On the Accuracy of Localizing Terrestrial Objects Using Drones

Francesco Betti Sorbelli ¹ Sajal K. Das ² Cristina M. Pinotti ³ Simone Silvestri ⁴

¹University of Florence, Italy francesco.bettisorbelli@unifi.it

²Missouri University of Science and Technology sdas@mst.edu

 3 University of Perugia, Italy cristina.pinotti@unipg.it

⁴University of Kentucky silvestri@cs.uky.edu

May 20, 2018

The Localization Problem

- Localization is one the most important task in a wireless sensor network
- The random deployment results in sensors initially unaware of their location
- Sensors are not expected to be GPS-enabled
- Localization algorithm: two different classes of techniques
 - range-based: estimations are done exploiting measurements (angles, distances) (+ precision, + hardware)
 - range-free: estimation is done without using any type of ranging measurements (- precision, - hardware)
- Recently published research:
 - OMNI, a range-based algorithm that uses omnidirectional antennas [3]
 - RF, a range-free algorithm that exploits the chords of a circle [2]

[3] Cristina M Pinotti, Francesco Betti Sorbelli, Pericle Perazzo, and Gianluca Dini. Localization with guaranteed bound on the position error using a drone.

In Proceedings of the 14th ACM International Symposium on Mobility Management and Wireless Access, pages 147-154. ACM, 2016

[2] Chia-Ho Ou and Wei-Lun He. Path planning algorithm for mobile anchor-based localization in wireless sensor networks.

IEEE Sensors Journal, 13(2):466-475, 2013

Localization Problem Applications

Localize people after an earthquake.

Structural Health Monitoring Problem Applications

Localize people after an avalanche.

May 20, 2018

Fixed Anchor Nodes

- Classical approach considers to use many Fixed Anchor nodes
- Anchor nodes are expensive and they have a high deployment cost

Fixed Anchor Nodes (blue dots).

We consider the Localization Algorithms based on a single Mobile Anchor node

Our main idea

- Our idea: a single drone can replace many fixed anchor nodes (multiple sensors single drone)
- Challenges:
 - all the measurements are on line-of-sight and not on the ground
 - small 3D imprecision will translate into big 2D error
 - such an error increases with the drone's altitude

Drones

- Are receiving increasing attention from the research and industry community
- Can be used for military and civilian applications but now also:
 - surveillance and reconnaissance, forest fire monitoring, goods transportations, ...

- A drone can easily fly over devastated areas, enemy areas or simply lakes or rivers (impossible for a rover)
- Communication Ground-UAV Technology: short and wide range
 - wide: WiMAX, SATCOMs or cellular
 - short: Zigbee or Bluetooth
- Special attention: IR-UWB technology (wide)

UWB

- Radio technology can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum
- The technology operates on two sets of frequencies: 4.5 GHz and 6 GHz
- Range:
 - up to 300m line of sight
 - up to 40 m non-line of sight
- Uses very short pulses on the order of ps or ns
- Very low duty cycle for transmission and reception of the information

	IEEE Standard					
	802.11a	WLAN 802.11b	802.11g	Bluetooth 802.15.1	UWB 802.15.4a	ZigBee 802.15.4
Operational Frequency (GHz)	5	2.4	2.4	2.4	4.5-6	2.4
Maximum Data Rate (Mbps)	54	11	54	1	> 100	0.25
Maximum Range (m)	100	100	100	10	300	50
Precision (m)		7–10		15	0.10	

UWB capabilities compared to other IEEE standards.

