
REINFORCEMENT LEARNING

Unsupervised learning

1

2

So far ….

h Supervised machine learning: given a set of
annotated instances and a set of categories, find a
model to automatically categorize unseen instances

h Unsupervided learning: no examples are available

h Three types of unsupervised learning algorithms:
5 Rule learning – find regularities in data and learn

associations (past lesson)
5 clustering- Given a set of instances described by

feature vectors, group them in clusters such as
intra-cluster similarity is maximized and inter-
cluster dissimilarity is maximized (in other
courses)

5 Reinforcement learning (today)

Reinforcement learning

h Reinforcement learning:
5 Agent receives no examples and

starts with no model of the
environment.

5 Agent gets feedback through
rewards, or reinforcement.

h Note: it is common to talk about «agents» rather
than «learners» since the output is a sequence
of actions, rather than a classification

3

Examples of applications
h Control physical systems: walk, drive, swim, ...

h  Interact with users: engage customers, personalise
channel, optimise user experience, ...

h Solve logistical problems: scheduling, bandwidth
allocation,elevator control, power optimisation, ..

h Play games: chess, checkers, Go, Atari games, ...

h Learn sequential algorithms: attention, memory,
conditional computation, activations, ...

4

Learning by reinforcement
h Examples:

5 Learning to play Backgammon
5 Robot learning to move in an environment

h Characteristics:
5 No direct training examples – (possibly delayed)

rewards instead, or penalty
5 Need for exploration of environment & exploitation
5 The environment might be stochastic and/or

unknown
5 The actions of the learner affect future rewards

Reinforcement learning

Reinforcement
Learning

Supervised
Learning

Input is an istance, output is a
classification of the istance

Input is some “goal”, output
is a sequence of actions to
meet the goal

Example: Robot moving in an
environment (a maze)

8

Example: playing a game (e.g.
backgammon, chess)

9

Elements of RL

h Transition model, how actions A influence states S

h Reward R, immediate value of state-action transition

h Policy π SèA, maps states to actions

Agent

Environment

State Reward Action

Policy

s0
a0 : r0! →!! s1

a1 : r1! →!! s2
a2 : r2! →!! 

In RL, the “model” to be learned is a policy to meet “at best”
some given goal (e.g. win a game)

Markov Decision Process (MDP)
h MDP is a formal model of the RL problem

h At each discrete time point
5 Agent observes state st in S and chooses action at

in A (according to some probability distribution)
5 Receives reward rt from the environment and the

state changes to st+1
5 r: (S,A)àR δ: (S,A)àS r is the reward function and
δ the transition matrix

h Markov assumption:
rt=r(st,at) st+1=δ(st,at) i.e. rt and st+1 depend only on the

current state and action
5  In general, the functions r and δ may not be deterministic

(i.e. they are stochastic, described by random variables) and
are not necessarily known to the agent

Agent’s Learning Task
Execute actions in environment, observe results and

h Learn action policy that maximises
expected cumulative reward ER
from any starting state s0 in S.

Here is the discount factor for future rewards, rk

is the reward at time k.

h Note:
•  Target function is
•  There are no training examples of the form (s,a) but only of the

form ((s,a),r), i.e. for –some- state-action pair we know the reward/
penalty

AS→:π

ER[rt +γrt+1 +γ
2rt+2 + ...]

10 ≤≤ γ

AS→:π

Example: TD-Gammon
h Immediate reward:

+100 if win
-100 if lose
0 for all other states

h Trained by playing 1.5 million games

h Now approximately equal to the best human
player

Example: Mountain-Car

h States: position and velocity

h Actions: accelerate forward, accelerate backward,
coast

h Rewards
5 Reward=-1for every step, until the car reaches the top
5 Reward=1 at the top, 0 otherwise

h The possible reward will be maximised by minimising
the number of steps to the top of the hill

Value function
We will consider a deterministic world first

In a deterministic environment, rewards are
known and the environment is known

h Given a policy π (adopted by the agent),
define an evaluation function over states:

