Distance vector protocol

Irene Finocchi

finocchi@di.uniroma1.it

Classification of routing algorithms

View: global or local

- Global: info about entire network (routers, links) [link state]
- Local: partial knowledge of remote parts of network [distance vector]

Centralized or decentralized

- one node maintains view, and distributes routes to other nodes
- all nodes maintain view

Static or dynamic?

Static:

- infrequent route changes
- infrequent view update; static link costs (e.g. up/down)

Dynamic:

- frequent periodic route changes
- frequent view update; dynamic link costs (e.g. delay)

Routing

Routing protocol

Goal: determine "good" path (sequence of routers) thru network from source to dest.

Graph abstraction for routing algorithms:

- graph nodes are routers
- graph edges are "physical" links
 - link cost: delay, \$cost, congestion level

"Good" path:

- minimum cost path
- other def's possible

Distance vector routing algorithm

Distributed, asynchronous implementation of the algorithm by Bellman & Ford

- Distributed: each node communicates *only* with directly-attached neighbors
- Asynchronous: nodes need *not* exchange info or iterate in lock step (synchronized)!
- Iterative:
 - > continues until no nodes exchange info
 - > self-terminating: no "signal" to stop
- Decentralized, local, dynamic

- Each node has its own distance table
- One row for each possible destination
- One column for each directly-attached neighbor of the node (outgoing links)

Example: at node S, for destination T via neighbor X:

$$D^{S}(T,X)$$
 = distance from S to T, via X as next hop
= $w(S,X) + \min_{Y} D^{X}(T,Y)$

Distance table gives routing table

D	Ē()	ne A	eighbo B	ors D		Outgoing link to use, cost
destinations	Α	1	14	5	Α	A, 1
	В	7	8	5	destinations O Œ	D, 5
	С	6	9	4	dest	D, 4
	D	4	11	2	D	D, 4
	D	oistar	nce t	able	 Rou	ıting table

Distance table: an example

$$D^{E}(C,D) = w(E,D) + \min_{Y} \{D^{D}(C,Y)\}$$

= 2+2 = 4

$$D^{E}(A,D) = w(E,D) + \min_{\{D^{D}(A,Y)\}}$$

= 2+3 = 5 $\stackrel{Y}{\longleftarrow}$ loop!

$$D^{E}(A,B) = w(E,B) + \min_{Y} \{D^{B}(A,Y)\}$$

= 8+6 = 14 \leftarrow loop!

	_	neighbors			
D	E()	Α	В	D	
-	Α	1	14	5	
tinations	В	7	8	5	
destil	С	6	9	4	
	D	4	11	(2)	

M

Distance vector routing: an overview

Iterative, asynchronous

Each local iteration caused by:

- local link cost change
- message from neighbor v: a shortest path with source v has changed

Distributed

- each node notifies neighbors *only* when a shortest path to any destination changes
 - neighbors then notify their neighbors if necessary

Each node:

Assumption

- For the time being, don't consider link cost changes: we'll remove this assumption later
- In the next slides we show:
 - How does the algorithm work
 - Why it stabilizes and produces in a finite amount of time the correct distances

Each node:

Distance vector algorithm: main loop

At node S:

At node S:

```
for all adjacent nodes y:
D^{S}(\cdot,y) = + \infty
D^{S}(y,y) = w(S,y)
for all destinations t
send min D^{S}(t,y) to each neighbor
Y
/* y over all neighbors of S */
```


Distance vector algorithm: an example

	neign	มบเจ
DX	Υ	Z
est.	2	œ
δZ	∞	7

Distance table at node X just after the initialization

sg d	estination	Msg/path source	Path destination	Cost
	Y	X	Y	2
	Z	X	Y	2
	Y	X	Z	7
	Z	X	Z	7

If msg destination = path destination, message is useless: Y is not a possible destination in its own distance table, and the info carried by the message cannot be used to update any entry in D^Y

