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Probabilistic ML algorithm 
 

Naïve Bayes and Maximum 
Likelyhood   
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Axioms of Probability Theory 

•  All probabilities between 0 and 1 

•  True proposition has probability 1, false has 
probability 0.  

        P(true) = 1        P(false) = 0. 
•  The probability of  disjunction is: 
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Conditional Probability  

•  P(A | B) is the probability of A given B 
•  Assumes that B is all and only information 

known. 
•  Defined by: 
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Independence 

•  A and B are independent iff: 

•  Therefore, if A and B are independent: 
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These two constraints are logically equivalent 
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Joint Distribution 
•  The joint probability distribution for a set of random INDEPENDENT 

variables, X1,…,Xd gives the probability of every combination of 
values (an n-dimensional array with K values if all variables are 
discrete with K values, all K prob values must sum to 1): 

 
•  The probability of all possible conjunctions (assignments of values to 

some subset of variables) can be calculated by summing the 
appropriate subset of values from the joint distribution. 

•  Therefore, all conditional probabilities can also be calculated. 

circle square 
red 0.20 0.02 
blue 0.02 0.01 

circle square 
red 0.05 0.30 
blue 0.20 0.20 

Class=positive Class=negative 

P(red ∧circle) = P(red ∧circle∧ positive)+ P(red ∧circle∧negative) = 0.20+0.05= 0.25
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circleredP
circleredpositivePcircleredpositiveP

P(red ) = P(red ∧circle∧ positive)+ P(red ∧ square∧ positive)+ ecc = 0.20+0.02+0.05+0.3= 0.57

Pr(shape=circle, 
color=blue, C=+) 
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Probabilistic Classification 

•  Let Y be the random variable for the class C which takes values 
{y1,y2,…ym} (|C|=m possible classifications for our instances). 

•  Let X be the random variable describing an instance consisting 
of a vector of values for d features <X1,X2…Xd>, let vjk be a 
possible value for Xj (xk is an instance in X and vjk  is the value of 
feature Xj for xk ) . 

•  For our classification task, we need to compute: 
   P(Y=yi | X=xk) for i=1…m  
 (e.g. P(Y=positive/xk=<blue,circle>) ) 
•  E.g. the objective is to classify a new unseen xk  by estimating 

the probability of  each possible classification  yi , given the 
feature values of the instance to be classified 
xk:<X1=v1k,X2=v2k2…Xd=vdk> 

•  To estimate  P(Y=yi | X=xk) we use a learning set D of pairs 
(xi,C(xi)) 



Probabilistic Classification (2) 

•  However, given no other assumptions, this requires a table 
giving the probability of each category for each possible 
instance (combination of feature values) in the instance 
space, which is impossible to accurately estimate from a 
reasonably-sized training set. 

•  E.g. Pr(Y=yi/X1=v1k,X2=v2k2…Xd=vdk)  
– Assuming  that Y and all Xi are binary, and we 

have d features, we need 2d entries to specify       
P(Y=1 | X=xk) for each of the 2d possible xk since: 
– P(Y=0 | X=xk) = 1 – P(Y=1 | X=xk)  
– Compared to 2d+1 – 1 entries for the joint 

distribution P(Y,X1,X2…Xd) 
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Example 

•  X:(X1,X2..X4), Xi:         Y:         (d=4, m=2) 
•  xk:(0,1,0,0) 
•  Need to estimate Pr(Y=0/(0,1,0,0))  
•  If P(Y=0/(0,1,0,0))>(1-P(Y=0/(0,1,0,0))) 

then class is 0, else class is 1 
•  Overall, 24 estimates are needed for our 

probabilistic classifier 
•  For large m and n this is not feasible 
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Maximum Likelihood learning 

•  We have a probabilistic model, M, of some 
phenomena.  We know exactly the structure of M 
(e.g. a Gaussian ), but not the values of its 
probabilistic parameters, Θ (e.g. µ,σ). 

•   Each “execution” of M produces an observation, 
x[i] , according to the (unknown) distribution 
induced by M. 

◆  Goal: After observing x[1] ,…, x[n]  , estimate 
the model parameters, Θ, that generated the 
observed data.   
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Maximum Likelihood Estimation (MLE) 

◆ The likelihood of the observed data, given the     
   model parameters Θ, is the conditional   
   probability that the model, M, with parameters   
   Θ, produces the observations  x1 ,…, xm  . 
 

L(Θ)=Pr(x[1] ,…, x[n]  | Θ, M),  
 

◆  In MLE we seek the model parameters, Θ, that   
   maximize the likelihood. 
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Maximum Likelihood Estimation (MLE) 

◆  In MLE we seek the model parameters, Θ, that   
   maximize the likelihood. 
◆  The MLE principle is applicable in a wide  

variety of ML applications, from speech    
recognition,  through natural language 
processing, to computational biology. 

