
REINFORCEMENT LEARNING 
 

Unsupervised learning 
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So far …. 

h Supervised  machine learning: given a set of 
annotated instances and a set of categories, find a 
model to automatically categorize unseen instances 

h Unsupervided learning: no examples are available 

h Three types of unsupervised learning algorithms:  
5 Rule learning – find regularities in data and learn 

associations (past lesson) 
5 clustering- Given a set of instances described by 

feature vectors, group them in clusters such as 
intra-cluster similarity is maximized and inter-
cluster dissimilarity is maximized (in other 
courses) 

5 Reinforcement learning (today) 
  



Reinforcement learning 

h Reinforcement learning: 
5 Agent receives no examples and 

starts with no model of the 
environment.  

5 Agent gets feedback through 
rewards, or reinforcement. 

h Note: it is common to talk about «agents» rather 
than «learners» since the output is a sequence 
of actions, rather than a classification 
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Examples of applications 
h Control physical systems: walk, drive, swim, ... 

h  Interact with users: engage customers, personalise 
channel, optimise user experience, ... 

h Solve logistical problems: scheduling, bandwidth 
allocation,elevator control, power optimisation, .. 

h Play games: chess, checkers, Go, Atari games, ... 

h Learn sequential algorithms: attention, memory, 
conditional computation, activations, ... 
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Learning by reinforcement 
h Examples: 

5 Learning to play Backgammon 
5 Robot learning to move in an environment 

h Characteristics: 
5 No direct training examples – (possibly delayed) 

rewards instead, or penalty 
5 Need for exploration of environment & exploitation 
5 The environment might be stochastic and/or 

unknown 
5 The actions of the learner affect future rewards 



Reinforcement learning 



Reinforcement 
Learning 

Supervised  
Learning 

Input is an istance, output is a 
classification of the istance 

Input is some “goal”, output 
is a sequence of actions to 
meet the goal  



Example: Robot moving in an 
environment (a  maze) 
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Example: playing a game (e.g. 
backgammon, chess) 
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Elements of RL 

h Transition model, how actions A influence states S 

h Reward R, immediate value of state-action transition 

h Policy π  SèA,  maps states to actions 

Agent 

Environment 

State Reward Action 

Policy 

s0
a0 : r0! →!! s1

a1 : r1! →!! s2
a2 : r2! →!!  

In RL, the “model” to be learned is a policy to meet “at best”  
some given goal  (e.g. win a game) 
 



Markov Decision Process (MDP) 
h MDP is a formal model of the RL problem 

h At each discrete time point  
5 Agent observes state st in S and chooses action at 

in A (according to some probability distribution) 
5 Receives reward rt from the environment and the 

state changes to st+1 
5 r: (S,A)àR δ: (S,A)àS r is the reward function and 
δ the transition matrix  

h Markov assumption:  
rt=r(st,at)   st+1=δ(st,at) i.e. rt and st+1 depend only on the 

current state and action 
5  In general, the functions r and δ  may not be deterministic 

(i.e. they are stochastic, described by random variables) and 
are not necessarily known to the agent 



Agent’s Learning Task 
Execute actions in environment, observe results and 

h Learn action policy                  that maximises 
expected cumulative reward  ER 
from any starting state s0 in S. 
 
 
Here                is the discount factor for future rewards, rk 

is the reward at time k. 

h Note:  
•  Target function is   
•  There are no training examples of the form (s,a) but only of the 

form ((s,a),r), i.e. for –some- state-action pair we know the reward/
penalty 

AS→:π

ER[rt +γrt+1 +γ
2rt+2 + ...]

