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Routing

Routing protocol
Goal: determine “good” path

e (sequence of routers) thru
DlStan c e Ve CtO r network from source to dest.
p ro t 0C Ol Graph abstraction for routing ! 2

algorithms:
) ) m graph nodes are routers
Irene Finocchi m graph edges are “physical” “Good” path:
. . . . links * minimum cost path
finocchi@di.uniromal.it :
@ > link cost: delay, $cost, * other def’s possible

congestion level

A - —

Classification of routing algorithms Distance vector routing algorithm
View: global or local Static or dynamic? .. . .
Global: info ab . . Y Distributed, asynchronous implementation of the
o (ooba IO abous entire Static: algorithm by Bellman & Ford
E?;‘lz(;rtl;tg]omers’ links) ® infrequent route changes
o Local: partial knowledge of = infrequent view update; m Distributed: each node communicates only with
) static link costs (e.g. directly-attached neighb
remote parts of network up/down) Irectly-attached neighbors
[distance vector] m Asynchronous: nodes need not exchange info or
. . Dynamic: iterate in lock step (synchronized)!
Centrahzjd or‘dec.entr‘ahzed = frequent periodic route u Tterative:
e One node maintains view, changes ) : ) )
and distributes routes to . frequint view update: » continues until no nodes exchange info
other nodes - dynamic link costs (e,.g. » self-terminating: no “signal” to stop
e all nodes maintain view delay) m Decentralized, local, dynamic
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Distance table data structure

m Each node has its own distance table

m One row for each possible destination

m One column for each directly-attached
neighbor of the node (outgoing links)

Example: at node S, for destination T via neighbor X:

DS(T X)

distance from S to T, via X as next hop

w(S,X) + min DX(T.Y)
Y

I

Distance table gives routing table

D5()

neighbors

A B

A

o9)

destinations

(@)

O

(1) 14

78@ﬁ>
° @

Outgoing link
D to use, cost
5 A A 1
2
.0
s B D, 5
f:
s C D, 4
4 11 (2 D D, 4

Distance table —— > Routing table

= I

Distance table: an example

2
1

2

DE(C,D) = w(E,D) + min {DP(C,Y)}
=242 =4

DE(A,D) = w(E.D) + min {D°(AY))
= 2%3 =5 ‘Y\ loop!

D™(AB) = WEB) +min ORA)
= B =M e~ oopl
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Distance vector routing

Iterative, asynchronous
Each local iteration caused by:
m Jocal link cost change

®m message from neighbor v: a
shortest path with source v
has changed

Distributed

m cach node notifies neighbors
only when a shortest path to
any destination changes

> neighbors then notify their
neighbors if necessary

neighbors
D) /A B D
Al(D) 14 s
-:%B 7 8 (5
gc 6 9 (4
D4 11 (2)

: an overview

Each node:

wait for (msg from neighbor /
change in local link cost)

!

update distance table

}

if shortest path to any dest
has changed, notify

neighbors |
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Assumption

Each node:
m  For the time being, don’t
consider link cost

changes: we’ll remove v

this assumption later wait for (msg from neighbor)

initialization

m In the next slides we show: ,
update distance table

> How does the algorithm
work l

> Why it stabilizes and if shortest path to any dest

produces in a finite amount has changed, notify

of time the correct neighbors
distances —I

I

Distance vector algorithm: main loop

At node S:

loop

wait (until S receives a message from a neighbor V)

let m= ( V, T, C ) be the message received from V
/* a path from V to T of cost C has been discovered */

update: DS (T,V) = w(S,V) + C

if min Ds (T,Y) changes, send its new value to all
Y

the neighbors of S

forever
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Distance vector algorithm: initialization

At node S:

for all adjacent nodes y:
DS(.,y) = + ©

DS(y,y) = w(S,y)

for all destinations t
send min DS(t,y) to each neighbor
y

/* y over all neighbors of S */

O

Distance vector algorithm: an example

neighbors

Distance table at node X
just after the initialization

Msg destination ~ Msg/path source  Path destination =~ Cost

[Y X Y 2 |
V4 X Y 2
Y X z 7
[z X Z 7 ]