◆  We will start with the simplest example:   
   Estimating the bias of a thumbtack. 
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Example: Binomial Experiment 
 

•  When tossing the thumbtack, it can land in one of 
two positions: Head (H) or Tail  (T) 

•   
 

Head Tail 

◆ We denote by θ  the (unknown) probability P(H). 
Estimation task: 
◆  Given a sequence of toss samples x1..xm we 
want to estimate the probabilities P(H)=θ  and 
P(T) = 1 - θ 
◆ θ is also called the model parameter 
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 Statistical Parameter Fitting (general 
definition) 

•    Consider instances D: x1, x2, …, xm    
    such that 

– The set of values that x can take is known 
– Each is sampled from the same distribution 
– Each sampled independently of the rest 

i.i.d. 
Samples 

◆      The task is to find a vector of parameters   
    Θ that have generated the given data.  This   
    vector parameter Θ can be used to predict    
    future data. 
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The Likelihood Function 
•   How good is a particular θ? 

It depends on how likely it is to generate the 
observed data 

•  The likelihood for the sequence H,T, T, H, H is 

LD (θ ) = P(D |θ ) = P(xj |θ )
j=1..m
∏

( ) (1 ) (1 )DL θ θ θ θ θ θ= ⋅ − ⋅ − ⋅ ⋅

0 0.2 0.4 0.6 0.8 1 θ 

L(
θ)
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Sufficient Statistics  

•  To compute the likelihood in the thumbtack 
example we only require NH and NT 
 (the number of heads and the number of tails) 
 
 

•  NH  and NT are sufficient statistics for the 
binomial distribution 

•  A sufficient statistic is a function whose value 
contains all the information needed to compute 
any estimate of the parameter 

( ) (1 )H
D

TN NL θ θ θ= ⋅ −
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Maximum Likelihood Estimation 

MLE Principle: 
Choose parameters that maximize the likelihood 

function 
 

•  This is one of the most commonly used 
estimators in statistics 

•  Intuitively appealing 
•  One usually maximizes the log-likelihood 

function, defined as  lD(θ) = ln LD(θ)  
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Example: MLE in Binomial Data 

Taking derivative and equating it to 0 we get 
( ) ( )log log 1D H Tl N Nθ θ θ+= −

1
H TN N
θ θ

=
−

0 0.2 0.4 0.6 0.8 1 

L(
θ)

 Example: 
 (NH,NT ) = (3,2) 

 
MLE estimate is 3/5 = 0.6  

ˆ H

H T

N
N N

θ⇒ =
+

(which coincides with what one would expect) 

Remember, to maximize  
minimize a function  
you need to take the  

derivative 



From Binomial to Multinomial 

•  Now suppose X  can have the values 1,2,…,K   
(For example a die has K=6 sides) 

•  We want to learn the parameters θ1, θ2. …, θK  
(the vector Θ) 

Sufficient statistics: 
◆ N1, N2, …, NK - the number of times each outcome 
is observed 
 LD (θ ) = θk

Nk

k=1

K

∏ s.t. θk
k
∑ =1 and θk ≥ 0 ∀k

θ̂k =
Nk
Nj
j
∑



Lagrangian (again) 
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θ̂k =
Nk
Nj
j
∑
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Example: Multinomial 

•  Let     be a protein sequence 
•  We want to learn the parameters θ1, θ2,…, θ20 

 corresponding to the probabilities of the 20 
amino acids 

•  N1, N2, …, N20 - the number of times each 
amino acid is observed in the sequence 

Likelihood function: 
LD (q) = θk

Nk

k=1

20

∏

1 2.... nx x x

θk =
Nk
n
n = Ni

i=1

20

∑MLE: 



NAIVE BAYES CLASSIFIER 

21 
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Bayes Theorem 

•  H=hypothesis  
•  E= evidence of data 
Simple proof from definition of conditional probability: 
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Bayesian Categorization 

For each classification value yi  we have (applying 
Bayes): 

•  P(Y=yi) and P(X=xk) are called priors and can be 
estimated from learning set D since categories are 
complete and disjoint 
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P(A) = P(Bi
∀i
∑ )P(A / Bi ) if

P(Bi )
∀i
∑ =1 and

∀i ≠ j P(Bi ∧Bj ) = P(Bi )P(Bj )



Complete and Disjoint  

•  Complete: Y can only assume values in  

•  Disjoint:  
•  If a set of categories is complete and 

disjoint, X is a random variable, and xk  is 
any of its possible values,  then: 
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y1, y2,...ym{ }

y1∩ y2....∩ ym =∅

P(X = xk) = P(X = xk /Y = yi
i=1..m
∑ )P(Y = yi )
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Bayesian Categorization (cont.) 

