

Realistic Models for Characterizing the Performance of Unmanned Aerial Vehicles

Ken Goss, Riccardo Musmeci, Simone Silvestri

ence NSF Funded n Missouri Transect

MISSOURI TRANSECT

Science for Peace and Security

Research Team (1)

Research Team (2)

Zachary Bahr **Undergraduate Student** CS, MS&T

Eura Shin Undergraduate Student **CS**, University of Kentucky

Delicia Vaz Graduate student **Psychology Department, MS&T**

Vincenzo Agate Visiting Graduate Student University of Palermo, Italy

CS, University of Kentucky

Riccardo Musmeci, Ph.D. Student

Atieh R. Khamesi, PostDoc

CS, University of Kentucky

Denise A. Baker **Assistant Professor Psychology Department** bakerden@mst.edu

Let's start from the Travel Salesman Problem

- Given a set of points to visit (e.g., to take a sensing measurement)
- Points i and j are at a distance $d_{i,j}$
- Find a flight path such that
 - The route traverses all points
 - ► The route begins at the initial UAV location
 - The route has minimum traversed distance
- This can be formulated as an ILP...

What are the expected performance?

When you buy a drone usually you read:

Flight time: 25 minutes; 20 minutes with payload*

- How do they get this numbers? Hovering on the same spot for 25 minutes!!
- The little star (*) is there to say: "*Flight time varies with payload, wind conditions, elevation, temperature, humidity, flying style and pilot skill. Listed flight time applies to elevations less than 2,000 ft above sea level."
- How can I predict the performance of my drone?

https://3dr.com/blog/solo-specs-just-the-facts-14480cb55722/

Objective

- Define analytical models that given information such as:
 - UAV mass
 - ► Flight plan
- Predicts UAV performance:
 - Energy consumption
 - Flight time
 - Number of waypoints the UAV can traverse
- Benefits
 - Realistic simulations
 - Realistic optimizations
 - Accurate flight plans

Previous work

- Does not consider performance metrics other than flight time [1]
- Does not consider effects of the geometry of a flight path on power consumption [2]
- Provides a method to optimize a path for power consumption but not model the power consumption [3]
- Optimizes the control signals used to drive the motors, but not related to a whole flight path for a prolonged sensing mission [4]
- Does model power consumption, but only in a constant velocity setting, which does not generalize to arbitrary flights [5]

[1] P. Sujit and D. Ghose, "Search using multiple uavs with flight time constraints," IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 2, pp. 491-509, 2004.
[2] B. Uragun, "Energy efficiency for unmanned aerial vehicles," in IEEE ICMLA, 2011.

[3] G. Nachmani, "Minimum-energy flight paths for uavs using mesoscale wind forecasts and approximate dynamic programming," DTIC Document, Tech. Rep., 2007.

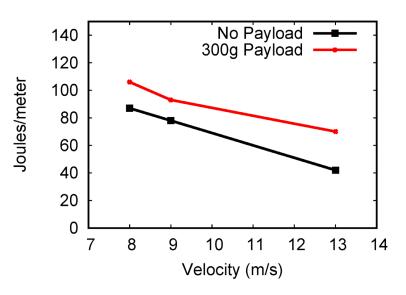
[4] F. Morbidi, R. Cano, and D. Lara, "Minimum-energy path generation for a quadrotor uav," in IEEE ICRA, 2016.

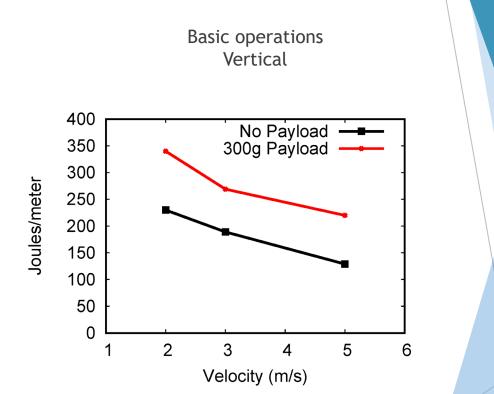
[5] D.-K. Phung and P. Morin, "Modeling and energy evaluation of small convertible uavs," IFAC Proceedings Volumes, vol. 46, no. 30, pp. 212-219, 2013.