∑
∞

=
+++ =+++=

0
2

2
1 ...)(

i
it

i
tttt rrrrsV γγγπ

V π (st) = rt +γ (rt+1 +γrt+2 + ...) = rt +γV
π (st+1)

Remember: a policy
is a mapping from states to actions,
target is finding optimal policy

π : S→ A

Vπ(st) is the value of being in state st according to policy π

Example: robot in a grid
environment

r((2,3), UP)=100

Grid world environment
Six possible states
Arrows represent possible actions
G: goal state
Actions: UP, DOWN, LEFT,
RIGHT

Known environment: grid with cells
Deterministic: possible moves in any cell are known, rewards
are known

r(state, action)
immediate reward values

100

0

0
100

G

0

0

0

0

0

0

0

0

0

1 2 3
1

2

Example: robot in a grid
environment

h Value function: maps states to state values,
according to some policy π. How is V
estimated?

 V*(state) values r(state, action)
immediate reward

values

100

0

0

100

G

0

0

0

0

0

0

0

0

0 G
90 100 0

81 90 100

G
90 100 0

81 90 100

G
90 100 0

81 90 100

The “value” of being
in (1,2) according to
some known π (e.g. π=
move to 1,3) is 100

∑
∞

=
+++ =+++=

0
2

2
1 ...)(

i
it

i
tttt rrrrsV γγγπ

Computing V(s) (if policy π is
given)

Suppose the following is an

Optimal policy – denoted with π* :

π* tells us what is the
best thing to do
when in each state.

According to π* , we can compute the values of the states
for this policy – denoted Vπ*, or V*

rewards

r(s,a) (immediate reward) values: V*(s) values, with γ=0.9

 one optimal policy: V*(s6) = 100 + 0.9*0 = 100

V*(s5) = 0 + 0.9*100 = 90

V*(s4) = 0 + 0.9*90 = 81

Etc.

However, π* is usually unknown and the task is to
learn the optimal policy

)(),(maxarg* ssV ∀= π

π
π

)()(1
**

++= ttt sVrsV γ

s4 s5 s6
π*

s6 s5 s4

s1 s2 s3

How do we learn optimal policy π* ?
h Target function is π : state → action

h However…
5 We have no training examples of the

form <state, action>

5 We only know:

 <<state, action>, reward>

h Reward might not be known for all
states!

Utility-based agents

h To learn V π* (abbreviated V*) perform look ahead search
to choose best action from any state s

h Works well if agent knows

5 δ : state × action → state

5 r : state × action → R

h When agent doesn’t know δ and r, cannot choose
actions this way

h Need a greedy method

() () ()()[]a s,δ*Va s,rmaxargsπ*
a

+≡

Q-learning: an utility-based learner
in deterministic environments
h Q-values

5 Define a new function Q very similar to V*

5 If agent learns Q, it can choose optimal action
even without knowing δ or r

h Using Q:

() ()a s,Q maxargsπ*
a

≡

Q s, a() ≡ r s, a()+γV * δ s, a()() = r s, a()+γV * s '()

() () ()()[]a s,δ*Va s,rmaxargsπ*
a

+≡

What’s new?? Apparently again depends on (unknown) δ and r

Learning the Q-value
h  Note: Q and V* closely related

h  Allows us to write Q recursively as (Bellman equation):

h  In other words, maximum future reward for a given state s and
action a, is the immediate reward plus maximum future reward for
the next state. This policy is also called Temporal Difference
learning

h  In the simplest case the Q-function is implemented as a table, with
states as rows and actions as columns. The algorithm is shown in
the next slide.

V * s() ≡max
a'

 Q s, a'()

 Q s t() , a t()() = r s t() , a t()()+γV * δ s t() , a t()()()
= r s t() , a t()()+γ max

a'
Q s t +1() , a'()

)()(1
**

++= ttt sVrsV γ

Simple Q pseudo-code

24

α in the algorithm is a learning rate that controls how much of the difference
between previous Q-value and newly proposed Q-value is taken into account.
In particular, when α=1, then the update is exactly the same as Bellman
equation.

