Probabilistic ML algorithm

Naïve Bayes and Maximum Likelyhood

Axioms of Probability Theory

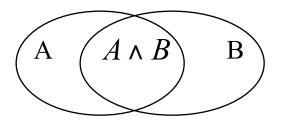
• All probabilities between 0 and 1

 $0 \leq P(A) \leq 1$

• True proposition has probability 1, false has probability 0.

P(true) = 1 P(false) = 0.

• The probability of disjunction is: $P(A \lor B) = P(A) + P(B) - P(A \land B)$



Conditional Probability

- P(A | B) is the probability of A given B
- Assumes that *B* is all and only information known.
- Defined by:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

$$\left(\begin{array}{c|c}A & A \land B \\ \end{array}\right) \\ B \\ \end{array}$$

Independence

• *A* and *B* are *independent* iff:

P(A | B) = P(A)These two constraints are logically equivalent P(B | A) = P(B)

• Therefore, if *A* and *B* are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

 $P(A \land B) = P(A)P(B)$

Joint Distribution

• The joint probability distribution for a set of random INDEPENDENT variables, X_1, \ldots, X_d gives the probability of every combination of values (an *n*-dimensional array with *K* values if all variables are discrete with *K* values, all *K prob* values must sum to 1):

Pr(shape=cire	cle, (Class=positive			Class=negative		
color=blue, C	C=+)	circle	square			circle	square
	red	0.20	0.02		red	0.05	0.30
	blue	0.02	0.01		blue	0.20	0.20
				'	•		

• The probability of all possible conjunctions (assignments of values to some subset of variables) can be calculated by summing the appropriate subset of values from the joint distribution.

 $P(red \land circle) = P(red \land circle \land positive) + P(red \land circle \land negative) = 0.20 + 0.05 = 0.25$

 $P(red) = P(red \land circle \land positive) + P(red \land square \land positive) + ecc = 0.20 + 0.02 + 0.05 + 0.3 = 0.57$

• Therefore, all conditional probabilities can also be calculated. $P(positive \mid red \land circle) = \frac{P(positive \land red \land circle)}{P(red \land circle)} = \frac{0.20}{0.25} = 0.80$

Probabilistic Classification

- Let *Y* be the random variable for the class *C* which takes values $\{y_1, y_2, \dots, y_m\}$ (|C|=m possible classifications for our instances).
- Let X be the random variable describing an instance consisting of a vector of values for d features <X₁,X₂...X_d>, let v_{jk} be a possible value for X_j (x_k is an instance in X and v_{jk} is the value of feature X_j for x_k).
- For our classification task, we need to compute: $P(Y=y_i | X=x_k)$ for i=1...m

(e.g. $P(Y=positive | \mathbf{x}_{\mathbf{k}} = < blue, circle >))$

- E.g. the objective is to classify a new unseen $\mathbf{x}_{\mathbf{k}}$ by estimating the probability of each possible classification y_i , given the feature values of the instance to be classified $\mathbf{x}_{\mathbf{k}}:<X_1=\mathbf{v}_{1\mathbf{k}},X_2=\mathbf{v}_{2\mathbf{k}2}\ldots X_d=v_{d\mathbf{k}}>$
- To estimate $P(Y=y_i | X=x_k)$ we use a learning set D of pairs $(x_i, C(x_i))$

Probabilistic Classification (2)

• However, given no other assumptions, this requires a table giving the probability of each category for each possible instance (combination of feature values) in the instance space, which is impossible to accurately estimate from a reasonably-sized training set.

• E.g.
$$\Pr(Y=y_i/X_1=v_{1k}, X_2=v_{2k2}...X_d=v_{dk})$$

- Assuming that Y and all X_i are binary, and we have d features, we need 2^d entries to specify
- $P(Y=1 | X=x_k)$ for each of the 2^d possible x_k since:
- $P(Y=0 | X=x_k) = 1 P(Y=1 | X=x_k)$
- Compared to 2^{d+1} 1 entries for the joint distribution P(*Y*,*X*₁,*X*₂...*X*_d)

Example

- X:(X₁,X₂..X₄), Xi:{0,1} Y:{0,1} (d=4, m=2)
- $x_k:(0,1,0,0)$
- Need to estimate Pr(Y=0/(0,1,0,0))
- If P(Y=0/(0,1,0,0))>(1-P(Y=0/(0,1,0,0))) then class is 0, else class is 1
- Overall, 2⁴ estimates are needed for our probabilistic classifier
- For large m and n this is not feasible

Maximum Likelihood learning

- We have a probabilistic model, *M*, of some phenomena. We know exactly the structure of *M* (*e.g. a Gaussian*), but not the values of its probabilistic parameters, Θ (e.g. μ,σ).
- Each "execution" of *M* produces an observation, *x[i]*, according to the (unknown) distribution induced by *M*.
 - Goal: After observing x[1], ..., x[n], estimate the model parameters, Θ , that generated the observed data.