If msg destination = path destination, message is useless: Y is not
a possible destination in its own distance table, and the info
carried by the message cannot be used to update any entry in DY

ﬁ> Won'’t consider these messages any further
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Distance vector algorithm: an example

neighbors neighbors neighbors

dest
dest
dest

DX| Y Z DY| X z DZ| X Y
..éf:gi.- Y| @D » X[ o ExX|(@D »
’ Zlo @ “zlo @ ZY|o @

Msg destination ~ Msg/path source ~ Path destination ~ Cost
2

<K N X <N
NN < <<

XX NN <
R

Messages generated during the initialization

I

Distance vector algorithm: an example

neighbors neighbors neighbors
DX| Y z DY| X z DZ| X Y
2 1
..{f:gi.. Y| (@ » X | (@D » X | (@) w
7
Z| o @ z| 9 @ vie @

Msg destination ~ Msg/path source  Path destination =~ Cost

dest
dest
dest

% X z 7
X Y z 1
z Y X 2
X Z Y 1
Y z X 7

w(Y.X)+C=2+7=9 [ > DY(ZX)=9
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Distance vector algorithm: an example

neighbors neighbors neighbors
DX| v Z DY| X Z D | X Y
1
..%f:gﬁ.. Y[ (@ X | (2 o X | (@) o
7
Z| o @ Z| oo @ Y| 9 @

Msg destination ~ Msg/path source ~ Path destination ~ Cost
[z 2 |

dest
dest
dest

<M N X<
NN < <K<
KoK NN (<
~N = N =

W(ZX)+C=7+2=9 [ > D*(Y.X)=9
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Distance vector algorithm: an example

neighbors neighbors neighbors
DX| Y z DY| X z DZ| X Y
2 1
..{f:E).. Y| (@ » X | (@ » X | (@)
7
z|(® 7 z| 9 @ vie @

Msg destination ~ Msg/path source  Path destination ~ Cost

dest
dest
dest

[ X Y Vi 1]
Z Y X 2
X z Y 1
Y z X 7
Y X z 3

wX,Y)+C=2+1=3 [ > DX(ZY)=3
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Distance vector algorithm: an example

neighbors neighbors neighbors

dest
dest

DX| Y Z DY| X z DZ| X Y
1
&'Y‘@w 'x@oo X7@
Y

W
7 (]
2l @7 “zlo® Fvle @

Msg destination ~ Msg/path source ~ Path destination ~ Cost

[z Y X 2 |

X Z Y 1

Y Z X 7

Y X Z 3

Y Z X 3
W(ZY)+C=1+2=3 [ > D?(X,Y)=3

Distance vector algorithm: an example
neighbors neighbors neighbors

dest
dest

DX| Y Z DY| X z DZ| X Y
2 1
&'Y@S x| @ 8 3
7
z|® 7 z| 9 @

Msg destination ~ Msg/path source  Path destination =~ Cost

[y z X 7 |
Y X Z 3
Y z X 3

w(Y,Z)+C=1+7=8 [ > D¥(X,Z)=8
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Distance vector algorithm: an example

neighbors neighbors neighbors
DX| v Z DY| X Z D | X Y

1
d@. Y @8 X @« 3x 70
z|® 7 z| 9 vie

Msg destination ~ Msg/path source ~ Path destination ~ Cost
[ X

dest
dest
dest

z Y 1|
Y Z X 7
Y X V4 3
Y V4 X 3
w(X,Z)+C=7+1=8 [ > DX(Y,Z)=8
Distance vector algorithm: an example
neighbors neighbors neighbors