Won't consider these messages any further

Distance vector algorithm: an example

neighbors					
D^X	Υ	Z			
	2	∞			
δZ	œ	(7)			

	neighl	oors
D ^Y	Χ	Z
X	(2)	∞

_ D ²	Z	neigh	bors Y
est.	(7	∞
۾ ۾	/	œ	1

Msg destination	Msg/path source	Path destination	Cost
\mathbf{Z}	X	Y	2
Y	X	Z	7
X	Y	Z	1
Z	Y	X	2
X	Z	Y	1
Y	Z	X	7

Messages generated during the initialization

Distance vector algorithm: an example

$$\begin{array}{c|cccc} D^X & Y & Z \\ \hline D^X & Y & Z \\ \hline \vdots & Y & 2 & \infty \\ \hline Z & \infty & 7 \\ \hline \end{array}$$

$$\begin{array}{c|cccc}
 & \text{neighbors} \\
\hline
D^{Y} & X & Z \\
\hline
 & X & 2 & \infty \\
\hline
 & Z & 9 & 1
\end{array}$$

			_ '
est.	X	7	œ
ō	Υ	9	1

Msg destination		Msg/path source	Path destination	Cost
	Y	X	Z	7
	X	Y	Z	1
	Z	Y	X	2
	X	Z	Y	1
	Y	Z	X	7

$$w(Y,X) + C = 2 + 7 = 9$$
 $D^{Y}(Z,X) = 9$

Distance vector algorithm: an example

naighbore

		neign	DUIS
[)X	Υ	Z
est.	Υ	2	∞
ŏ	Z	œ	7

		neighbors				
) ^Y	Х	Z			
est.	Χ	2	∞			
ō	Z	∞	1			

	neighbors		
DZ	Х	Υ	
est.	7	œ	
Y	9	1	

sg des	tination	Msg/path source	Path destination	Cost
Z		X	Y	2
Y		X	Z	7
X		Y	Z	1
Z		Y	X	2
X		Z	Y	1
Y		Z	X	7

$$w(Z,X) + C = 7 + 2 = 9$$
 $D^{Z}(Y,X) = 9$

Distance vector algorithm: an example

neighbors

DX	Y	Z
est.	2	œ
ĕ Z	3	7

	neighbors		
DY	Х	Z	
× ×	2	∞	
Z	9	1	

neighbors			
) ^Z	Х	Υ
est.	Χ	7	∞
ō	Υ	9	1

Msg destination	Msg/path source	Path destination	Cost
X	Y	Z	1
Z	Y	X	2
X	Z	Y	1
Y	Z	X	7
Y	X	Z	3

$$w(X,Y) + C = 2 + 1 = 3$$
 $D^X(Z,Y) = 3$

Distance vector algorithm: an example

	neighbors		neigh	bors
DY	X Z	D^Z	X	Υ
X X	② ∞	est. X	7	3
Z	9 1	Y	9	1

Msg destination	Msg/path source	Path destination	Cost
Z	Y	X	2
X	Z	Y	1
Y	Z	X	7
Y	X	Z	3
Y	Z	X	3

$$w(Z,Y) + C = 1 + 2 = 3$$
 $D^{Z}(X,Y) = 3$

Distance vector algorithm: an example

	neighbors		
[)X	Υ	Z
est.	Υ	2	8
ŏ	Z	3	7

$$\begin{array}{c|cccc} & \textbf{neighbors} \\ \hline D^Z & X & Y \\ \hline \vdots & X & 7 & \textcircled{3} \\ Y & 9 & \textcircled{1} \end{array}$$

Msg destination	Msg/path source	Path destination	Cost
Y	Z	X	7
Y	X	Z	3
Y	Z	X	3

$$w(Y,Z) + C = 1 + 7 = 8$$
 $D^Y(X,Z) = 8$

Distance vector algorithm: an example

neighbors			
)X	Υ	Z
est.	Υ	2	8
ŏ	Z	3	7

	neigh	bors	
DY	X	Z	D^Z
dest.	② 9	∞ (1)	dest.

