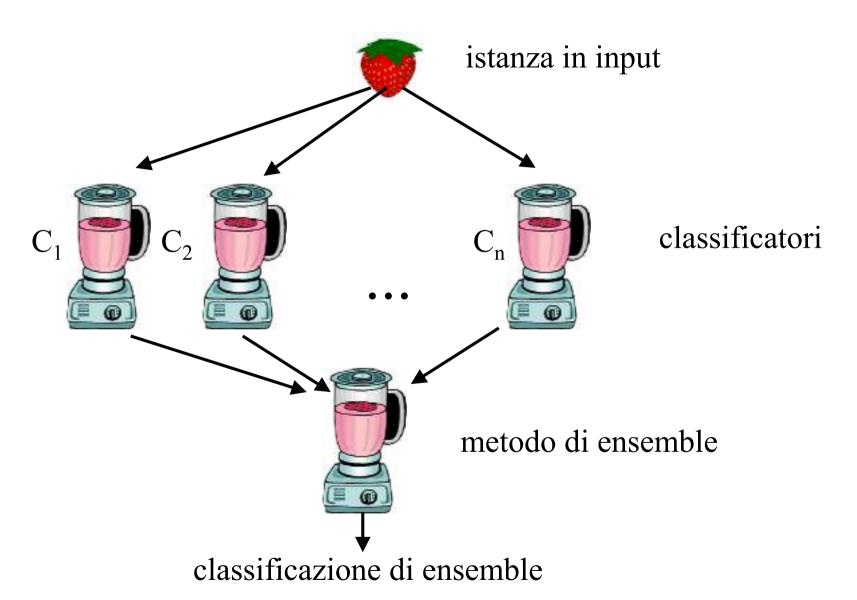
Metodi di Ensemble

Metaclassificatori

Metodi di Ensemble



Come combinare i classificatori?

• Normalmente mediante una media pesata (supponiamo che le classi siano {-1, +1}):

$$ensemble(x) = \operatorname{sgn}(\sum_{i=1}^{n} w_i C_i(x))$$

- w_i è il peso del classificatore C_i
- Si può estendere a un numero arbitrario classi
- Voting semplice $(w_k = w_j \text{ per ogni } k, j)$
- Voting pesato (i pesi influenzano la scelta finale)

Metodi di Ensemble

- Mediano i risultati di modelli differenti (o stesso modello parametrizzato in modo differente)
- Perché?
 - Normalmente hanno prestazioni migliori rispetto ai singoli classificatori
 - Più resistenti al rumore
- Perché no?
 - Richiedono più tempo
 - Overfitting

Bagging

- Dato un insieme di addestramento D, generiamo n insiemi di addestramento D_i ($|D_i| \le |D|$)
- Ciascun insieme di addestramento D_i viene generato campionando esempi da D in modo uniforme (estratti con rimpiazzo)
 - Bootstrapping
- Addestra *n* classificatori sugli n insiemi di addestramento ottenuti
- Media i risultati sui vari classificatori (se l'output è reale) oppure applica una tecnica di voting (se l'output è basato su classi)

Bagging: Esempio (Opitz, 1999)

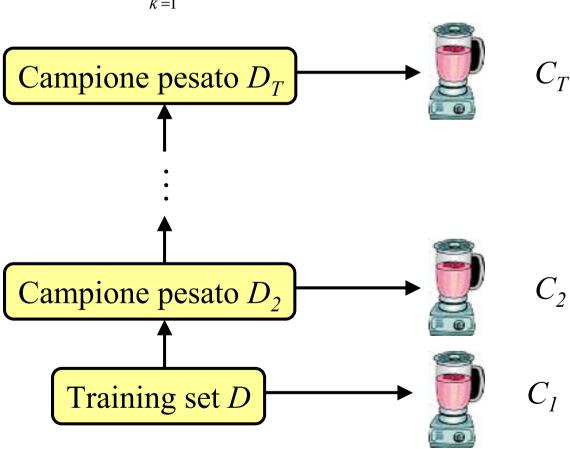
Insieme D	1	2	3	4	5	6	7	8
D_1	2	7	8	3	7	6	3	1
D_2	7	8	5	6	4	2	7	1
D_3	3	6	2	7	5	6	2	2
D_4	4	5	1	4	6	4	3	8

Boosting

- Può un insieme di classificatori "deboli" formare un classificatore "forte"?
- Il Boosting fornisce una risposta
- I classificatori vengono prodotti in sequenza
- Ciascun classificatore dipende dal precedente e tenta di migliorarne gli errori
- Gli esempi classificati in modo erroneo dai classificatori precedenti sono scelti più spesso o pesati maggiormente

Boosting

$$H(x) = \sum_{k=1}^{T} \alpha_k C_k(x)$$



Adaptive Boosting (AdaBoost)

- Si sceglie una distribuzione iniziale di selezione degli esempi $(x_i, y_i), D_1(i) = 1/m$ dato |D| = m e per i = 1, ..., m
- For k = 1, ..., T
 - Definisce ε_k come la somma delle probabilità per le istanze misclassificate dai classificatori precedenti

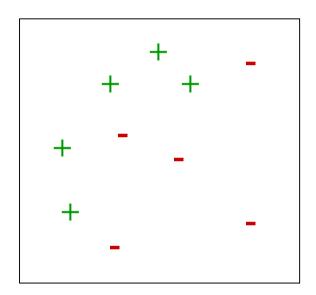
$$\varepsilon_k = \sum_{i=1}^m D_k(i) [y_i \neq C_k(x_i)]$$