dest
dest

DX| Y Z DY| X z DZ| X Y

2 1

é.”@s X @ 8 3 ®
2l@ 7 Tz 5 @ ®

Msg destination ~ Msg/path source  Path destination ~ Cost

[y X Z 3
Y Z X 3

w(Y.X)+C=2+3=5 > DY(ZX)=5
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Distance vector algorithm: an example

neighbors neighbors neighbors

dest
dest

DX|Y Z DY|x z DZ|X Y
1
& e 1@ e pro
Y

?
7 (]
2@ 7 “zls @ Sv|e @

Msg destination ~ Msg/path source ~ Path destination ~ Cost
[Y Z X 3 ]

w(Y,Z)+C=1+3=4 [ > DY(X,2)=4
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Correctness (1/2) Does the algorithm stabilize and

produce (in a finite amount of
time) the correct distances?

let m= ( V, T, C ) be the message received from V
/* a path from V to T of cost C has been discovered */

update: DS(T,V) = w(S,V) + C

if min

DS (T,Y) changes, send messages

This is just a relaxation!

min DS(T,Y) = Dg; C=Dy;
Y

The update is equivalent to the relaxation { Dgr = w(S,V) + Dy }

=

Distance vector algorithm: an example

neighbors neighbors neighbors
DX|Y z DY|x z DZ|XY
1
.&. Y @8 gx|@ 4 gx
Y

’ z|(® 7 z| 5 (D

dest
dest

O

Msg destination ~ Msg/path source  Path destination ~ Cost

No more messages remain: the algorithm has
found a stable configuration

I

Correctness (2/2)

We previously proved the following:

If: 1) Distance estimate D, corresponds to the length of an
existing path from x to y

2)  Bellman’s conditions D, < w(x,y) + D, locally satisfied
for each (x,y) €EE

Then D, = d, for every x,y EV

The algorithm always uses existing arcs ﬁ> 1) OK

If at some point D, decreases, this is notified with a

message to x, that restores the condition if necessary I:> 2) OK
(and sends in turn messages to its own neighbors)
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Dealing with link cost changes

loop

wait (until S receives a message from a neighbor V
or the cost of a link (S,U) changes )

if w(S,U) changes by
/* change cost to all dest's via neighbor U by 0 */
/* 0 may be positive or negative */

for all destinations T: DS (T,U) = DS(T,U) + &

At node S:

else if m= (V, T, C) is the message received from V
/* a path from V to T of cost C was discovered */

update: DS(T,V) = w(sS,V) + C

for all destinations T:

if min DS(T,Y) changes, send its new value to
Y

all the neighbors of S
forever

I

Decreasing the cost of a link: an example

neighbors neighbors
Db| acd DC| a b d
sa |(1) 9 13 sa|5() 4
sc |(6) 8 11 2p | 6(0) 3
d (@9 10 d 117

Msg dest.  Msg source  Path dest.  Cost

neighbors neighbors
[b c a 1| D2 b c pd/ b c
d c a 1
a c b 0 b @ 6 v a "
d c b 0 2c|7() b |10
d | 8 (e c |18

w(bc)+C=8+1=9 [ > D°(ac)=9

=

Decreasing the cost of a link: an example

neighbors neighbors
DPl a ¢ d
£a [(1)10 13
Sc |(6) 8 11
d [(7) 9 10
Msg dest.  Msg source  Path dest.  Cost neighbors neighbors
b C a 1 Da| b ¢ Dd| b ¢
d c a 1
a c b 0 w b (:) 6 u a |1
d C b 0 gc 7 @ gb 10
d | 8 (8 c |16

In D€, decrease all entries in column b by 1

I

Decreasing the cost of a link: an example

neighbors neighbors
Dbl a ¢ d
“a (1) 9 13
sc [(6) 8 11
d (@) 9 10
Msg dest.  Msg source  Path dest.  Cost neighbors neighbors
[ d c ﬁ 1| Da| b ¢ Dd| b ¢
a c 0
d c b 0 b D6 sa | 11Q@)
b d a 2 2c |7() @b |10
[ d a 2 d 8 ‘3 c |16

w(de)+C=1+1=2 [ > Di(ac)=2
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Decreasing the cost of a link: an example

neighbors neighbors
Db| a c d D°| a b d
ga (1) 9 13 sa|5() 4
[<}]
Sc |(6) 8 11 2p | 6 3
d |@ 9 10 a 170