	neighbors		
D^Z	Χ	Υ	
est.	7	3	
Υ	9	1	

Msg de	estination	Msg/path source	Path destination	Cost
	X	Z	Y	1
7	Y	Z	X	7
7	Y	X	Z	3
7	Y	Z	X	3

$$w(X,Z) + C = 7 + 1 = 8$$
 $D^X(Y,Z) = 8$

Distance vector algorithm: an example

_[ЭX	Y	Z
dest.	Υ	2	8
ŏ	Z	3	7

$$\begin{array}{c|cccc}
 & \text{neignbors} \\
\hline
D^Z & X & Y \\
\hline
tilde{X} & 7 & 3 \\
\hline
Y & 9 & 1
\end{array}$$

Msg	destination	Msg/path source	Path destination	Cost
	Y	X	Z	3
	Y	Z	X	3

$$w(Y,X) + C = 2 + 3 = 5$$
 $D^{Y}(Z,X) = 5$

Distance vector algorithm: an example

		neigni	ors
[)X	Υ	Z
est.	Υ	2	8
ŏ	Z	3	7

neighbors			
DY	Χ	Z	
Χ	(2)	4	

_	neigh	bors
DZ	X	Υ
est.	7	3
Y	9	1

Msg destination	Msg/path source	Path destination	Cost
Y	Z	X	3

$$w(Y,Z) + C = 1 + 3 = 4$$
 $D^{Y}(X,Z) = 4$

Correctness (1/2) Does the algorithm stabilize and produce (in a finite amount of time) the correct distances?

This is just a relaxation!

$$\min_{\mathbf{Y}} \mathbf{D}^{\mathbf{S}}(\mathbf{T}, \mathbf{Y}) = \mathbf{D}_{\mathbf{ST}}$$

$$C = D_{VT}$$

The update is equivalent to the relaxation

$$D_{ST} = w(S, V) + D_{VT}$$

Distance vector algorithm: an example

		neight	ors
[)X	Y	Z
est.	Υ	2	8
ŏ	Z	3	7

	neighl	bors	
DY	X	Z	D^Z
Z dest.	25	4	dest.

neighbors				
D ^Z	Х	Υ		
est.	7	3		
Y	9	1		

Msg destination	n Msg/path source	Path destination	Cost

No more messages remain: the algorithm has found a stable configuration

Correctness (2/2)

We previously proved the following:

- If: 1) Distance estimate D_{xy} corresponds to the length of an existing path from x to y
 - 2) Bellman's conditions $D_{xz} \le w(x,y) + D_{zy}$ locally satisfied for each $(x,y) \in E$

Then $D_{xy} = d_{xy}$ for every $x,y \in V$

The algorithm always uses existing arcs 1) OK

If at some point D_{zy} decreases, this is notified with a message to x, that restores the condition if necessary \bigcirc 2) OK (and sends in turn messages to its own neighbors)

۳

Dealing with link cost changes

```
loop

wait (until S receives a message from a neighbor V or the cost of a link (S,U) changes )

if w(S,U) changes by ô

/* change cost to all dest's via neighbor U by ô */

/* ô may be positive or negative */

for all destinations T: DS(T,U) = DS(T,U) + ô

else if m = (V, T, C) is the message received from V

/* a path from V to T of cost C was discovered */

update: DS(T,V) = w(S,V) + C

for all destinations T:

if min DS(T,Y) changes, send its new value to

Y

forever
```


Decreasing the cost of a link: an example

	neighbors			
D _p	а	С	d	
dest.	1667	9 8 9	13 11 10	
u	\cup	9	10	

	neignbors			
D c	а	b	d	
;; a	5	1	4	
ğ b	6	0	3	
d	11	7	1	

Msg dest.	Msg source	Path dest.	Cost
b	С	a	1
d	С	a	1
a	c	b	0
d	c	b	0

ne	ighbors	ne	ighbor
D ^a	b c	D^d	b c
dest.	1 6 7 5 8 6	dest.	11 <u>3</u> 10 <u>2</u> 16 <u>1</u>

$$w(b,c) + C = 8 + 1 = 9$$
 $D^b(a,c) = 9$

Decreasing the cost of a link: an example

Msg dest.	Msg source	Path dest.	Cost	neighbors	neighbors
b d a	c c c	a a b	1 1 0	D ^a b c	D^d b c
d	c	b	0	d 8 6	b 10 2 c 16 1