◆The likelihood of the observed data, given the model parameters ⊖, is the conditional probability that the model, M, with parameters ⊖, produces the observations x₁,..., x_m.

$L(\Theta)=Pr(x[1],...,x[n] | \Theta, M),$

◆ In MLE we seek the model parameters, ⊖, that maximize the likelihood.

Maximum Likelihood Estimation (MLE)

- ◆ In MLE we seek the model parameters, ⊖, that maximize the likelihood.
- The MLE principle is applicable in a wide variety of ML applications, from speech recognition, through natural language processing, to computational biology.
- We will start with the simplest example: Estimating the bias of a thumbtack.

Example: Binomial Experiment

- When tossing the thumbtack, it can land in one of two positions: *Head* (*H*) or *Tail* (*T*)
- We denote by θ the (unknown) probability P(H).
 Estimation task:

• Given a sequence of toss samples x1..xm we want to estimate the probabilities $P(H)=\theta$ and $P(T) = 1 - \theta$

•θ is also called the model parameter

Statistical Parameter Fitting (general definition)

- Consider instances D: x_1 , x_2 , ..., x_m such that
 - The set of values that x can take is known
 - Each is sampled from the same distribution
 - Each sampled independently of the rest
 - The task is to find a vector of parameters Θ that have generated the given data. This vector parameter Θ can be used to predict future data.

i.i.d.

The Likelihood Function

How good is a particular θ?
 It depends on how likely it is to generate the observed data

$$L_D(\boldsymbol{\theta}) = P(D \mid \boldsymbol{\theta}) = \prod_{j=1..m} P(xj \mid \boldsymbol{\theta})$$

Sufficient Statistics

To compute the likelihood in the thumbtack example we only require N_H and N_T (the number of heads and the number of tails)

$$L_{D}(\boldsymbol{\theta}) = \boldsymbol{\theta}^{N_{H}} \cdot (1 - \boldsymbol{\theta})^{N_{T}}$$

- N_H and N_T are sufficient statistics for the binomial distribution
- A sufficient statistic is a function whose value contains all the information needed to compute any estimate of the parameter

Maximum Likelihood Estimation

MLE Principle:

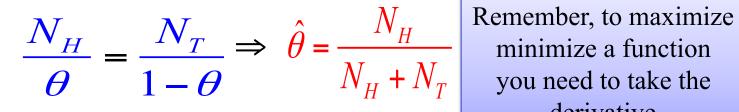
<u>Choose parameters that maximize the likelihood</u> <u>function</u>

- This is one of the most commonly used estimators in statistics
- Intuitively appealing
- One usually maximizes the log-likelihood function, defined as $l_{\rm D}(\theta) = \ln L_{\rm D}(\theta)$

Example: MLE in Binomial Data

$$l_D(\theta) = N_H \log \theta + N_T \log(1 - \theta)$$

Taking derivative and equating it to 0 we get

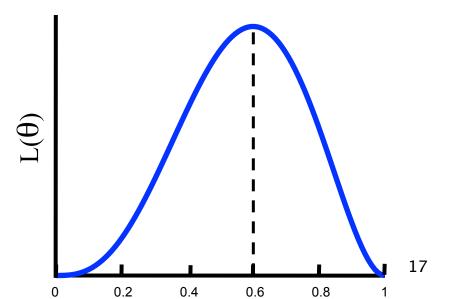


derivative

(which coincides with what one would expect,

Example: $(N_{\rm H}, N_{\rm T}) = (3, 2)$

MLE estimate is 3/5 = 0.6



From Binomial to Multinomial

- Now suppose *X* can have the values *1,2,...,K* (*For example a die has K=6 sides*)
- We want to learn the parameters θ₁, θ₂. ..., θ_K
 (the vector Θ)
 Sufficient statistics:
- $N_1, N_2, ..., N_K$ the number of times each outcome is observed

$$\hat{\theta}_{k} = \frac{N_{k}}{\sum N_{j}} \quad \forall k$$

Lagrangian (again)

