theory, having more features should result in
more discriminating power.

•  However, practical experience with machine
learning algorithms has shown that this is not
always the case.

71

The importance of features (attributes)
selection

•  Reduce the cost of learning by reducing the
number of attributes.

•  Provide better learning performance compared
to using full attribute set.

Feature selection is task dependent

73

To classify lions and frogs in the appropriate category,
a simple color histogram could perform very well:
f=color

Feature selection is task dependent

74

To classify horses and lions, more features are needed.
Some would be useless, e.g Color, Number-of-legs..since
they would not help to differentiate the 2 categories

Feature selection methods

 There are two approach for attribute selection.
•  Filter approach attempt to assess the merits of

attributes from the data, ignoring learning
algorithm.

•  Wrapper approach the selection of a subset of
attributes is done using the learning algorithm
as a black box.

Filtering

76

Filtering

•  A feature fi is said to be strongly relevant to the
target concept(s) if the probability distribution
of the class values, given the full feature set,
changes when fi is removed.

•  A feature fi is said to be weakly relevant if it is

not strongly relevant and the probability
distribution of the class values, given some subset
S (containing fi) of the full feature set, does not
changes when fi is removed.

77

Example: want to learn chair(x)
(chair(x)=true if x=chair)

78

Prior probability of instances in D
P(chair)=8/16=0,5
P(table)=P(not(chair))=8/16=0,5
So we have the maximum uncertainty.
If we classify at random, our
probability of error is 50%

Consider the feature:
4-legs (boolean)

x=(color,	 has-‐back,4-‐legs)	 	 (3	 boolean	 features	 to	 describe	 instances)	

Example
•  If we group instances according to the 4-legs

feature, we have :

79

4-‐legs=true	

4-‐legs=false	 Grouping instances
according to 4-legs does
not vary the probability
distribution of the 2
categories: it remains 0,5!!

What about other features?
•  “4-legs” is not a good feature to correctly classify tables and

chairs!! It leaves you with the same uncertainty (0.5)
•  Instead “has-back” would be enough to perfectly separate the

2 categories (given the trainig set of instances of the example)
•  In fact has-back=true would group only chairs, has-

back=false would group only tables)

80
Has_back=yes	 Has_back=no	

Are	 we	 sure?	

•  So,	 given	 our	 data,	 we	 could	 use	 the	 simple	
rule:	 IF	 has-‐back	 =	 yes	 THEN	 chair(x)=YES	

•  But	 what	 about	 “unseen”	 instances?	

This	 was	 simple	 example..	

•  In	 previous	 example,	 one	 feature	 was	 useless,	
the	 other	 was	 100%	 useful	 (could	 use	 that	
single	 feature	 to	 decide	 the	 correct	 class)	

•  In	 general,	 the	 problem	 is	 to	 automaDcally	
analyze	 all	 features	 and	 order	 them	 according	
to	 the	 REDUCTION	 OF	 UNCERTAINTY	 we	 get	
when	 grouping	 our	 dataset	 according	 to	 the	
values	 of	 each	 instance	

Measuring the “probability
distribution”: Entropy filtering

•  Ranking according to entropy gain of attributes.
•  Entropy for given set of data with 2 classes can be

defined as

•  p(j) is the probability of class j, estimated by

the relativefrequency of elements classified as
“j” in the training set

Example	
•  Learning	 set	 D	 includes	 5	 istances,	 2	 classified	 as	 posiDves	 3	

negaDves	
•  Probability	 of	 posiDve	 (esDmate)	 p+=2/5	
•  Probability	 of	 negaDve	 (esDmate)	 p-‐=3/5	
•  Entropy	 of	 the	 training	 set	 is:	
•  E(D)=-‐(2/5)log2(2/5)-‐(3/5)log2(3/5)	 =	 	

(0.4)x1.32	 +	 (0.6)x0.737=	 0.528+0.44=0.97	
•  Note:	 if	 instances	 in	 D	 are	 equally	 distributed	 between	 posiDve	

and	 negaDve,	 Entropy	 is	 1	
•  E(D)=	 -‐0.5log(0.5)-‐0.5log(0.5)=0.5+0.5=1	
•  If	 all	 instances	 are	 	 classified	 THE	 SAME	 8all	 are	 posiDve	 or	 all	 are	

negaDve)	 Entropy	 is	 0	
•  E(D)=	 -‐1log(1)	 =0	 	

Entropy	 Filtering	
After classification using one specific feature j, we can
calculate the gain of feature j:

•  where ni/n is an estimate of the probability that the considered

feature has value i. ni is the number of instances in the learning
set D having the value of feature j equal to the value i
 (e.g. for the chairs case, there are 8/16 instances with feature
 4-legs=yes, and 8/16 with 4-legs=no)

•  Entropy(i) is the entropy of the subset Di with fj=i
•  Larger value of gain better attribute.