10 ≤≤ γ

AS→:π



Example: TD-Gammon 
h Immediate reward: 

+100 if win 
-100 if lose 
0 for all other states 
 

h Trained by playing 1.5 million games  

h Now approximately equal to the best human 
player 



Example: Mountain-Car 

h States: position and velocity 

h Actions: accelerate forward, accelerate backward, 
coast 

h Rewards 
5 Reward=-1for every step, until the car reaches the top 
5 Reward=1 at the top, 0 otherwise 

h The possible reward will be maximised by minimising 
the number of steps to the top of the hill  



Value function 
We will consider a deterministic world first  

In a deterministic environment, rewards are 
known and the environment is known 

h Given a policy π (adopted by the agent), 
define an evaluation function over states:  
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V π (st ) = rt +γ (rt+1 +γrt+2 + ...) = rt +γV
π (st+1)

Remember: a policy  
is a mapping from states to actions, 
target is finding optimal policy 

π : S→ A

Vπ(st) is the value of being in state st according to policy π 



Example: robot in a grid 
environment 

r( (2,3), UP)=100 

Grid world environment 
Six possible states 
Arrows represent possible actions 
G: goal state 
Actions: UP, DOWN, LEFT, 
RIGHT 

Known environment: grid with cells 
Deterministic: possible moves in any cell are known, rewards 
are known 

r(state, action) 
immediate reward values 

100  

0  

0  
100  

G  

0  

0  

0  

0  

0  

0  

0  

0  

0  

1           2        3 
1 
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Example: robot in a grid 
environment 

 

h Value function: maps states to state values, 
according to some policy π. How is V 
estimated? 

  

      V*(state) values r(state, action) 
immediate reward  

values 

100  

0  

0  

100  

G  

0  

0  

0  

0  

0  

0  

0  

0  

0  G  
90 100 0 

81 90 100 

G  
90 100 0 

81 90 100 

G  
90 100 0 

81 90 100 

The “value” of being 
in (1,2) according to  
some known π (e.g. π= 
move to 1,3) is 100  
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Computing V(s)  (if policy π is 
given) 

Suppose the following is an 

Optimal policy – denoted with  π*  : 

π*  tells us what is the 
best thing to do 
when in each state. 

According to π*  , we can compute the values of the states 
for this policy – denoted Vπ*, or V* 

rewards 



r(s,a) (immediate reward) values:              V*(s) values, with γ=0.9 

 

 

 

 

 

        one optimal policy: V*(s6) = 100 + 0.9*0 = 100 

V*(s5) = 0 + 0.9*100 = 90 

V*(s4) = 0 + 0.9*90 = 81 

Etc. 

However, π*  is usually unknown and  the task is to 
learn the optimal policy  

                                 
)(),(maxarg* ssV ∀= π

π
π

)( )( 1
**
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s4 s5 s6 
π*  

s6 s5 s4 

s1      s2     s3 



How do we learn optimal policy π* ? 
h Target function is π : state → action 

h However… 
5 We have no training examples of the 

form <state, action> 

5 We only know:  

 <<state, action>, reward> 

h Reward might not be known for all 
states! 



Utility-based agents 

h To learn V π* (abbreviated V*) perform look ahead search 
to choose best action from any state s 

 

h Works well if agent knows 

5 δ : state × action → state 

5 r : state × action → R 

h When agent doesn’t know δ and r, cannot choose 
actions this way 

h Need a greedy method 

( ) ( ) ( )( )[ ]a s,δ*Va s,rmaxargsπ*
a

+≡



Q-learning: an utility-based learner 
in deterministic environments 
h Q-values 

5 Define a new function Q very similar to V* 

5 If agent learns Q, it can choose optimal action 
even without knowing δ or r 

h Using Q: 

( ) ( )a s,Q  maxargsπ*
a

≡

Q s, a( ) ≡ r s, a( )+γV * δ s, a( )( ) = r s, a( )+γV * s '( )

( ) ( ) ( )( )[ ]a s,δ*Va s,rmaxargsπ*
a

+≡

What’s new?? Apparently again depends on (unknown) δ and r 
 



Learning the Q-value 
h  Note: Q and V* closely related  

 

h  Allows us to write Q recursively as  (Bellman equation): 

h  In other words, maximum future reward for a given state s and 
action a, is the immediate reward plus maximum future reward for 
the next state. This policy is also called Temporal Difference 
learning 

h  In the simplest case the Q-function is implemented as a table, with 
states as rows and actions as columns. The algorithm is shown in 
the next slide. 