$$L(\alpha, \Theta) = \sum N^k \log \theta_k - \alpha (\sum \theta_k - 1)$$

$$\frac{dL(\alpha,\Theta)}{d\theta_k}=0$$

$$\frac{N^{k}}{\theta_{k}} - \alpha = 0 \implies \theta_{k} = \frac{N^{k}}{\alpha}$$
$$\sum \frac{N^{k}}{\alpha} = 1 \implies \alpha = \sum N^{k}$$

$$\hat{\theta}_k = \frac{N_k}{\sum_j N_j}$$

Example: Multinomial

- Let $x_1 x_2 \dots x_n$ be a protein sequence
- We want to learn the parameters $\theta_1, \theta_2, ..., \theta_{20}$ corresponding to the probabilities of the 20 amino acids
- N_1 , N_2 , ..., N_{20} the number of times each amino acid is observed in the sequence

20

$$L_{D}(q) = \prod_{k=1}^{N} \theta_{k}^{N_{k}}$$

Likelihood function:
MLE: $\theta_{k} = \frac{N_{k}}{n} \quad n = \sum_{i=1}^{20} N_{i}$

NAIVE BAYES CLASSIFIER

Bayes Theorem

- H=hypothesis
- E= evidence of data

$$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$$

Simple proof from definition of conditional probability:

$$P(H | E) = \frac{P(H \land E)}{P(E)} \quad (\text{Def. cond. prob.})$$

$$P(E | H) = \frac{P(H \land E)}{P(H)} \quad (\text{Def. cond. prob.})$$

$$P(H \land E) = P(E | H)P(H)$$
QED:
$$P(H | E) = \frac{P(E | H)P(H)}{P(E)}$$

Bayesian Categorization

For each classification value y_i we have (applying Bayes):

$$P(Y = y_i | X = x_k) = \frac{P(Y = y_i)P(X = x_k | Y = y_i)}{P(X = x_k)}$$

• P(Y=yi) and $P(X=x_k)$ are called estimated from learning set D sin complete and disjoint $\sum_{i=1}^{m} P(Y=y_i | X=x_k) = \sum_{i=1}^{m} \frac{P(Y=y_i)}{P(X=x_k)} = \frac{P(X=x_k)}{P(X=x_k)} = 1$ $P(X=x_k) = \sum_{i=1}^{m} P(Y=y_i) P(X=x_k | Y=y_i)$

Complete and Disjoint

- Complete: Y can only assume values in $\{y_1, y_2, \dots, y_m\}$
- Disjoint: $y_1 \cap y_2 \dots \cap y_m = \emptyset$
- If a set of categories is complete and disjoint, X is a random variable, and x_k is any of its possible values, then:

$$P(X = xk) = \sum_{i=1..m} P(X = xk / Y = y_i)P(Y = y_i)$$

Bayesian Categorization (cont.)

- To estimate P(Y=y_i|X=x_k) need to know the following parameters:
 - Priors: $P(Y=y_i)$
 - Conditionals: $P(X=x_k | Y=y_i)$
 - Note we don't need to estimate $P(X=x_k)$ since the denominator is common to all $P(Y=y_i|X=x_k)$ (therefore it does not change the rank)
 - Therefore the model parameters are:

$$\theta_i^1 = P(Y = y_i); \ \theta_{ki}^2 = P(X = x_k / Y = y_i)$$

MLE for Naive Bayes

$$L(\Theta) = \sum N^{i} \log \theta_{i}^{1} + \sum \sum N^{ki} \log \theta_{ki}^{2}$$

Subject to:
$$\sum \theta_{i}^{1} = 1 \quad \theta_{i}^{1} \ge 0; \quad \sum_{i} \theta_{ki}^{2} = 1 \quad \theta_{ki}^{2} \ge 0$$

Lagrangian:

 $L(\Theta) = \sum N^{i} \log \theta_{i}^{1} + \sum \sum N^{ki} \log \theta_{ki}^{2} - \alpha \sum (\theta_{i}^{1} - 1) - \beta \sum (\theta_{ki}^{2} - 1)$ $\frac{dL(\alpha, \beta, \Theta)}{d\theta_{\nu}} = 0$

$$\frac{dL(\alpha,\beta,\Theta)}{d\theta_i^1} = \frac{N^i}{\theta_i^1} - \alpha = 0 \Longrightarrow \theta_i^1 = \frac{N^i}{\alpha}$$
$$\sum \frac{N^i}{\alpha} = 1 \Longrightarrow \alpha = \sum N^i = |D| = N$$
$$\theta_i^1 = \frac{N^i}{N}$$

