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Let’s start from the Travel
Salesman Problem

» Given a set of points to visit (e.g., to take a sensing measurement)
» Pointsiand j are at a distance d

» Find a flight path such that

» The route traverses all points
» The route begins at the initial UAV location

» The route has minimum traversed distance

» This can be formulated as an ILP...




What are the expected performance?

» When you buy a drone usually you read:

Flight time: 25 minutes; 20 minutes with payload®

» How do they get this numbers? Hovering on the same spot for 25 minutes!!

» The little star (*) is there to say: “*Flight time varies with payload, wind
conditions, elevation, temperature, humidity, flying style and pilot skill. Listed
flight time applies to elevations less than 2,000 ft above sea level.”

» How can | predict the performance of my drone?

https://3dr.com/blog/solo-specs-just-the-facts-14480cb55722/




Objective

» Define analytical models that given information such as:
» UAV mass
» Flight plan
» Predicts UAV performance:
» Energy consumption
» Flight time
» Number of waypoints the UAV can traverse
» Benefits
» Realistic simulations
» Realistic optimizations

» Accurate flight plans




Previous work

Does not consider performance metrics other than flight time [1]

Does not consider effects of the geometry of a flight path on power consumption |

Provides a method to optimize a path for power consumption but not model the pow
consumption [3]

» Optimizes the control signals used to drive the motors, but not related to a whole fligh
for a prolonged sensing mission [4]

» Does model power consumption, but only in a constant velocity setting, which does not
generalize to arbitrary flights [5]

[1] P. Sujit and D. Ghose, “Search using multiple uavs with [3] G. Nachmani, “Minimum-energy flight paths for uavs usin
flight time wind forecasts and approximate dynamic programming,” D
constraints,” IEEE Transactions on Aerospace and Electronic Tech. Rep., 2007.

Systems, [4] F. Morbidi, R. Cano, and D. Lara, “Minimum-energ

vol. 40, no. 2, pp. 491-509, 2004. for a quadrotor uav,” in IEEE ICRA, 2016.

[2] B. Uragun, “Energy efficiency for unmanned aerial [5] D.-K. Phung and P. Morin, “Modeling and ener

vehicles,” in IEEE ICMLA, 2011. convertible uavs,” IFAC Proceedings Volumes, v:

219, 2013.




3dr Solo UAV

~25 minutes flight time fully autonomou

On-board Linux computer interfaced with
flight controller

Communication options
» Integrated wireless telemetry radio
» Wi-Fi

Open ports to interface a wide array of
sensing hardware with on-board compute
flight controller, or both



Basic Model (1)

Energy consumption of basic UAV operations

Operation No Payload 300g Payload

Battery use | Joules Battery use Joules
Takeoff 2.83% 7849 ) 3.50% 9696 ]
and
Land
Hover 0.116 %ls 321 W 0.122 %ls 338 W

Vertical
Slow 0.083 %/m 230 J/m 0.123 %/m 340 J/m
(8 m/s)
Medium | 0.068 %/m 189 J/m 0.097 %/m 269 J/m
(9 m/s)
Fast 0.047 %/m 129 J/m 0.079 %/m 220 J/m
(13 m/s)
Horizontal

Slow 0.031 %/m 86.58 J/m | 0.038 %/m 106 J/m
(8 m/s)
Medium | 0.028 %/m 78 J/im 0.034 %/m 93 J/m
(9 m/s)
Fast 0.015 %/m 43 J/m 0.025 %/m 70 J/m
(13 m/s)




Basic Model (2)

Basic Operations Basic operations
Horizontal Vertical
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Basic Model Summary

» Good for gaining intuition concerning power cost differences in various
configurations and movement combinations

» Overly simplistic - little to no consideration of acceleration

» No realistic or reliable way to compose these data for arbitrary flight path
power modeling




Advanced Model

» Consider critical aspect concerning UAV Movement Physics

* UAV thrust and gravity during vertical motion * UAV thrust components and gravity during later

» Given a flight plan we want to be able to reliably predict:
The UAV flight time

The number of waypoints the UAV is able to traverse in a given flight path




Experimental setup and approach (1)

» We identify three dimensions that affect the performance

» Horizontal oscillations » Vertical oscill

Amplitude
A

% _______ N Amplitude _

» UAV Mass -




Experimental setup and approach (2)

» We focus on one dimension at a time (e.g. horizontal amplitude)
» We empirically measure the performance as a such dimension

» We find use regression to find a suitable function that fits the

empirical data

» Constants depend on the specific UAV considered (3DR Solo)