Wrt previous example of tables and chairs

•  E=-0.5log2(0.5) -0.5log2(0.5)= 1 (initial entropy,
since there are 50% tables, 50% chairs)

•  If we classify according to feature 4-legs:
–  E(4-legs=true)=1 since out of 12 objects with 4 legs, we

have 6 chairs and 6 tables
–  E(4-legs=false)=1 since out of 4 objects without 4 legs,

we have 2 chairs and 2 tables
–  GAIN=1-((12/16) E(4-legs=true) +(4/16) E(4-

legs=false))=1-1=0 NO GAIN!!
•  If we instead classify according to has-back:

–  E(has-back=true)=0 (they are all chairs)
–  E(has-back=false)=0 (they are all tables)
–  Hence GAIN=1-0=1

86

In previous example we had two extremes: perfectly
useless (4-legs) and perfectly useful (has-back) features

At each step, choose
the feature that
“reduces entropy”
most. Work towards
“node purity”.

Pure nodes are those
including instances with
a unique classification
(e.g. all tables)

All	 the	
data	

f1	

f2	

Choose	 f1	

Choose	 f2	

Common case is that entropy changes, but not from 1 to 0!!
Ex. black instances positive, white are negative

Partition the data set in two groups according to f1=1: positive and negative

e.g.	 in	 this	 set	 we	 group	
all	 instances	 with	 f1=0	 	

f1=1	 f1=0	

Now	 we	 parDDon	 according	 to	 f2	

Summary	 on	 filtering	

•  Filtering	 is	 a	 method	 to	 order	 features	 according	
to	 relevance	 	

•  The	 Entropy	 filtering	 order	 the	 features	 according	
to	 informaDon	 gain	

•  Perfect	 features	 are	 those	 with	 gain	 1,	 useless	
features	 are	 those	 with	 gain	 0,	 most	 features	 are	
somewhere	 in	 between	

•  Note	 that	 filtering,	 as	 we	 said	 iniDally,	 only	 looks	
at	 the	 distribuDon	 of	 feature	 values	 in	 the	
dataset,	 NOT	 at	 the	 machine	 learning	 algorithm	

Wrappers

•  Employs the target learning algorithm to
evaluate feature sets

•  Uses an induction algorithm along with a
statistical re-sampling technique such as cross-
validation to estimate the final accuracy of
feature subsets

89

Wrappers

90

• 91

Wrappers

Say	 we	 have	 features	 A,	 B,	 C	 and	 classifier	 M.	 We	 want	 to	 predict	 C(X)	 given	 the	
smallest	 possible	 subset	 of	 {A,B,C},	 while	 achieving	 maximal	 performance	
(accuracy)	

	 	 	 	 	 	 	 FEATURE	 SET 	 	 CLASSIFIER	 	 	 PERFORMANCE	

	 {A,B,C} 	 	 M 	 	 	 	 	 	 	 	 	 	 	 98%	

	 {A,B} 	 	 M 	 	 	 98%	

	 {A,C}	 	 	 	 	 	 	 	 	 	 	 M 	 	 	 77%	

	 {B,C}	 	 	 	 	 	 	 	 	 	 	 M 	 	 	 56%	

	 {A} 	 	 	 	 	 	 	 	 	 	 	 M 	 	 	 89%	

	 {B} 	 	 	 	 	 	 	 	 	 	 	 M 	 	 	 90%	

	 {C} 	 	 	 	 	 	 	 	 	 	 	 M 	 	 	 91%	

	 {.} 	 	 	 	 	 	 	 	 	 	 	 M 	 	 	 85%	

The	 third	 column	 is	 the	 number	 of	
correctly	 classified	 istances	 by	 the	
classifier	 M	 when	 using	 the	 set	 of	
features	 in	 column1	

When	 zero	 features	 are	 used,	 the	
classifier	 performs	 a	 random	 guess.	 In	
this	 case,	 P=85%	 means	 that	 the	 prior	
probability	 of	 C(X)=true	 is	 0,85	

Wrappers (2)

The	 set	 of	 all	 subsets	 is	 the	 power	 set	 and	 its	 size	 is	 2|V|	 (V=	 number	 of	 features).	
Hence	 for	 large	 V	 we	 cannot	 do	 this	 procedure	 exhaus3vely;	 instead	 we	 rely	 on	
heuris3c	 search	 of	 the	 space	 of	 all	 possible	 feature	 subsets.	

{}	 85%	

{A}	 89%	

{B}	 90%	

{A,B}	 98%	

{A,B,C}98%	

{C}	 91%	

{A,C}	 77%	

{B,C}	 56%	

start	

{A,B}98%	

{B,C}56%	

{A,C}77%	
end	

this	 is	 the	 esDmate	 of	 prior	
probability	 of	 C(X)=true	

Wrappers: Hill climbing

A common example of heuristic search is hill climbing:
keep adding features one at a time until no further
improvement can be achieved.

We	 start	 with	 an	 empty	 set	 of	 a^ributes.	 At	 each	 step	 k,	 we	 consider	 all	 possible	 	
combinaDons	 of	 k	 a^ributes.	 f(v)	 is	 any	 evaluaDon	 funcDon	 (e.g.,	 precision)	

v
k

!