3dr Solo UAV

- ~25 minutes flight time fully autonomous
- On-board Linux computer interfaced with flight controller
- Communication options
 - Integrated wireless telemetry radio
 - Wi-Fi
- Open ports to interface a wide array of sensing hardware with on-board computer, flight controller, or both

Basic Model (1)


Energy consumption of basic UAV operations


Operation	No Payload		300g Payload		
	Battery use	Joules	Battery use	Joules	
Takeoff	2.83%	7849 J	3.50%	9696 J	
and					
Land					
Hover	0.116 %/s	321 W	0.122 %/s	338 W	
Vertical					
Slow	0.083 %/m	230 J/m	0.123 %/m	340 J/m	
(8 m/s)					
Medium	0.068 %/m	189 J/m	0.097 %/m	269 J/m	
(9 m/s)					
Fast	0.047 %/m	129 J/m	0.079 %/m	220 J/m	
(13 m/s)					
Horizontal					
Slow	0.031 %/m	86.58 J/m	0.038 %/m	106 J/m	
(8 m/s)					
Medium	0.028 %/m	78 J/m	0.034 %/m	93 J/m	
(9 m/s)					
Fast	0.015 %/m	43 J/m	0.025 %/m	70 J/m	
(13 m/s)					

9

Basic Model (2)

Basic Operations Horizontal

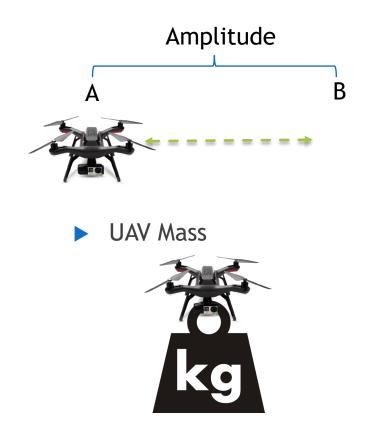
Basic Model Summary

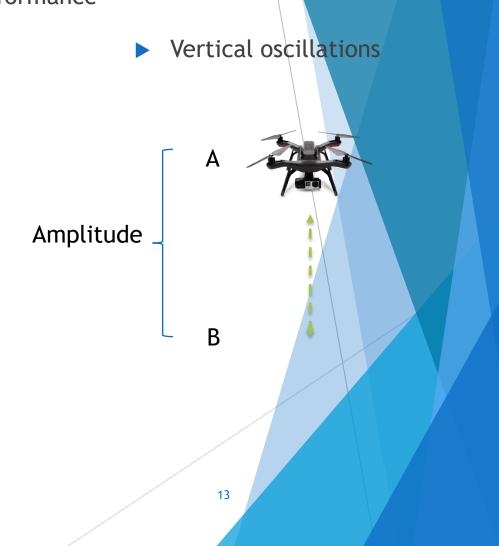
- Good for gaining intuition concerning power cost differences in various configurations and movement combinations
- Overly simplistic little to no consideration of acceleration
- No realistic or reliable way to compose these data for arbitrary flight path power modeling

Advanced Model

- Consider critical aspect concerning UAV Movement Physics
 - UAV thrust and gravity during vertical motion