» Horizontal oscillations

Amplitude
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Vertical oscillations
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» UAV Mass



Model Validation

Vertical Flight Time vs Increasing Oscillation Horizontal Flight Time vs Increasing Os
Amplitude Amplitude
1000 " Vertical 400g —a— 1000 Horizontal 400g —=—
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FTy(A) = afoe(1 — e~ A/ Prea) FTy(A) = appa(l — e A/ Pima)
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Model Validation

Vertical Flight Time vs Increasing Mass Horizontal Flight Time vs Increasing
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Model Validation

Vertical Point Completion vs Increasing

Oscillation Amplitude
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Model Validation

Vertical Point Completion vs Increasing Mass Horizontal Point Completion vs Increas
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Model Integration

» Question: given a generic flight plan, how can we predict a lower bound on th
performance?

» Each factor 6 for the criteria of interest is aggregated (in this case flight time) to obt
total A

AFT=1 - (1 - 5)
8 € {8rrp1 OFT pys OFT a0 OFT )

» and then this is multiplied by the minimum of the individual projected outcomes fo
baseline to obtain the Lower Bound (LB) for performance

LB(FT) = Apr - min({FTy, (Vo), FTy (Vy), FTy(My), FTy(My)3})




Validation for generic Flight Plans

* We generated a random flight plan, waypoints have random altitude and positio

Flight time Waypoint
800 1 . 1 : ,
Performance LB 140 | Performance LB
700 - Performance Observed mmmmm 1 2 120 | Performance Observed
~ 600 | g
2 > 100 |
g 500 t g
= 400 | o 80
5 300 | @ 60
L 200 | % 40 |
100 ¢ = 20 |
0 0
0 150 300 0 150 300
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Many open problems...

» Many other factors are relevant:
» Altitude

Speed

Battery aging

Temperature

Non-random flight paths

Other ideas?

vV v v v Vv




'Eil:{é University of
Kentucky

Unmanned Aerial Vehicles
to monitor the effects of
climate change

Riccardo Musmeci, Ken Goss, Simone Silvestri

SSSSSSSSSSSSSSSS

FFFFFFFFF



T Unmanned Aerial Vehicles to monitor the
- effects of climate change

% » Investigate the effects of climate change on large scale crop fields

» Enable the use of autonomous monitoring networks

» Challenges

» Current UAV monitoring techniques use a single UAV with auto-pilot (typical image
acquisition speed 5m/s, very limited scalability)

» High network operational/deployment costs
% » Goals: reduce costs and improve scalability

» Statistical optimization

» Design algorithms for the coordination of multiple UAVs

» Enable remote monitoring (web application)



Unmanned Aerial Vehicles to monitor the effects of
climate change

Statistical optimization

Objectives: improve scalability, achieve high accuracy, reduce costs
Monitoring objectives: plant growth, health, parasites, etc.
Sensing: RGB, Thermal, Hyperspectral cameras

Idea
O Divide the field in sectors

00 Each sector produces a reading (e.g. crop health, size)
0 These readings are correlated

O Exploit correlation to monitor only a subset of the sector and infer the others

Main problems to solve
O Infer readings of unobserved sectors minimizing the error

0 Select the best sectors
00 Detect changes in the distribution

0 Optimize UAV movements




Unmanned Aerial Vehicles to monitor the effects of
climate change

Technical approach

Let X be the set of all sectors, %, the covariance matrix

1 1
Readings are modelled as jointly Gaussian random variables F(X) = WGW(

If we observe S — X, we have a closed form to infer the readings
of the sectors in Y = X\ S with minimum MSE

pyis =y + SysDsd(s - pis) —
The problem of selecting the best sectors is

Top
S*=arg min (LZ MSE(Y(se), Yt))

SeX,|s|<M \ T, =

which is NP-Hard, but we have optimal solutions for special cases

N 2
. . . N O
Optimal single sector selection * — arg max @
J reX oyl




Unmanned Aerial Vehicles to monitor the effects of
climate change

Technical approach

We use the special cases as a building blocks for efficient heuristics

We designed heuristics with different trade-off accuracy vs. complexity

¢j Tjj

N 2
Top-W: pick top sectors ranked according to the weight w; = 1 <—Zi—1 Uiﬂ')

Top-W-update: pick the top sectors but update the conditional covariance matrix

1
2y = Lyy — Lygr 2 s gty
YA ¥

Batch-selection: pick the variable that minimizes the MSE considering the already
selected variables

aﬁ;k = arg minxley tT(ZY\{leSU{xl})