 

 

V * s( ) ≡max
a'

  Q s, a'( )

 Q s t( ) , a t( )( ) = r s t( ) , a t( )( )+γV * δ s t( ) , a t( )( )( )
= r s t( ) , a t( )( )+γ max

a'
Q s t +1( ) , a'( )
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Simple Q pseudo-code 

24 

α in the algorithm is a learning rate that controls how much of the difference  
between previous Q-value  and newly proposed Q-value is taken into account.  
In particular, when α=1, then the update is exactly the same as Bellman  
equation. 

It has been shown that Algorithm converges for “sufficient” number of iterations 



Algorithm to utilize the Q table  

Input: Q matrix, initial state  
 

1.  Set current state = initial state , randomly select a possible 
action and compute next state 

2.  From next state, find action that produce maximum Q value, 
update Q  

3.  Set current state = next state  
4.  Go to 2 until current state = goal state  
 

The algorithm above will return sequence of current state 
from initial state until goal state.  

   
Comments: Parameter γ  has range value of 0 to 1(             ).  
If  γ  is closer to zero, the agent will tend to consider only 

immediate reward. If γis closer to one, the agent will 
consider future reward with greater weight, willing to delay the 
reward.  



Q-Learning: Example (γ=0.9)   
Episode 1 

s1 s2 s3 

s4 s5 s6 

N S W E 

s1 0 0 0 0 

s2 0 0 0 0 

s3 0 0 0 0 

s4 0 0 0 0 

s5 0 0 0 0 

s6 0 0 0 0 

1	

1	0	

0	

0	 0	

0	

•  Set current state = initial state , 
randomly select a possible action and 
compute next state 
•  From current state, find action that 
produce maximum Q value 

•  Update 

)','(ˆmax),(ˆ
'

asQrasQ
a
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s=s4  possible moves: North, East	
Select (at random) to move to s5	

actions 

The “max Q” function search for the “most promising action” from s5 

But in s5:                               therefore:   
Q-values table 

∀a, Q̂(s5,a) = 0
009,00)',5(ˆmax),4(),4(ˆ

'
=×+=+= asQEsrEsQ
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γ



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 0 

s3 0 0 0 0 

s4 0 0 0 0 

s5 0 0 0 0 

s6 0 0 0 0 

1	

1	0	

0	

0	 0	

0	

)','(ˆmax),(ˆ
'
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S4ès5  randomly select s6 as 	
next move	

From s5, moving to  s6 again does not allow rewards (all Q(s6,a)=0) 
Update  Q(s5,E)ç0+argmax(Q(s6,a’))=0+ +0,9xQ(s6,N))=0+0,9x0 
 



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 0 

s3 0 0 0 0 

s4 0 0 0 0 

s5 0 0 0 0 

s6 0 0 0 

1	

1	0	

0	

0	 0	

0	

S4ès5ès6  randomly select s3 as 	
next move	

Q̂(s6 ,N )←1+0,9maxa ' Q̂(s3,a ') =1+0,9×0 =1

•  GOAL STATE REACHED: 
END OF FIRST EPISODE 

In s3 r=1 so Q is updated to 1 

1+0.9*0 
=1 

 