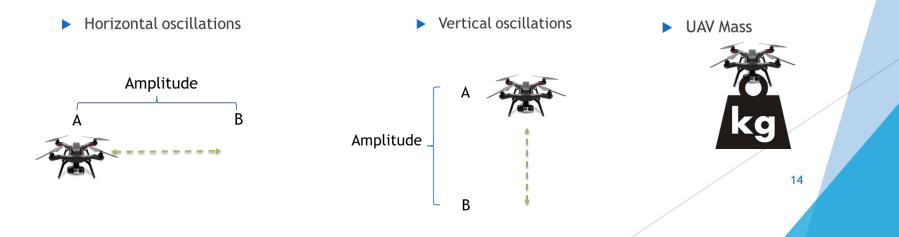
• UAV thrust components and gravity during lateral motion

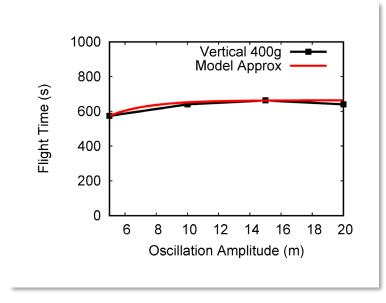

• Given a flight plan we want to be able to reliably predict:


The UAV flight time

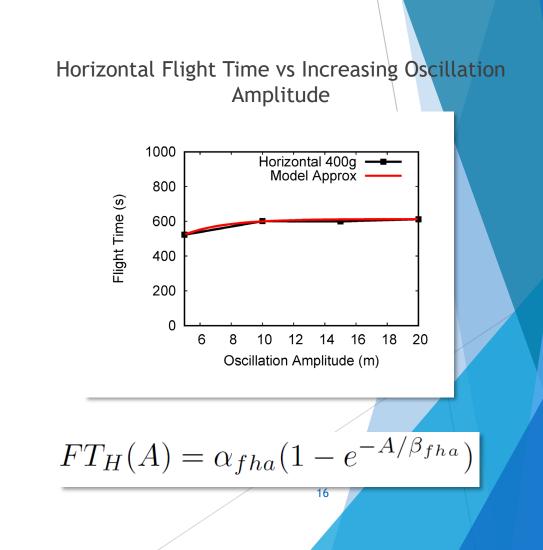
The number of waypoints the UAV is able to traverse in a given flight path

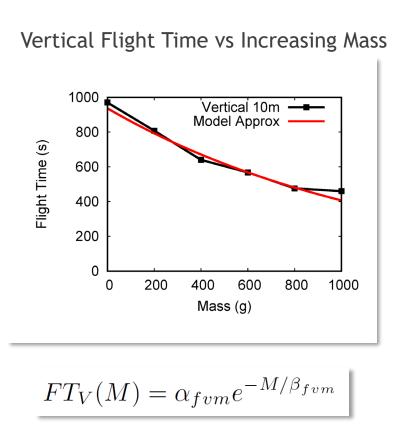
Experimental setup and approach (1)


- ► We identify **three dimensions** that affect the performance
- Horizontal oscillations

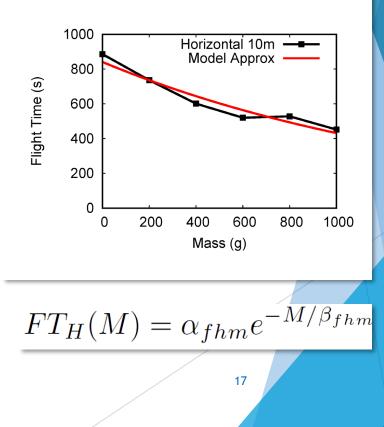


Experimental setup and approach (2)

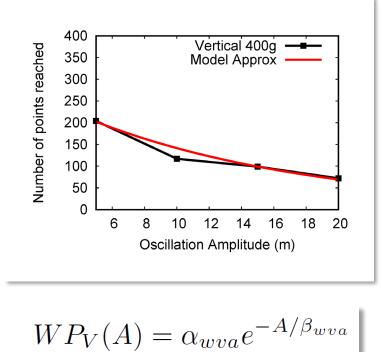

- We focus on one dimension at a time (e.g. horizontal amplitude)
- ▶ We empirically measure the performance as a such dimension
- We find use regression to find a suitable function that fits the empirical data
- Constants depend on the specific UAV considered (3DR Solo)