"
#
$

%
&

• 94

Hill Climbing

{}	 85	

{A}	 89	

{B}	 90	

{A,B}	 98	

{A,B,C}98	

{C}	 91	

{A,C}	 77	

{B,C}	 56	

start	

{A,B}98	

{B,C}56	

{A,C}77	
end	

Start with empty set of attributes
Step 1: with first expansion (add one attribute in each node) f(v’)>f(v) for all nodes
Step 2: node C is expanded first (since had highest perf), but condition is not met, so
backtrack to second best (B)
Step 3: B is expanded and nodes A,B and B,C are generated; A,B is the best
Step 4: A,B is expanded but condition is not met; OUTPUT is {A,B}

Empty	 subset	 of	 a^ributes	

Full	 set	 of	 a^ributes	

Ex:	 A^ribute	 tree	 with	 4	 binary	 a^ributes	 (=	 features)	

NOTE:	 terms	 “ATTRIBUTE”	 and	 “FEATURE”	 can	 be	 used	 interchangeably.	 Same	 meaning!	

A number of relevant issues that apply
to any ML problem/algorithm

1.  Feature selection and object representation
2.  Best order to present training examples
3.  Multiple categories

96

√	

97

Best way to select examples: Active
Learning

•  In active learning, the system is responsible for selecting
good training examples and asking a teacher (oracle) to
provide a class label.

•  Goal is to minimize the number of examples required
to learn an accurate concept description.

•  The general idea is to select the training examples in a
“smart” way

•  Note: only applicable if we have lots of examples, target
is to avoid loosing time with examples which are less
useful (e.g. too similar to already analyzed ones), OR if
we need the help of an expert to label examples in the
appropriate class (experts have a cost!)

Toy Example: 1D classifier	

•  ObjecDve:	 learning	 a	 threshold	 funcDon	 (if	 x>w	 then	 true	 else	
false).	 The	 threshold	 w	 is	 unknown	 ..	 It	 is	 what	 we	 want	 to	
learn	

•  Example:	 we	 want	 to	 learn	 the	 body	 mass	 index	 above	 which	
there	 is	 a	 high	 risk	 of	 diabetes	

•  To	 train	 the	 system	 we	 need	 to	 “label”	 a	 training	 set	 (we	 need	
to	 idenDfy	 people	 with	 and	 without	 diabetes,	 and	 then	
measure	 their	 BMI).	 	

•  The	 number	 of	 examples	 N	 depends	 on	 the	 number	 of	
possible	 values	 of	 x	 (possibly	 discreDzed).	 For	 the	 BMI,	 values	
go	 from	 10	 to	 40	 (N=30).	 	

Toy Example: 1D classifier

x x x x x x x x x x

Naïve method: choose points to label at random on line (choose
patients from a record database at random)

•  Requires O(N) training data to find underlying classifier

Better method: binary search for transition between 0 and 1
•  Requires O(log N) training data to find underlying classifier
•  Exponential reduction in training data size!

Goal: given the training set, find transition between
0 and 1 labels (e.g. find w) in minimum steps

0 0 0 0 0 1 1 1 1 1

w

Active learning: choose labeled
examples

100

Active learning strategies
•  Uncertainty sampling: label those points for which the current model

is least certain as to what the correct output should be (if model is
probabilistic)

•  Query by committee: a variety of models are trained on the current
labeled data, and vote on the output for unlabeled data; label those
points for which the "committee" disagrees the most (most
complex cases)

•  Expected model change: label those points that would most change
the current model

•  Expected error reduction: label those points that would most reduce
the model's generalization error

•  Variance reduction: label those points that would minimize output
variance, which is one of the components of error

101

A common method is: take the
example that “mostly differs” from

those seen so far

102

Typical heuristics for active learning
•  Start with a pool of unlabeled data
•  Pick a few points at random and get their labels
•  Repeat

–  Pick the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

103

Knowing the label of the first
two instances is more helpful
at determining the positive/negative
boundary than the third instance.

1	

2	

3	
Which of the following
instances would be
an interesting example?

A number of relevant issues that apply
to any ML problem/algorithm

1.  Feature selection and object representatzion√
2.  Best order to present training examples √
3.  Multiple categories

104

105

Learning for Multiple Categories
•  What if the classification problem is not concept learning and involves

more than two categories (e.g. select among several possible
illnesses, given the symptoms)?

•  Can treat as a series of concept learning problems (e.g. we use n
independent classifiers), where for each classifier Ci, all

 are treated as positive and all other instances in categories Cj, j≠i are
treated as negative (one-versus-all).

•  This will assign a unique category to each training instance but may
assign a novel instance to zero or multiple categories.

•  If the binary classifier produces confidence estimates (e.g. based on
voting), then a novel instance can be assigned to the category with the
highest confidence.

€

x ∈D, s.t. ci(x) =1

Example
•  Classifier 1: red or

not-red
•  Classifier 2: blue or

not-blue
•  Classifier 3: yellow

or not-yellow

106

D T