Msg dest.  Msg source  Path dest.  Cost

neighbors neighbors
[ a c b 0 | pDa| b ¢ D4 b ¢
d c b 0
b d a 2 % b @ 5 g a 1
c d a 2 gc |70 2 b |10
d | 88 c |16

w(ac)+C=5+0=5 [ > D*(bc)=5

I

Decreasing the cost of a link: an example

neighbors neighbors

DP[a c d p¢la b d

sa |(1) 9 12 sa|5() 4

sc |(6) 8 11 2p | 6(0) 3

d 9 10 a 170
Msg dest.  Msg source  Path dest.  Cost neighbors neighbors
[ b d a 2 | Da| b ¢ Dd| b ¢

c d a 2

c d b 1 40 |D5  a 1@
o |7() &b |10

d | 8(s c |16(1

w(b,d)+C=10+2=12 [ > Db(ad)=12

=

Decreasing the cost of a link: an example

neighbors neighbors

DPl a ¢ d D¢l a b d

ga [(1) 9 13 sa|5() 4

Sc |(6) 8 11 2p | 6(0) 3
@)

9 10 d 170

Msg dest.  Msg source  Path dest.  Cost

neighbors neighbors
[ d © b 0 | al b c di b ¢
b d a 2 D | D |
c d a 2 o b @ 5 + a 1
c d b 1 gc | 7(5 2b |10
d | 8 (8 c |16

w(de)+C=1+0=1 [ > Di(bc)=1

I

Decreasing the cost of a link: an example

neighbors neighbors

Dl a ¢ d D¢l a b d

Za |(1) 9 12 sa|50)3

Sc |(6) 8 11 2p | 6(0) 3

d @ 9 10 d 1 7@
Msg dest.  Msg source  Path dest.  Cost neighbors neighbors
[ ¢ d a 2 | Dal b ¢ d| b ¢

c d b 1 | D |

dest.
o
dest
o T o
>

wied)+C=1+2=3 [ > D¢(ad)=3
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Decreasing the cost of a link: an example

neighbors neighbors

pbla ¢ d D¢l a b d

za [(1) 9 12 sa|5(0)3

sc [(6) 8 11 2b | 6(0) 2
@)

d 9 10 d 1 7@
Msg dest.  Msg source  Path dest.  Cost neighbors neighbors
[ c d b 1| pa| b ¢ Dd| b ¢
b (M5 a1
[7/]
Sc|7() &b 100
d | 8(e c |16 (1

wied)+C=1+1=2 [ > D¢(bd)=2
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Decreasing links: “good news travel fast”

Why does the algorithm stabilize?

®m (S,X) = arc that we decreased by the amount o
®m T = any destination
|

Assume for simplicity that all cycles have cost >0

ﬁ> Shortest path between any pair of nodes must be simple

m  Consider the path S —» X~ A>T
%/—/

shortest path from X to T > simple
> cannot contain (S,X)

> The costof S —»X AT decreases by exactly &

=

Decreasing the cost of a link: an example

neighbors neighbors

DPl a ¢ d D¢l a b d

ga [(1) 9 12 sa|50)s3

sc [(6) 8 11 2pb | 6(0) 2
@

9 10 d 170

Msg dest.  Msg source  Path dest.  Cost

neighbors neighbors
| | Da| b ¢ Dd| b ¢
= b () 5 = a | 112
[} (]
. sc|7(5) 9p [100)
. © T
No more messages remain: the qls c |16 (3

algorithm has found a stable
configuration

I

Decreasing links: “good news travel fast”