Remember N_i = numer of times Y= y_i in the learning set D

Estimating
$$P(X=x_k/Y=y_i)$$

$$L(\Theta) = \sum N^{i} \log \theta_{i}^{1} + \sum \sum N^{ki} \log \theta_{ki}^{2} - \alpha \sum (\theta_{i}^{1} - 1) - \beta \sum (\theta_{ki}^{2} - 1)$$
$$\frac{dL(\alpha, \beta, \Theta)}{d\theta_{k}} = 0$$

The evidence for N^{ki} is likely to be very small: remember it is the number of times x_k has classification y_i ; we only have in D a limited number of instances, and they should have a single classification, therefore for most (likely all) (k,i) we have N^{ki}=0 (no evidence) or N^{ki}=1 (1 sample)

Estimating $P(X=x_k/Y=y_i)$ (2)

• Naive Bayes assumption:

$$P(Y = y_i | X = x_k) = P(Y = y_i)P(X_1^k = v1, X_2^k = v2, \dots X_n^k = vn | Y = y_i) / P(X = x_k) = P(Y = y_i) \prod_{j=1}^d P(vjk | Y = y_i) / P(X = x_k)$$

We assume feature values v_{jk} of different features X_j being statistically independent. v_{jk} is the k-th value of feature j where j=1,2..d and k=1...K_j (if binary features, k=0 or 1) e.g. P(x(color=blue, shape=circle, dimension=big))= P(color=blue)P(shape=circle)P(dimension=big) and furthermore

$$\sum_{k \in colors} P(color = k/Y = y_i) = 1$$

Estimating $P(X=x_k/Y=y_i)$ (3)

$$\theta_{jki}^2 = P(X_j = v_{jk} / Y = y_i)$$

$$L(\Theta) = \sum N^{i} log \theta_{i}^{1} + \sum \prod N^{jki} log \theta_{jki}^{2}$$

The parameter $P(X=x_k/Y=y_i)$, i.e. the probability that a given instance x_k has a given classification y_i , is replaced with the probability that a given feature <u>value</u> v_{jk} of feature X_j has a given classification y_i j=1...d; k=1..Kj; i=1..|C|; |D|=N

Estimating $P(X=x_k/Y=y_i)$ (4)

The new MLE problem is therefore:

$$\sum \theta_i^1 = 1 \quad \theta_i^1 \ge 0; \quad \sum_k \theta_{jki}^2 = 1 \quad \theta_{jki}^2 \ge 0$$

$$L(\Theta) = \sum N^i \log \theta_i^1 + \sum \prod N^{jki} \log \theta_{jki}^2 - \alpha \sum_{i=1..|C|} (\theta_i^1 - 1) - \beta \sum_{k=1...K} (\theta_{jki}^2 - 1)$$

The computation of parameters θ^1 does not change (the derivative is the same) Also note that

$$\sum \prod N^{jki} \log \theta_{jki}^2 = \sum \sum N^{jki} \log \theta_{jki}^2$$

Estimating $P(X=x_k/Y=y_i)$ (4)

$$\frac{\partial L(\alpha, \beta, \Theta)}{\partial \theta_{jki}^2} = \frac{N^{jki}}{\theta_{jki}^2} - \beta = 0 \rightarrow \theta_{jki}^2 = \frac{N^{jki}}{\beta}$$

and since $\sum_{k=1,K} \theta_{jki}^2 = 1$

we obtain
$$\theta_{jki}^2 = \frac{N^{jki}}{\sum_k \theta_{jki}^2} = \frac{N^{jki}}{N^i}$$

I.e. the θ^2 can be estimated as the ratio between the number of times feature X_j takes value k when $Y=y_i$ and the total number of examples in D for which $Y=y_i$

How do we compute the category of an instance?

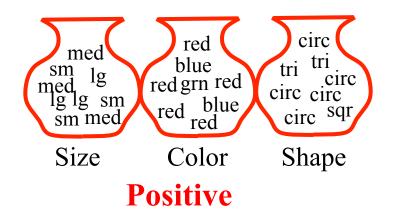
$$P(Y = y_i | X = x_k) = P(Y = y_i) \prod_{j=1..d} P(v_{jk} | Y = y_i) / \prod_{j=1..d} P(v_{jk}) = \theta_i^1 \prod_{j=1..d} \theta_{ikj}^2 / \prod_{j=1..d} P(v_{jk})$$