- Apprendi un classificatore C_k che minimizzi l'errore ε_k (esci se $\varepsilon_k \ge 0.5$
- Calcola un peso α_k del classificatore C_k :

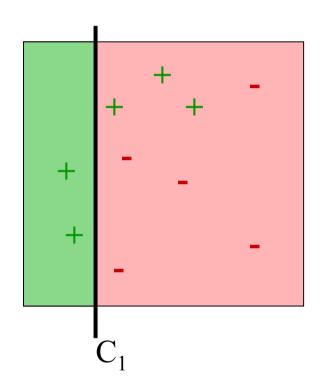
$$\alpha_k = \frac{1}{2} \log \frac{1 - \varepsilon_k}{\varepsilon_k}$$

- Aggiorna la distribuzione:
 - $D_{k+1}(i) = D_k(i)e^{\alpha k}$ se x_i è classificato in modo errato,
 - $D_{k+1}(i) = D_k(i)e^{-\alpha k}$ se x_i è classificato in modo corretto
- "Rinormalizza" le probabilità (affinché sommino a 1)
- Combina i classificatori $C_1, ..., C_k$ usando il voting pesato

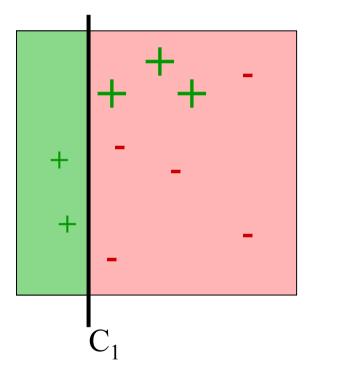
AdaBoost: esempio



AdaBoost: esempio (k=1)



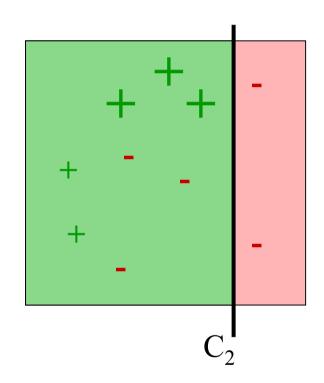
AdaBoost: esempio (k=1)



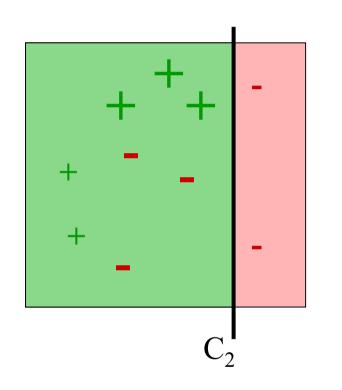
$$\varepsilon_1 = 0.30$$

$$\alpha_1 = 0.42$$

AdaBoost: esempio (k=2)



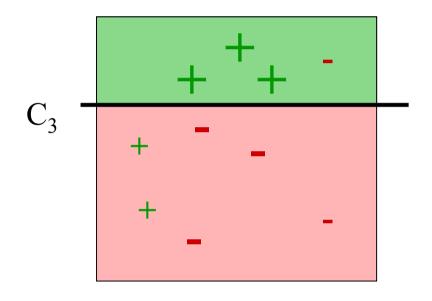
AdaBoost: esempio (k=2)



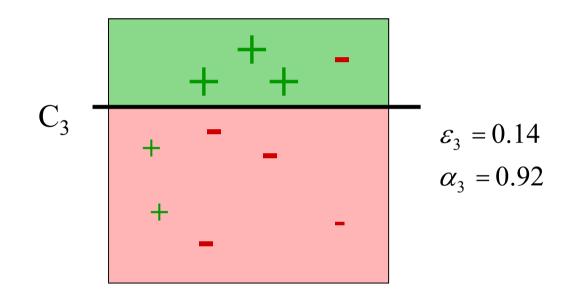
$$\varepsilon_2 = 0.21$$

$$\alpha_2 = 0.65$$

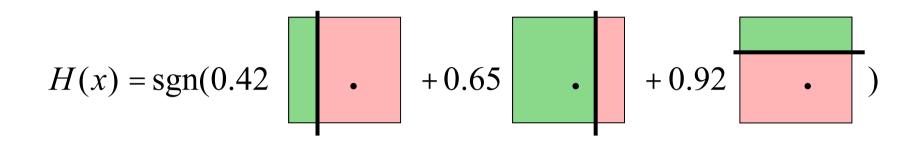
AdaBoost: esempio (k=3)



AdaBoost: esempio (k=3)



AdaBoost: H finale (T=3)



AdaBoost

• Il classificatore finale è:

$$H(x) = \sum_{k=1}^{T} \alpha_k C_k(x)$$

- Vantaggi:
 - Solo un parametro da apprendere: T
 - Può essere combinato con qualsiasi classificatore "debole"
 - Garanzie teoriche data una quantità sufficiente di dati e un buon classificatore "debole"
- Svantaggi:
 - Suscettibile al rumore
 - Dipende dal classificatore "debole" e dai dati
- Provate anche questa applet:
 - http://www.cse.ucsd.edu/~yfreund/adaboost/index.html