The cost of TIg; =S —» X~ AT decreases by exactly &

1) If I1g; was shortest, the cost of the shortest path from S
to T changes

2) If Ilg; was not shortest, it may become preferable to the
old shortest path from S to T

In any case, if I1g; is shortest after decreasing (S,X), it must be

simple (no cycle has cost 0), it is a path really existing in G and
we know exactly its cost

> The messages sent to the neighbors of S contain correct info

With similar arguments: the neighbors of S will correctly
propagate this information backwards



Increasing links: “bad news travel slow”
m (S,X) = arc that we increased by the amount &

®m T = any destination

B If S—» X~~~ A>T was shortest before the update,

it may no longer be the shortest path after increasing (S,X)
Replacement path = minimum in row T of DS

The replacement path may not be simple and may contain (S,X)
S —» Y "N § —p XAAANAANST

In this case we should increase its cost by 9, but the algorithm
doesn’t know when this is necessary

> The messages sent to the neighbors of S may contain
wrong info and the algorithm may not stabilize!

I

“Count to infinity” problem

neighbors neighbors neighbors

o D¥| b Db|a c D¢
1l 1 i -éb @ 'a@oo )
-oc @ c@oo b

dest
dest

Msg destination ~ Msg/path source ~ Path destination ~ Cost
a b c 3

=

Increasing links: sending wrong info

neighbors neighbors

DPl a ¢ d D¢l a b d

£a [(1)10 13 sa |5 4

(]

Sc |(6) 8 11 2p | 6 3
@

d 9 10 d 18Q@
neighbors neighbors
q - .
In D¢ and DY, increase all entries in p2| b c pd| b ¢
columns d and ¢ by 99 2b D6 oa |
[7/] (7]

In D¢, D<(d,b)=8 is th ini g |70 go 10

n D¢, D¢(d,b)=8 is the new minimum d | 8 (e c |16

in row d of D¢, but there is no path in

the graph from c to d of cost 8!

I

“Count to infinity” problem

neighbors neighbors neighbors
a C
o D b D
1 |1 b [ (D ' i a
¢ |@

Msg destination ~ Msg/path source ~ Path destination ~ Cost
| a b © 3 |
b a

dest
dest

w@ab)+C=1+3=4 [ > Di(cb)=4
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“Count to infinity” problem

neighbors neighbors neighbors

. Da|b Db|a c D°|
1] |1 *Q’b @ 'a@oo S a
uc @ c@oo b

Msg destination ~ Msg/path source  Path destination =~ Cost

dest
dest

a b c 3
| b a c 4 |
a b c 5

wba)+C=1+4=5 [ > Db(ca)=5

I

How to make things work

m Different solutions proposed to solve the problem
(poisoned reverse, ...

m None of them really general

m To solve the problem completely we should keep
information about the entire path to a destination
(path vector protocols)

m But messages in that case are much bigger

=

“Count to infinity” problem

neighbors neighbors neighbors
a [
. D b D
1l 1 b )
P
c @ b

Msg destination ~ Msg/path source  Path destination ~ Cost

a b c 3
b a c 4

| a b ® 5 |
b a c 6

w@ab)+C=1+5=6 [ > D*(cb)=6
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Hierarchical Routing

Our routing study thus far - idealization
all routers identical

network “flat”

... not true in practice

administrative autonomy

scale: with 50 million ® internet = network of

destinations: networks
m can’t store all dest’s in routing :
[
tables! each network admin may

. want to control routing in
= routing table exchange would .
swamp links! its own network
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Hierarchical Routing

® aggregate routers into - gateway routers
regions, “autonomous ® special routers in AS
systems” (AS) ® run intra-AS routing
. protocol with all other
B routers in same AS run routers in AS
same routing protocol ® also responsible for
> “intra-AS” routing routing to destinations
outside AS

protocol . 4S .
. > run inter-AS routing
» routers in different AS protocol with other

can run .different intra- gateway routers
AS routing protocol