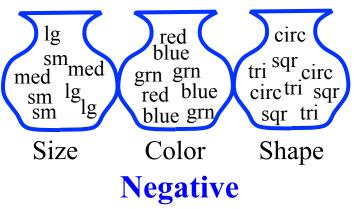
$$y_i = \underset{k}{\operatorname{argmax}}(\theta_i^1 \prod_{j=1...d} \theta_{ikj}^2)$$

Note that since the denominator is common to all conditional probabilities, it does not affect the argmax

Naïve Bayes Generative Model

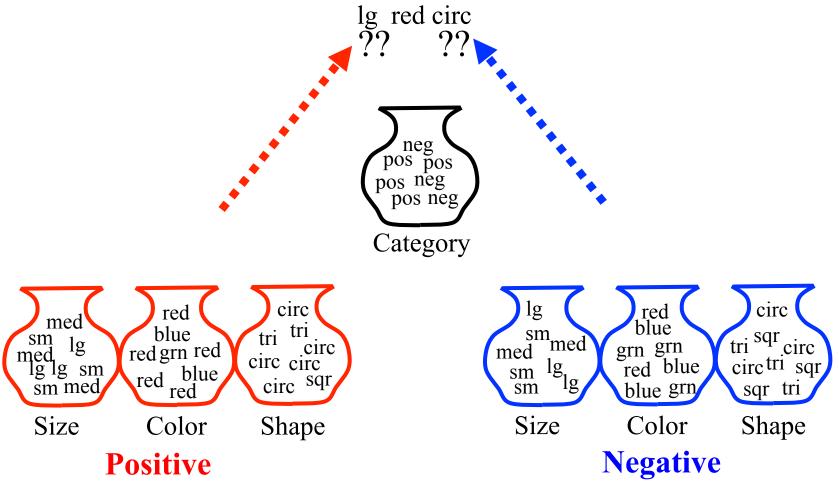
K=3,|C|=2,d=3





Naïve Bayes Inference Problem

I estimate on the learning set the probability of extracting lg, red, circ from the red or blue urns.



HOW?

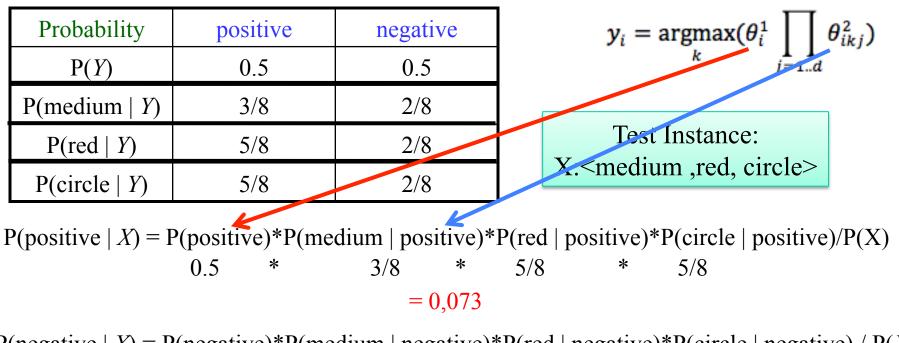
Naïve Bayes Example

		θ_{siz}	e,small,positive = [P(size = small/C = positive)				
	Probability	Y=positive	Y=negative					
	P(Y)	0.5	0.5					
	$P(small \mid Y)$	3/8	3/8					
Shape	P(medium Y)	3/8	2/8					
Sh	P(large Y)	2/8	3/8	med red circ sm blue tri tri				
1	$P(red \mid Y)$	5/8	2/8	lg lg sm red grn red circ circ red blue				
Color	$P(blue \mid Y)$	2/8	3/8	Size Color Shape				
	$P(\text{green} \mid Y)$	1/8	3/8	Size color shape				
e	P(square Y)	1/8	3/8	lg ,red ,				
Size	P(triangle <i>Y</i>)	2/8	3/8	sm med grn grn tri sqr circ sm lg, red blue circ tri sqr				
	$P(circle \mid Y)$	5/8	2/8	sm lg blue grn sqr tri				
				Size Color Shape				

Have 3 small out of 8 instances in red "size" urn then P(size=small/pos)=3/8=0,375 (round 4)

Training set

Naïve Bayes Example



P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X) 0.5 * 2/8 * 2/8 * 2/8 =0.0078