Unmanned Aerial Vehicles to monitor the effects of

climate change

Preliminary results

0 Simulator based on synthetic and real traces

0 Comparison with Compressed Sensing (CS) approach
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in Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), 2015

0 S. Silvestri, R. Urgaonkar, M. Zafer, B. Ko, "A Framework for the Inference of Sensing Measurements based

on Correlation®, in ACM Transactions on Sensor Networks (to appear).
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A Web Application for the Remote Control of
Multiple Unmanned Aerial Vehicles

» In the context of our project multiple users (researchers) are
interested in monitoring different sectors of a crop field

» We want to realize a web system thanks to which users can submit
monitoring missions, composed by:

» Aset of sectors to be monitored
» The sensing to be performed (RGB, hyperspectral, thermal, etc.)

» A time range when the measurements should be collected

» The users should not be aware of the number, location, and flight
operations of the UAVs




Structure of the Web application

» We realize a web application with the following structure

Server

~

Web Server J

Formatted
Mission
Requests

[ Mission Planner J

Scheduled
Missicons

Mission Dispatcher j




Web Client Interface

» |t is used by the users to submit monitoring missions

UAV Info Monitoring missions
LA Id LI Skatus LAV Battery Saning Type
Sclo Gold Civmached 100 AEE Select type of monitoring missions:
Soln Grean Gornected G Thermal Point Mission

Mission details

Time

Drome  Marker Latitude Longitude Altitude  Interval

Solo 1 37.92472884 -91. 77257647 5 [10.00am,
Gold 11.00=m]
Solo 2 37.92482772 -91.¥7 286078 T [10.00am,
Sald 11.00am]
Salo 3 a7 924506848 -81. 77207758 i [09.00am,
Grean 09.45am]
Sala 4 37.824830349 -81.7¥7208563 B [10.30arm,
Gold 11.20am]
Sy 5 AT S AARAS -84 FTIHS187TA a INa Adiars

Live Flight Information

Ir i wection wil ba ciepimed al the mormation sen by dmoes n gl




Web Server

» Receives monitoring missions and translates in a format for the mission planner

Point mission Location 1:
request latitude: -37.123456789
longitude: 91.234551234

altitude: 12 e
time range: [10:00am, 11:00am] 'er

camera: 'RGB’

Location 2:

latitude: -37.786789012
longitude: 91.456456244
altitude: 10

time range: [3:00pm, 5:00pm]

camera: ’'Hyperspectral’

Location 3:

latitude: -37.712339012

longitude: 91.413453544 —
altitude: 7
time range: [2:00pm, 2:30pm]

camera: ’Thermal’




Mission Planner

» Solves a modified ve

rsion of the Multi TSP

m L
maximiz Zz; + Q(Emam — ZE(Pr))
(=1 r=1
, LN
subject to z; < — v i1 V1
] 1= |PE\ ZZEJ il

Assignments constraints \ Zy <1V

TSP constraints

Time constraints

Drone can complete
the path

=

N N

ZT’:J <1Vjy,r: Z.?:TJ < 1Vir
i=1 j=1

x;; <y; Vi,rixp; <y:Vir

N T
E:E:J = Zy: Vr /
—1 1—1

u; <y; N Vi,r
yremm < AT < ATy
t; = tz —+ 2(1 — Izj)Tma:}: > 5?:,3"

u;'u;-'—l—m}:jN'(NlVr]

e

1)

(2)

3)

(4)

)

(6)

(7)
(8)
)
(10)

(1)

Optimize nr. of accomp
and energy consumption

P_r is the path for drone r,

The function E(), R() .come f
realistic models

E(): Energy consumed
R(): number of traversable point
i,j are used to index sectors

r is used to index drones
l is used to index missi



Mission dispatcher

» Translates the output of the optimization problem into flight commands for the dro

{
Dronei: [Pointd, Point2, ..., PointL],
Drone2: [Pointd, Point2, ..., PointM],

Dronek: [Point1, Point2, ..., PointQy]
1

Mission Dispatcher

el

el

Flight Plan 1: Flight Plan 2: Flight Plan 2:

- take off - take off - take off

- for each point in the list: - for each point in the list: nam - for each point in the list:
- reach point = reach point = reach point
- get data - get data - get data

- return home and land = return home and land = return home and land




Experimental results (1)

» The application improves the scalability, but 3DR Solo problems reduce the gains

Completion time (seconds)
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Experimental results (2)

» The application improves the scalability, but 3DR Solo problems reduce the gains

Completion Time (seconds)
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Experimental results (3)

» The application improves the scalability, but 3DR Solo problems reduce the gains

Completion time (seconds)
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