•  To estimate P(Y=yi|X=xk) need to know the 
following parameters: 
– Priors: P(Y=yi)  
– Conditionals: P(X=xk | Y=yi) 
– Note we don’t need to estimate P(X=xk ) since the 

denominator is common to all  P(Y=yi|X=xk) 
(therefore it does not change the rank) 

– Therefore the model parameters are: 

 
 



MLE for Naive Bayes 
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Subject to:  

Lagrangian:  



Estimation of P(Y=yi) 

27 

Remember Ni = numer of times Y=yi in the learning set D 



Estimating P(X=xk/Y=yi) 
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The evidence for Nki is likely to be very small: remember  it is the  
number of times xk has classification yi; we only have in D a 
limited number of instances, and they should have a single 
classification, therefore for most (likely all) (k,i) we have 

Nki=0 (no evidence) or Nki=1 (1 sample) 



Estimating P(X=xk/Y=yi)  (2) 

•  Naive Bayes assumption: 
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P(Y = yi | X = xk ) = P(Y = yi )P(X1
k = v1,X 2

k = v2,!Xn
k = vn |Y = yi ) / P(X = xk ) =

P(Y = yi ) P(vjk |Y = yi
j=1

d

∏ ) / P(X = xk )

We assume feature values vjk of different features Xj being 
statistically independent. vjk is the k-th value of feature j where j=1,2..d 

and k=1…Kj (if binary features, k=0 or 1) 
e.g. P(x(color=blue, shape=circle, dimension=big))= 

P(color=blue)P(shape=circle)P(dimension=big) 
and furthermore  

 
 



Estimating P(X=xk/Y=yi)  (3) 
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The parameter P(X=xk/Y=yi) , i.e. the probability that 
a given instance xk has a given classification yi, is replaced with the  

probability that a given feature value vjk of feature Xj 
has a given classification yi 

j=1…d; k=1..Kj ; i=1..|C|; |D|=N 



Estimating P(X=xk/Y=yi)  (4) 
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The new MLE problem is therefore:  

The computation of parameters θ1 does not change (the derivative is 
the same)  

Also note that  



Estimating P(X=xk/Y=yi)  (4) 
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I.e. the  θ2 can be estimated as the ratio between the number of times feature Xj 
takes value k when Y=yi and the total number of examples in D 

for which Y=yi 



How do we compute the category of an 
instance? 
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Note that since the denominator is common to all  conditional  
probabilities, it does not affect the argmax   
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Naïve Bayes Generative Model 

Size          Color        Shape  Size          Color        Shape  
Positive Negative 

pos 
neg 
pos 

pos 
pos neg 

neg 

sm 
med lg 

lg 

med 
sm 

sm 
med 

lg 

red 

red red 
red red 

blue 

blue 
grn 

circ 
circ 

circ 

circ 
sqr 

tri tri 
circ sqr 

tri 

sm 

lg 

med 
sm 

lg 
med 

lg sm 
blue 

red 

grn 
blue 

grn 
red 

grn 
blue 

circ 

sqr tri 
circ 

sqr circ 
tri 

Category 

K=3,|C|=2,d=3 
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Naïve Bayes Inference Problem 

Size          Color        Shape  Size          Color        Shape  
Positive Negative 

pos 
neg 
pos 

pos 
pos neg 

neg 

sm 
med lg 

lg 

med 
sm 

sm 
med 

lg 

red 

red red 
red red 

blue 

blue 
grn 

circ 
circ 

circ 

circ 
sqr 

tri tri 
circ sqr 

tri 

sm 

lg 

med 
sm 

lg 
med 

lg sm 
blue 

red 

grn 
blue 

grn 
red 

grn 
blue 

circ 

sqr tri 
circ 

sqr circ 
tri 

Category 

lg  red circ  
??     ?? 

I estimate on the learning set the probability of extracting lg, red, circ from 
the red or blue urns. 