Q-Learning: Example (γ=0.9)   
Episode 2 

s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 0 

s3 0 0 0 0 

s4 0 0 0 0 

s5 0 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s4, s’=s1	

Q̂(s4 ,N )← 0+0,9×max
a '
Q̂(s1,a ') = 0



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 0 

s3 0 0 0 0 

s4 0 0 0 0 

s5 0 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

Q̂(s1,E)← 0+0,9×max
a '
Q̂(s2 ,a ') = 0

S4ès1, choose s’=s2	



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 

s3 0 0 0 0 

s4 0 0 0 0 

s5 0 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

S4ès1ès2, choose s’=s3	

Q̂(s2 ,E)←1+0,9maxa ' Q̂(s3,a ') =1

•  GOAL STATE REACHED: 
END OF 2nd EPISODE 

1 



Q-Learning: Example (γ=0.9)  
Episode 3 

s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 1 

s3 0 0 0 0 

s4 0 0 0 0+0 

s5 0 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s4, s’=s5	

Q̂(s4,E)← 0+0,9max
a '
Q̂(s5,a ') = 0



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 1 

s3 0 0 0 0 

s4 0 0 0 0 

s5 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s5, s’=s2	

Q̂(s5,N )← 0+0,9max
a '
Q̂(s2,a ') = 0+0,9×1= 0,9

0,9 



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 1+0 

s3 0 0 0 0 

s4 0 0 0 0 

s5 0.9 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s2, s’=s3	

•  GOAL STATE REACHED: 
END OF 3rd EPISODE 

Q̂(s2 ,E)←1+0,9maxa ' Q̂(s3,a ') =1



Q-Learning: Example (γ=0.9)  Episode 
4 

s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 1 

s3 0 0 0 0 

s4 0 0 0 0.81 

s5 0.9 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s4, s’=s5	

Q̂(s4,E)← 0+0,9max
a '
Q̂(s5,a ') = 0,9×0,9 = 0,81



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 1 

s3 0 0 0 0 

s4 0 0 0 0.81 

s5 0,9 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s5, s’=s2	

Q̂(s5,N )← 0+0,9max
a '
Q̂(s2,a ') = 0,9×1= 0,9



Q-Learning: Esempio (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 1+0 

s3 0 0 0 0 

s4 0 0 0 0.81 

s5 0.9 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s2, s’=s3	

•  GOAL REACHED: END OF 
4th EPISODE 



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0 

s2 0 0 0 1 

s3 0 0 0 0 

s4 0+0 0 0 0.81 

s5 0.9 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s4, s’=s1	



Q-Learning: Example (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0.9 

s2 0 0 0 1 

s3 0 0 0 0 

s4 0 0 0 0.81 

s5 0.9 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s1, s’=s2	



Q-Learning: Esempio (γ=0.9) 
s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0 0 0.9 

s2 0 0 0 1+0 

s3 0 0 0 0 

s4 0 0 0 0.81 

s5 0.9 0 0 0 

s6 1 0 0 0 

1	

1	0	

0	

0	 0	

0	

s=s2, s’=s3	

•  GOAL REACHED: END OF 
5th  EPISODE 



Q-Learning: Example(γ=0.9) 

s1 s2 s3 

s4 s5 s6 

N S O E 

s1 0 0.72 0 0.9 

s2 0 0.81 0.81 1 

s3 0 0 0 0 

s4 0.81 0 0 0.81 

s5 0.9 0 0.72 0.9 

s6 1 0 0.81 0 

1	

0.9	0.81	

0.72	

After several iterations, the algorithm converges to the following table: 

1	
0.9	0.81	

0.81	

0.9	
0.81	

0.81	

0.72	



Yet another example 
h Environment 

 

A to E:  rooms, F:  outside building (target).   
The aim is that an agent learn to get out of 
building from any of rooms in an optimal way. 



h Modeling of the environment 



State, Action, Reward and          
Q-value 

h Reward matrix 



h Q-table and the update rule 

Q table update rule: 

：learning 
parameter 



Numerical Example 
Let us set the value of learning parameter 0.8 
and initial state as room B.  



Episode 1: start from B 
Look at the second row (state B) of matrix R. There are 
two possible actions for the current state B, that is to go 
to state D, or go to state F. By random selection, we 
select to go to F as our action.  



Episode 2: start from D 
This time for instance we randomly have state D as 
our initial state. From R; it has 3 possible actions, B, 
C and E. We randomly select to go to state B as our 
action.   



Episode 2 (cont’d) 
The next state is B, now become the current state. We 
repeat the inner loop in Q learning algorithm because 
state B is not the goal state. There are two possible 
actions from the current state B, that is to go to state D, 
or go to state F. By lucky draw, our action selected is 
state F.  

No 
chan
ge 



After Many Episodes 
If our agent learns more and more experience 
through many episodes, it will finally reach 
convergence values of Q matrix as  

Normalized      to 
percentage 



Once the Q matrix reaches almost the 
convergence value, our agent can reach the goal 
in an optimum way. To trace the sequence of 
states, it can easily compute by finding action 
that makes maximum Q for this state. 

For example from initial State C, 
using the Q matrix, we can have the 
sequences C – D – B – F or C-D-E-F 



The non-deterministic case 

52 

•  What if the reward and the state transition are non- 
deterministic? – e.g. in Backgammon learning and other 
games moves depends on rolls of a dice!  