It has been shown that Algorithm converges for “sufficient” number of iterations

Algorithm to utilize the Q table

Input: Q matrix, initial state

1.  Set current state = initial state , randomly select a possible
action and compute next state

2.  From next state, find action that produce maximum Q value,
update Q

3.  Set current state = next state
4.  Go to 2 until current state = goal state

The algorithm above will return sequence of current state
from initial state until goal state.

Comments: Parameter γ has range value of 0 to 1().
If γ is closer to zero, the agent will tend to consider only

immediate reward. If γis closer to one, the agent will
consider future reward with greater weight, willing to delay the
reward.

Q-Learning: Example (γ=0.9)
Episode 1

s1 s2 s3

s4 s5 s6

N S W E

s1 0 0 0 0

s2 0 0 0 0

s3 0 0 0 0

s4 0 0 0 0

s5 0 0 0 0

s6 0 0 0 0

1	

1	0	

0	

0	 0	

0	

•  Set current state = initial state ,
randomly select a possible action and
compute next state
•  From current state, find action that
produce maximum Q value

•  Update

)','(ˆmax),(ˆ
'

asQrasQ
a

γ+←

s=s4 possible moves: North, East	
Select (at random) to move to s5	

actions

The “max Q” function search for the “most promising action” from s5

But in s5: therefore:
Q-values table

∀a, Q̂(s5,a) = 0
009,00)',5(ˆmax),4(),4(ˆ

'
=×+=+= asQEsrEsQ

a
γ

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 0

s3 0 0 0 0

s4 0 0 0 0

s5 0 0 0 0

s6 0 0 0 0

1	

1	0	

0	

0	 0	

0	

)','(ˆmax),(ˆ
'

asQrasQ
a

γ+←

S4ès5 randomly select s6 as 	
next move	

From s5, moving to s6 again does not allow rewards (all Q(s6,a)=0)
Update Q(s5,E)ç0+argmax(Q(s6,a’))=0+ +0,9xQ(s6,N))=0+0,9x0