In **D**^C, decrease all entries in column **b** by **1**

M

Decreasing the cost of a link: an example

N	Asg dest.	Msg source	Path dest.	Cost	neighbors	neighbors	3
	d	c	a	1	D ^a b c	D _q p c	
	a	c	b	0		- 446	
	d	c	b	0	₩ b (1) 6	a 11 (2)	
	b	d	a	2	<u>ĕ</u> c 7 (5)	10 2	
	c	d	a	2	d 8 6	c 16 (1)	
	c	d	a	2	d 8 6	C 1	6 1

$$w(d,c) + C = 1 + 1 = 2$$
 $D^{d}(a,c) = 2$

Decreasing the cost of a link: an example

	neighbors			
D_p	а	С	d	
t; a	1	9	13	
o c	6	8	11	
d	7	9	10	

1	neighbors			
D c	а	b	d	
st.	5	1	4	
ë b	6	(0)	3	
d	11	7	①	

Msg dest.	Msg source	Path dest.	Cost
a	С	b	0
d	c	b	0
b	d	a	2
c	d	a	2

$$w(a,c) + C = 5 + 0 = 5$$
 $D^a(b,c) = 5$

Decreasing the cost of a link: an example

	neighbors			
а	С	d		
1 6 7	9 8 9	12 11 10		
		a c 1 9 6 8		

Msg dest.	Msg source	Path dest.	Cost
b	d	a	2
С	d	a	2
c	d	b	1

$$w(b,d) + C = 10 + 2 = 12$$
 $D^b(a,d) = 12$

Decreasing the cost of a link: an example

Msg dest.	Msg source	Path dest.	Cost
d	С	b	0
b	d	a	2
c	d	a	2
c	d	b	1

$$w(d,c) + C = 1 + 0 = 1$$
 $D^{d}(b,c) = 1$

Decreasing the cost of a link: an example

	neighbors			
D _p	а	С	d	
a:	1	9	12	
ö c	(6)	8	11	
d	7	9	10	

1	neighbors			
D c	а	b	d	
dest.	5 6 11	107	3 3 1	

Msg dest.	Msg source	Path dest.	Cost
С	d	a	2
С	d	b	1

ne	ighbors	s ne	eighbors
D ^a	b c	D^d	b c
dest.	1 5 7 5 8 6	dest.	11 (2) 10 (1) 16 (1)

$$w(c,d) + C = 1 + 2 = 3$$
 $D^{c}(a,d) = 3$

	neighbors			
D_p	а	С	d	
t; a	1	9	12	
o c	6	8	11	
d	7	9	10	

1	neighbors				
D c	а	b	d		
dest.	5	1	3 2		
d	11	7	(1)		

Msg dest.	Msg source	Path dest.	Cost
С	d	b	1

neighbors			ne	ight	ors		
	D ^a	b	С		D^d	b	С
dest.	b c d	1 7 8	5 5 6	dest.	a b c	11 10 16	(2) (1) (1)

$$w(c,d) + C = 1 + 1 = 2$$
 $D^{c}(b,d) = 2$

Decreasing links: "good news travel fast"

Why does the algorithm stabilize?