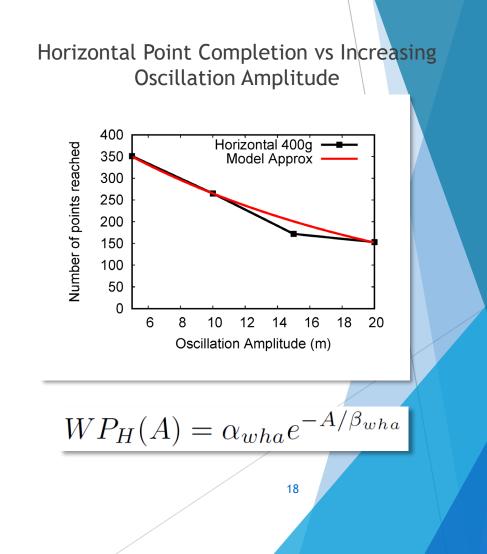


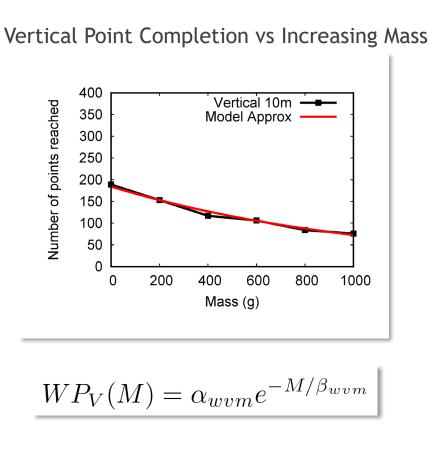
Vertical Flight Time vs Increasing Oscillation Amplitude

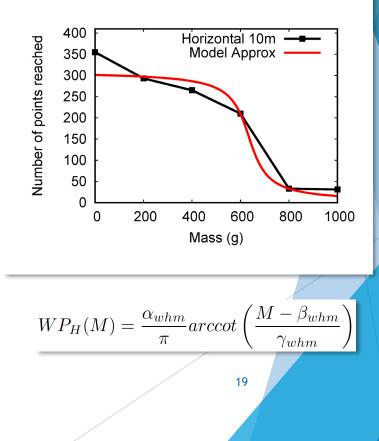


$$FT_V(A) = \alpha_{fva} (1 - e^{-A/\beta_{fva}})$$





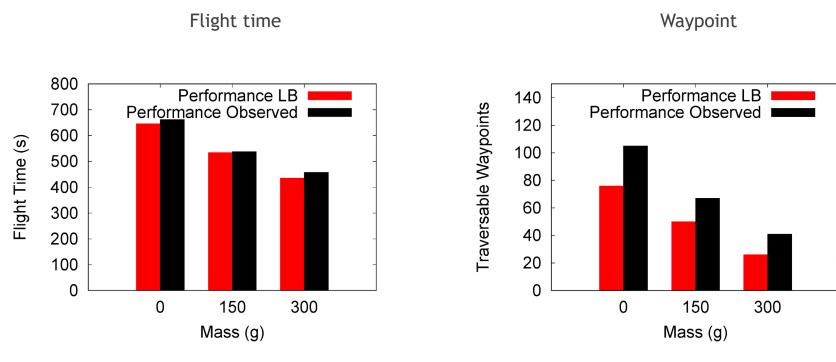

Horizontal Flight Time vs Increasing Mass


Vertical Point Completion vs Increasing Oscillation Amplitude

Horizontal Point Completion vs Increasing Mass

Model Integration

- Question: given a generic flight plan, how can we predict a lower bound on the UAV performance?
- Each factor δ for the criteria of interest is aggregated (in this case flight time) to obtain a total Δ


$$\begin{split} & \Delta_{FT} = 1 - \sum_{FT_{DV}} (1 - \delta) \\ & \delta \in \{\delta_{FT_{DH}}, \delta_{FT_{DV}}, \delta_{FT_{MH}}, \delta_{FT_{MV}} \} \end{split}$$

and then this is multiplied by the minimum of the individual projected outcomes for the baseline to obtain the Lower Bound (LB) for performance