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 0

s3 0 0 0 0

s4 0 0 0 0

s5 0 0 0 0

s6 0 0 0

1	

1	0	

0	

0	 0	

0	

S4ès5ès6 randomly select s3 as 	
next move	

Q̂(s6 ,N)←1+0,9maxa ' Q̂(s3,a ') =1+0,9×0 =1

•  GOAL STATE REACHED:
END OF FIRST EPISODE

In s3 r=1 so Q is updated to 1

1+0.9*0
=1

Q-Learning: Example (γ=0.9)
Episode 2

s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 0

s3 0 0 0 0

s4 0 0 0 0

s5 0 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s4, s’=s1	

Q̂(s4 ,N)← 0+0,9×max
a '
Q̂(s1,a ') = 0

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 0

s3 0 0 0 0

s4 0 0 0 0

s5 0 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

Q̂(s1,E)← 0+0,9×max
a '
Q̂(s2 ,a ') = 0

S4ès1, choose s’=s2	

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0

s3 0 0 0 0

s4 0 0 0 0

s5 0 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

S4ès1ès2, choose s’=s3	

Q̂(s2 ,E)←1+0,9maxa ' Q̂(s3,a ') =1

•  GOAL STATE REACHED:
END OF 2nd EPISODE

1

Q-Learning: Example (γ=0.9)
Episode 3

s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 1

s3 0 0 0 0

s4 0 0 0 0+0

s5 0 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s4, s’=s5	

Q̂(s4,E)← 0+0,9max
a '
Q̂(s5,a ') = 0

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 1

s3 0 0 0 0

s4 0 0 0 0

s5 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s5, s’=s2	

Q̂(s5,N)← 0+0,9max
a '
Q̂(s2,a ') = 0+0,9×1= 0,9

0,9

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 1+0

s3 0 0 0 0

s4 0 0 0 0

s5 0.9 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s2, s’=s3	

•  GOAL STATE REACHED:
END OF 3rd EPISODE

Q̂(s2 ,E)←1+0,9maxa ' Q̂(s3,a ') =1

Q-Learning: Example (γ=0.9) Episode
4

s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 1

s3 0 0 0 0

s4 0 0 0 0.81

s5 0.9 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s4, s’=s5	

Q̂(s4,E)← 0+0,9max
a '
Q̂(s5,a ') = 0,9×0,9 = 0,81

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 1

s3 0 0 0 0

s4 0 0 0 0.81

s5 0,9 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s5, s’=s2	

Q̂(s5,N)← 0+0,9max
a '
Q̂(s2,a ') = 0,9×1= 0,9

Q-Learning: Esempio (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 1+0

s3 0 0 0 0

s4 0 0 0 0.81

s5 0.9 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s2, s’=s3	

•  GOAL REACHED: END OF
4th EPISODE

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0

s2 0 0 0 1

s3 0 0 0 0

s4 0+0 0 0 0.81

s5 0.9 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s4, s’=s1	

Q-Learning: Example (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0.9

s2 0 0 0 1

s3 0 0 0 0

s4 0 0 0 0.81

s5 0.9 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s1, s’=s2	

Q-Learning: Esempio (γ=0.9)
s1 s2 s3

s4 s5 s6

N S O E

s1 0 0 0 0.9

s2 0 0 0 1+0

s3 0 0 0 0

s4 0 0 0 0.81

s5 0.9 0 0 0

s6 1 0 0 0

1	

1	0	

0	

0	 0	

0	

s=s2, s’=s3	

•  GOAL REACHED: END OF
5th EPISODE

Q-Learning: Example(γ=0.9)

s1 s2 s3

s4 s5 s6

N S O E

s1 0 0.72 0 0.9

s2 0 0.81 0.81 1

s3 0 0 0 0

s4 0.81 0 0 0.81

s5 0.9 0 0.72 0.9

s6 1 0 0.81 0

1	

0.9	0.81	

0.72	

After several iterations, the algorithm converges to the following table:

1	
0.9	0.81	

0.81	

0.9	
0.81	

0.81	

0.72	

Yet another example
h Environment

A to E: rooms, F: outside building (target).
The aim is that an agent learn to get out of
building from any of rooms in an optimal way.

h Modeling of the environment

State, Action, Reward and
Q-value

h Reward matrix

h Q-table and the update rule

Q table update rule:

：learning
parameter

Numerical Example
Let us set the value of learning parameter 0.8
and initial state as room B.

Episode 1: start from B
Look at the second row (state B) of matrix R. There are
two possible actions for the current state B, that is to go
to state D, or go to state F. By random selection, we
select to go to F as our action.

Episode 2: start from D
This time for instance we randomly have state D as
our initial state. From R; it has 3 possible actions, B,
C and E. We randomly select to go to state B as our
action.

Episode 2 (cont’d)
The next state is B, now become the current state. We
repeat the inner loop in Q learning algorithm because
state B is not the goal state. There are two possible
actions from the current state B, that is to go to state D,
or go to state F. By lucky draw, our action selected is
state F.

No
chan
ge

After Many Episodes
If our agent learns more and more experience
through many episodes, it will finally reach
convergence values of Q matrix as

Normalized to
percentage

Once the Q matrix reaches almost the
convergence value, our agent can reach the goal
in an optimum way. To trace the sequence of
states, it can easily compute by finding action
that makes maximum Q for this state.

For example from initial State C,
using the Q matrix, we can have the
sequences C – D – B – F or C-D-E-F

The non-deterministic case

52

•  What if the reward and the state transition are non-
deterministic? – e.g. in Backgammon learning and other
games moves depends on rolls of a dice!