 $P(positive/X) > P(negative/X) \rightarrow positive$

Naive summary

Classify any new datum instance $\mathbf{x}_{k} = (x_{1}, \dots, x_{n})$ as:

$$y_{\text{Naive Bayes}} = \underset{i}{\operatorname{argmax}} P(y_i) P(\mathbf{x} \mid y_i) = \underset{i}{\operatorname{argmax}} P(y_i) \prod_{j=1..d} P(v_{jk} \mid y_i)$$

- To do this based on training examples, estimate the parameters from the training examples in D:
 - For each target value of the classification variable (hypothesis) y_i

$$\hat{P}(Y = y_j) := \text{estimate } P(y_i)$$

- For each attribute value a_t of each datum instance

$$\hat{P}(x_j = v_{jk} | Y = yi) := \text{estimate } P(v_{jk} | y_i)$$

Estimating Probabilities

- Normally, as in previous example, probabilities are estimated based on observed frequencies in the training data.
- If *D* contains N_i examples in category y_i , and N_{jki} of these N_i examples have the *k*-th value for feature X_i , v_{ik} , then:

$$P(X_j = v_{jk} \mid Y = y_i) = \frac{N_{jki}}{N_i}$$

- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, X_j , is always false in the training data, $\forall y_k : P(X_j = \text{true} | Y = y_i) = 0$.
- If X_j =true then occurs in a test example, X, the result is that $\forall y_k$: $P(X | Y=y_i) = 0$ and $\forall y_i$: $P(Y=y_i | X) = 0$

Probability Estimation Example

					D 1 1 11	• , •	
Ex	Size	Color	Shape	Category	Probability	positive	negative
					P(Y)	0.5	0.5
1	small	red	circle	positive	$P(\text{small} \mid Y)$	0.5	0.5
2	1	1	· 1	•,•	P(medium Y)	0.0	0.0
2	large	red	circle	positive	P(large Y)	0.5	0.5
3	small	red	triangle	negitive	$P(red \mid Y)$	1.0	0.5
					$P(blue \mid Y)$	0.0	0.5
4	large	blue	circle	negitive	$P(\text{green} \mid Y)$	0.0	0.0
Test Instance <i>X</i> : <medium, circle="" red,=""></medium,>				1	P(square Y)	0.0	0.0
				<i>:</i>	P(triangle Y)	0.0	0.5
					P(circle <i>Y</i>)	1.0	0.5

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 / P(X) = 0

P(negative |X) = 0.5 * 0.0 * 0.5 * 0.5 / P(X) = 0

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or *smoothed*.
- Laplace smoothing using an *m*-estimate assumes that each feature is given a prior probability, *p*, that is assumed to have been previously observed in a "virtual" sample of size *m*.

$$P(Xj = v_{jk} | Y = y_i) = \frac{N_{jki} + mp}{N_i + m}$$

• For binary features, *p* is simply assumed to be 0.5.

Laplace Smothing Example

- Assume training set contains 10 positive examples:
 - 4: small
 - 0: medium
 - 6: large
- Estimate parameters as follows (if m=1, p=1/3)
 - P(small | positive) = (4 + 1/3) / (10 + 1) = 0.394
 - P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
 - P(large | positive) = (6 + 1/3) / (10 + 1) = 0.576
 - P(small or medium or large | positive) = 1.0

Continuous Attributes

- If X_i is a **continuous** feature rather than a discrete one, need another way to calculate $P(X_i | Y)$.
- Assume that X_j has a Gaussian distribution whose mean and variance depends on *Y*.
- During training, for each combination of a continuous feature X_j and a class value for Y, y_i , estimate a mean, μ_{ji} , and standard deviation σ_{ji} based on the values of feature X_j in class y_i in the training data. μ_{ji} is the mean value of X_j observed over instances for which $Y = y_i$ in D
- **During testing**, estimate $P(X_j | Y=y_i)$ for a given example, using the Gaussian distribution defined by μ_{ji} and σ_{ji} .

$$P(Xj = v_{jk} | Y = y_i) = \frac{1}{\sigma_{ji}\sqrt{2\pi}} \exp\left(\frac{-(X_i - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

Comments on Naïve Bayes

- Tends to work well despite strong assumption of conditional independence.
- Experiments show it to be quite competitive with other classification methods on standard UCI datasets.
- Although it does not produce accurate probability estimates when its independence assumptions are violated, it may still pick the correct maximum-probability class in many cases.
 - Able to learn conjunctive concepts in any case
- Does not perform any search of the hypothesis space. Directly constructs a hypothesis from parameter estimates that are easily calculated from the training data.

- Strong bias

- Not guarantee consistency with training data.
- Typically handles noise well since it does not even focus on completely fitting the training data.