HOW? 
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Naïve Bayes Example 

Probability Y=positive Y=negative 
P(Y) 0.5 0.5 

P(small | Y) 3/8 3/8 
P(medium | Y) 3/8 2/8 

P(large | Y) 2/8 3/8 
P(red | Y) 5/8 2/8 
P(blue | Y) 2/8 3/8 
P(green | Y) 1/8 3/8 
P(square | Y) 1/8 3/8 
P(triangle | Y) 2/8 3/8 
P(circle | Y) 5/8 2/8 

Training set 
Have 3 small out of 8 instances in red “size” urn 

then P(size=small/pos)=3/8=0,375 (round 4) 

Si
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Naïve Bayes Example 

Probability positive negative 
P(Y) 0.5 0.5 

P(medium | Y) 3/8 2/8 
P(red | Y) 5/8 2/8 

P(circle | Y) 5/8 2/8 

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive)/P(X) 
                            0.5        *               3/8         *        5/8            *        5/8 
                         

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)  
                                0.5       *              2/8               *        2/8             *     2/8 
                          

= 0,073 

=0.0078 

Test Instance: 
X:<medium ,red, circle> 

P(positive/X)>P(negative/X) è positive 



Naive summary 

Classify any new datum instance xk=(x1,…xn) as: 

•  To do this based on training examples, estimate the parameters from the 
training examples  in D: 

 
–  For each target value of the classification variable (hypothesis) yi 

–  For each attribute value at of each datum instance 

 

P̂(Y = y j ) := estimate P(yi )

P̂(x j = v jk |Y = yi) := estimate P(v jk | yi )

yNaive Bayes = argmaxi
P(yi )P(x | yi ) = argmaxi

P(yi ) P(v jk | yi )j=1..d
∏
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Estimating Probabilities 

•  Normally, as in previous example, probabilities are 
estimated based on observed frequencies in the training 
data. 

•  If D contains Ni examples in category yi, and Njki of these Ni 
examples have the k-th value for feature Xj, vjk, then: 

•  However, estimating such probabilities from small training 
sets is error-prone. 

•  If due only to chance, a rare feature, Xj, is always false in 
the training data, ∀yk :P(Xj=true | Y=yi) = 0. 

•  If  Xj=true then occurs in a test example, X, the result is that 
∀yk: P(X | Y=yi) = 0 and ∀yi: P(Y=yi | X) = 0 

P(Xj = v jk |Y = yi ) =
N jki
Ni
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Probability Estimation Example 

Probability positive negative 
P(Y) 0.5 0.5 

P(small | Y) 0.5 0.5 
P(medium | Y) 0.0 0.0 

P(large | Y) 0.5 0.5 
P(red | Y) 1.0 0.5 
P(blue | Y) 0.0 0.5 
P(green | Y) 0.0 0.0 
P(square | Y) 0.0 0.0 
P(triangle | Y) 0.0 0.5 
P(circle | Y) 1.0 0.5 

Ex Size Color Shape Category 

1 small red circle positive 

2 large red circle positive 

3 small red triangle negitive 

4 large blue circle negitive 

Test Instance X: 
<medium, red, circle> 

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 / P(X) = 0 

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 /  P(X) = 0 
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Smoothing 

•  To account for estimation from small samples, 
probability estimates are adjusted or smoothed. 

•  Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m. 

•  For binary features, p is simply assumed to be 0.5. 

P(Xj = v jk |Y = yi ) =
N jki +mp
Ni +m
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Laplace Smothing Example 

•  Assume training set contains 10 positive examples: 
–  4: small 
–  0: medium 
–  6: large 

•   Estimate parameters as follows (if m=1, p=1/3) 
–  P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394 
–  P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03 
–  P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576 
–  P(small or medium or large | positive) =        1.0 
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Continuous Attributes 

•  If Xi is a continuous feature rather than a discrete one, 
need another way to calculate P(Xj | Y). 

•  Assume that Xjhas a Gaussian distribution whose mean and 
variance depends on Y. 

•  During training, for each combination of a continuous 
feature Xj and a class value for Y, yi, estimate a mean,  µji , 
and standard deviation σji based on the values of feature Xj 
in class yi in the training data. µji is the mean value of Xj 
observed over instances for which Y= yi in D 

•  During testing, estimate P(Xj | Y=yi) for a given example, 
using the Gaussian distribution defined by µji and σji . 

P(Xj = v jk |Y = yi ) =
1

σ ji 2π
exp

−(Xi −µ ji )
2

2σ ji
2

"

#
$
$

%

&
'
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Comments on Naïve Bayes 

•  Tends to work well despite strong assumption of 
conditional independence. 

•  Experiments show it to be quite competitive with other 
classification methods on standard UCI datasets. 

•  Although it does not produce accurate probability 
estimates when its independence assumptions are violated, 
it may still pick the correct maximum-probability class in 
many cases. 
–  Able to learn conjunctive concepts in any case 

•  Does not perform any search of the hypothesis space.  
Directly constructs a hypothesis from parameter estimates 
that are easily calculated from the training data. 
–  Strong bias 

•  Not guarantee consistency with training data. 
•  Typically handles noise well since it does not even focus 

on completely fitting the training data. 