•  Then V and Q needs redefined by taking expected
values:

•  Mean values can be estimated observing several
sequences of moves (episodes).

•  Similar reasoning and convergent update iteration will
apply

V π (s) ≡ E[rt +γrt+1 +γ
2rt+2 + ...]= E[γ irt+i

i=0

∞

∑]

Q(s,a) ≡ E[r(s,a)+γV *(δ(s,a))]

Non-deterministic case

53

Where P(s’|s,a) is the conditional probability of landing in s’ when
the system is in s and performs action a

Non-deterministic case

54

With probability (1-αn) system stays
in current state and gets no reward,
with probability αn it makes a move

How is the Q updating rule modified for the non-deterministic
case?

Deep Q learning (1)
h  If many practical applications, e.g., games, the

dimension of a Q table is very large

h For example, consider Atari games: The state of the
environment in the Breakout game can be defined by
the location of the paddle, location and direction of
the ball and the existence of each individual brick.

h  If apply a pixel-level processing– e.g., take four last
screen images, resize them to 84×84 and convert to
grayscale with 256 gray levels – we would have
25684×84×4≈1067970 possible game states. This
means 1067970 rows in our imaginary Q-table – that
is more than the number of atoms in the known
universe!

55

Deep Q (2)
h  The intuition is that, in order to learn Q values, we can use

neural networks. We train for some state and action, and we can
then use the trained network to compute Q for any state and
action

h  In the right-hand side formulation, input is a (possibly multi-

dimensional) representation of a state s and action a, output is
the Q value (s,a)

h  In the left formulation, input is a state s, output are the Q for all
possible actions a1, a2…

56

Example: Deep Mind network for Atari
games (Mnih 2013)

57

Input to the network are four 84×84 grayscale game screens.
Outputs of the network are Q-values for each possible action
(18 in Atari).

Example: Deep Mind network for Atari
games (Mnih 2013)

58

Notice that there are no pooling layers!
Pooling layers allow for translation invariance – the network becomes insensitive
to the location of an object in the image.
That makes perfectly sense for an image classification task, but for games
the location of objects (e.g., the ball) is crucial in determining the potential reward
and we wouldn’t want to discard this information!

How does it works?
Given a transition <s,a,r,s′>, the Q-table update rule in the “classic”
algorithm must be replaced with the following:

1.  Do a feedforward pass on the Deep Network for current state s
and get predictions for Q(s,a), for any possible action a;

2.  Do another feedforward pass for the next state s′ and calculate
maximum over all network outputs maxa′Q(s′,a′).

3.  Set Q-value “target” (ground truth) for action a to:
[r+γ×maxa′Q(s′,a′)] (use the max calculated in step 2). For all
other actions, set the Q-value target to the same as originally
returned from step 1, making the error 0 for those outputs.

4.  To compute the error on Q(s,a), use the standard loss (error)
function:

5.  Use gradient descent with back-propagation to update network
weights

59

More issues
h  We have shown how to estimate the future reward in each state

using Q-learning and approximate the Q-function using a
convolutional neural network.

h  But it turns out that approximation of Q-values using non-linear
functions (such as NNs) is not very stable and very slow, even
with conv-nets.

h  Several “tricks” can be used to speed convergence:

h  Most important is experience replay. During gameplay all the
experiences <s,a,r,s′> are stored in a “replay” memory. When
training the network, random samples from the replay memory
are used instead of the most recent transition (in other words,
we don’t follow the sequence of moves of a player).

h  This breaks the similarity of subsequent training samples, which
otherwise might drive the network into a local minimum.

60

61

Summary!

h Reinforcement learning is suitable for learning in
uncertain environments where rewards may be
delayed and subject to chance"

h The goal of a reinforcement learning program is to
maximise the eventual reward"

h Q-learning is a form of reinforcement learning that
doesn’t require that the learner has prior knowledge
of how its actions affect the environment"