Measurement Precision

- During the localization procedure, measurement errors are unavoidable
- Drone's position is affected:
 - by the weather condition (wind, pressure, humidity)
 - by the strength of the propellers
 - by the adopted technology and
 - by the GPS error
- Can seriously impact the localization accuracy
- The instrumental inaccuracies depend on the technology:
 - Wi-Fi: error may range from 7–10 m
 - Bluetooth: up to 15 m
 - Ultra-wideband: 7 cm precision with 99.99% reliability

The Ground Error

- We study the ground error E_d
- We conduct our analysis by breaking up the error into three components:
 - the instrumental precision ε_s
 - the *rolling* precision γ_d
 - the altitude precision γ_h

Instrumental component

We investigate the impact of the instrumental error

Overestimation

Underestimation

• The precision $E_d(\varepsilon_s)$ when the object is at ground distance d from the drone is given by:

$$E_d(\varepsilon_s) = \varepsilon_s \cdot \sqrt{1 + \frac{h^2}{d^2}} \tag{1}$$

• When $h \neq 0$, the error increases when d decreases

Rolling component

When the drone is subject to a rolling (horizontal offset)

Overestimation.

The rolling precision:

$$E_d(\gamma_d, \varepsilon_s) \approx |\gamma_d| + E_d(\varepsilon_s)$$
 (2)

Francesco Betti Sorbelli (unifi)

Altitude component

When the drone is subject to an uplift (vertical offset)

Overestimation.

The altitude precision:

$$E_d(\gamma_h, \varepsilon_s) \approx |\gamma_h| \frac{h}{d} + E_d(\varepsilon_s)$$
 (3)

The Ground Precision

Theorem

Let ε_s , γ_d and γ_h be respectively the instrumental precision, rolling precision, and altitude precision. Bringing back the distance of the ground, the largest error E_d becomes:

$$E_d(\gamma_d, \gamma_h, \varepsilon_s) \approx |\gamma_d| + \frac{h}{d} |\gamma_h| + |\varepsilon_s| \sqrt{1 + \frac{h^2}{d^2}}$$
 (4)

Trilateration: Collinearity problems

- To localize we use trilateration technique:
 - for each sensor we need three measurements
- Possible localization errors:

Collinear among them.

Collinear with the sensor.

Trilateration Error

- Due to the ground errors the 3 circumferences do not intersect at a single point
- They delimit a small star area

- ullet The furthest vertex (worst case) is at distance $\frac{E_d}{\sin\left(rac{eta_{\min}}{2}
 ight)}$ from F_d
- ullet A good localization aims at a large value of eta_{\min}

Localization Error

Theorem

Given the precisions ε_s , γ_d and γ_h , the maximum localization error is obtained as:

$$E_L(\gamma_d, \gamma_h, \varepsilon_s) = \frac{E_d(\gamma_d, \gamma_h, \varepsilon_s)}{\sin\left(\frac{\beta_{\min}}{2}\right)}$$
 (5)

Experimental Evaluation: Settings

- We propose two sets of real experiments:
 - First: we test the goodness of the <u>approximation</u> of the instrumental, rolling and altitude errors
 - Second: we use the drone that hovers in a field close to Assisi, Italy

Our settings during experiments with the drone.

Experimental Evaluation: Instrumental Ground Error

Ground Error: The experimental Instrumental error.

Experimental Evaluation: Rolling Ground Error

Ground Error: The experimental Rolling error (when W = (0,0,5)).

Experimental Evaluation: Altitude Ground Error

Ground Error: The experimental Altitude error (when W = (0,0,4)).

Francesco Betti Sorbelli (unifi)

Experimental Evaluation: Combined Ground Error

Ground Error: The experimental combined error (when W = (0,0,4)).

Francesco Betti Sorbelli (unifi)

Experimental Evaluation: Trilateration Error (1)

Same minimum angle.

Experimental Evaluation: Trilateration Error (2)

Trilateration Error: d varies.

Experimental Evaluation: Trilateration Error (3)

Same distance.

Experimental Evaluation: Trilateration Error (4)

Trilateration Error: d varies.

Lessons

- We takeaway two lessons from this analysis
- To limit the ground error:
 - all the waypoints used to measure the same node must be at a sufficiently large ground distance from the node itself (d_{min})
 - they must not be collinear among themselves nor with the node (β_{min})

Thank you for your attention!