- (S,X) = arc that we decreased by the amount δ
- T =any destination
- Assume for simplicity that all cycles have cost >0
 - Shortest path between any pair of nodes must be simple
- Consider the path $S \longrightarrow X \longrightarrow T$ shortest path from X to T \Longrightarrow simple \Longrightarrow cannot contain (S,X)

Decreasing the cost of a link: an example

neighbors				
D _p	а	С	d	
st.	1	9	12	
ö c	(6)	8	11	
d	$ 7\rangle$	9	10	

Msg dest.	Msg source	Path dest.	Cost

	ne	ight	ors
	D ^a	b	С
1	gest.	1 7 8	5 5 6

ne	neignbors		
D^d	b c		
₊ ; a	11 (2)		
g b	10 (1)		
C	16 (1)		

naighbor

No more messages remain: the algorithm has found a stable configuration

Decreasing links: "good news travel fast"

The cost of $\Pi_{ST} = S \longrightarrow X \longrightarrow T$ decreases by exactly δ

- 1) If Π_{ST} was shortest, the cost of the shortest path from S to T changes
- 2) If Π_{ST} was not shortest, it may become preferable to the old shortest path from S to T

In any case, if Π_{ST} is shortest after decreasing (S,X), it must be simple (no cycle has cost 0), it is a path really existing in G and we know exactly its cost

The messages sent to the neighbors of S contain correct info

With similar arguments: the neighbors of S will correctly propagate this information backwards

- (S,X) = arc that we increased by the amount δ
- T =any destination
- If $S \longrightarrow X \longrightarrow T$ was shortest before the update, it may no longer be the shortest path after increasing (S,X)
- Replacement path = minimum in row T of D^S
- The replacement path may not be simple and may contain (S,X)

$$S \longrightarrow Y \longrightarrow X \longrightarrow T$$

In this case we should increase its cost by δ , but the algorithm doesn't know when this is necessary

The messages sent to the neighbors of S may contain wrong info and the algorithm may not stabilize!

"Count to infinity" problem

neig	hbors
Da	b
dest.	1 2

neighbou
$$D_p$$
 a Q_p Q_p

Msg/path source Path destination Msg destination Cost 3

Increasing links: sending wrong info

1	neighbors		
Dc	а	b	d
dest.	5 6 11	2 1 8	4 3 1

In $\mathbf{D}^{\mathbf{c}}$ and $\mathbf{D}^{\mathbf{d}}$, increase all entries in columns d and c by 99

In \mathbf{D}^{c} , $\mathbf{D}^{c}(d,b)=8$ is the new minimum in row d of D^c, but there is no path in the graph from c to d of cost 8!

"Count to infinity" problem

_	neignbo	
™ × ∞	Da	b
1 C	ast.	1
	8 C	4

neighbors			neighbors	
) b	а	С	D c
dest.	а	1	∞	a a
Ö	С	3	∞	ō b

Msg destination	Msg/path source	Path destination	Cost
a	b	c	3
b	a	c	4

$$w(a,b) + C = 1 + 3 = 4$$
 $D^a(c,b) = 4$

n E	_	nbor
est.	а	
ō	b	

Msg destination	Msg/path source	Path destination	Cost
a	b	c	3
b	a	С	4
a	b	С	5

$$w(b,a) + C = 1 + 4 = 5$$
 $D^b(c,a) = 5$

How to make things work

- Different solutions proposed to solve the problem (poisoned reverse, ...
- None of them really general
- To solve the problem completely we should keep information about the entire path to a destination (path vector protocols)
- But messages in that case are much bigger

"Count to infinity" problem

Da	b
dest.	 1 6

neighbors

		neighi	ors
_[) b	а	С
est.	а	1	∞
0	С	5	∞

Msg destination	Msg/path source	Path destination	Cost
a	b	c	3
b	a	c	4
a	b	c	5
b	a	c	6

$$w(a,b) + C = 1 + 5 = 6$$
 $D^a(c,b) = 6$

Hierarchical Routing

Our routing study thus far - idealization all routers identical network "flat"

... not true in practice

scale: with 50 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Hierarchical Routing

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
 - "intra-AS" routing protocol
 - > routers in different AS can run different intra-AS routing protocol

-gateway routers-

- special routers in AS
- run intra-AS routing protocol with all other routers in AS
- also responsible for routing to destinations outside AS
 - > run *inter-AS routing* protocol with other gateway routers