•  Then V and Q needs redefined by taking expected 
values: 

•  Mean values can be estimated observing several 
sequences of moves (episodes). 

•  Similar reasoning and convergent update iteration will 
apply 

V π (s) ≡ E[rt +γrt+1 +γ
2rt+2 + ...]= E[ γ irt+i

i=0

∞

∑ ]

Q(s,a) ≡ E[r(s,a)+γV *(δ(s,a))]



Non-deterministic case 

53 

Where P(s’|s,a) is the conditional probability of landing in s’ when 
the system is in s and performs action a 



Non-deterministic case 

54 

With probability (1-αn) system stays 
in current state and gets no reward, 
with probability αn it makes a move  

How is the Q updating rule modified for the non-deterministic  
case? 



Deep Q learning (1) 
h  If many practical applications, e.g., games, the 

dimension of a Q table is very large 

h For example, consider Atari games: The state of the 
environment in the Breakout game can be defined by 
the location of the paddle, location and direction of 
the ball and the existence of each individual brick.  

h  If apply a pixel-level processing– e.g., take four last 
screen images, resize them to 84×84 and convert to 
grayscale with 256 gray levels – we would have 
25684×84×4≈1067970 possible game states. This 
means 1067970 rows in our imaginary Q-table – that 
is more than the number of atoms in the known 
universe!  
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Deep Q (2) 
h  The intuition is that, in order to learn Q values, we can use 

neural networks. We train for some state and action, and we can 
then use the trained network to compute Q for any state and 
action 

 
h  In the right-hand side formulation, input is a (possibly multi-

dimensional) representation of a state s and action a, output is 
the Q value (s,a) 

h  In the left formulation, input is a state s, output are the Q for all 
possible actions a1, a2… 
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Example: Deep Mind network for Atari 
games (Mnih 2013) 

57 

Input to the network are four 84×84 grayscale game screens. 
Outputs of the network are Q-values for each possible action  
(18 in Atari).  



Example: Deep Mind network for Atari 
games (Mnih 2013) 
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Notice that there are no pooling layers!  
Pooling layers allow for translation invariance – the network becomes insensitive  
to the location of an object in the image.  
That makes perfectly sense for an image classification task, but for games  
the location of objects (e.g., the ball) is crucial in determining the potential reward  
and we wouldn’t want to discard this information! 



How does it works? 
Given a transition <s,a,r,s′>, the Q-table update rule in the “classic” 
algorithm must be replaced with the following: 

1.  Do a feedforward pass on the Deep Network for current state s 
and get predictions for Q(s,a), for any possible action a; 

2.  Do another feedforward pass for the next state s′ and calculate 
maximum over all network outputs maxa′Q(s′,a′). 

3.  Set Q-value “target” (ground truth) for action a to:                    
[r+γ×maxa′Q(s′,a′)] (use the max calculated in step 2). For all 
other actions, set the Q-value target to the same as originally 
returned from step 1, making the error 0 for those outputs. 

4.  To compute the error on Q(s,a), use the standard loss (error) 
function:  

5.  Use gradient descent with back-propagation to update network 
weights 
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More issues 
h  We have shown how to estimate the future reward in each state 

using Q-learning and approximate the Q-function using a 
convolutional neural network.  

h  But it turns out that approximation of Q-values using non-linear 
functions (such as NNs) is not very stable and very slow, even 
with conv-nets.  

h  Several “tricks” can be used to speed convergence: 

h  Most important is experience replay. During gameplay all the 
experiences <s,a,r,s′> are stored in a “replay” memory. When 
training the network, random samples from the replay memory 
are used instead of the most recent transition (in other words, 
we don’t follow the sequence of moves of a player).  

h  This breaks the similarity of subsequent training samples, which 
otherwise might drive the network into a local minimum. 
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Summary!

h Reinforcement learning is suitable for learning in 
uncertain environments where rewards may be 
delayed and subject to chance"

h The goal of a reinforcement learning program is to 
maximise the eventual reward"

h Q-learning is a form of reinforcement learning that 
doesn’t require that the learner has prior knowledge 
of how its actions affect the environment"