 $LB(FT) = \Delta_{FT} \cdot \min(\{FT_V(V_0), FT_H(V_0), FT_V(M_0), FT_H(M_0)\})$

Validation for generic Flight Plans

We generated a random flight plan, waypoints have random altitude and position

Many open problems...

- Many other factors are relevant:
 - Altitude
 - Speed
 - Battery aging
 - Temperature
 - Non-random flight paths
 - Other ideas?

Riccardo Musmeci, Ken Goss, Simone Silvestri

Science for Peace and Security

NSF Funded Missouri Transect

- Investigate the effects of climate change on large scale crop fields
- Enable the use of autonomous monitoring networks
- Challenges
 - Current UAV monitoring techniques use a single UAV with auto-pilot (typical image acquisition speed 5m/s, very limited scalability)
 - High network operational/deployment costs
 - Goals: reduce costs and improve scalability
 - Statistical optimization
 - Design algorithms for the coordination of multiple UAVs
 - Enable remote monitoring (web application)

Statistical optimization

- **Objectives**: improve scalability, achieve high accuracy, reduce costs
- Monitoring objectives: plant growth, health, parasites, etc.
- **Sensing:** RGB, Thermal, Hyperspectral cameras
- Idea
 - Divide the field in sectors
 - □ Each sector produces a reading (e.g. crop health, size)
 - □ These readings are <u>correlated</u>
 - Exploit correlation to monitor only a subset of the sector and infer the others

Main problems to solve

- Infer readings of unobserved sectors minimizing the error
- □ Select the best sectors
- Detect changes in the distribution
- Optimize UAV movements

TAK

Technical approach

- Let X be the set of all sectors, Σ_X the covariance matrix
- Readings are modelled as jointly Gaussian random variables
- If we observe $S \subseteq X$, we have a closed form to infer the readings of the sectors in $Y = X \setminus S$ with minimum MSE

 $\mu_{Y|S} = \mu_Y + \Sigma_{YS} \Sigma_{SS}^{-1} (\mathbf{s} - \mu_S)$

The problem of selecting the best sectors is

$$S^* = \arg\min_{S \subseteq X, |S| \le M} \left(\frac{1}{T_{op}} \sum_{t=1}^{T_{op}} MSE(\hat{\mathbf{y}}_{\mathbf{t}}(\mathbf{s}_{\mathbf{t}}^*), \mathbf{y}_{\mathbf{t}}) \right)$$

which is NP-Hard, but we have optimal solutions for special cases

Optimal single sector selection
$$x_j^* = \arg \max_{x_l \in X} \left(\frac{\sum_{i=1}^N \sigma_{il}^2}{\sigma_{ll}} \right)$$

Fait

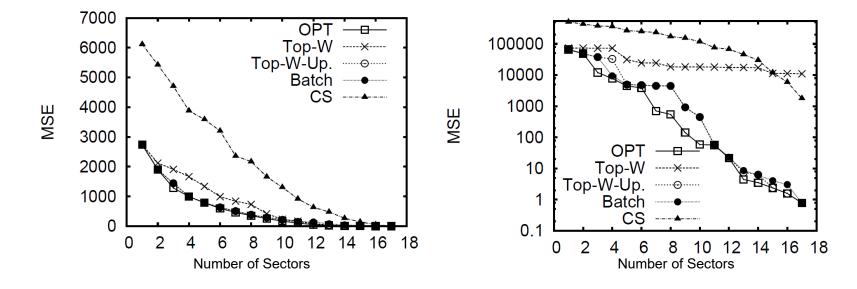
 $f(X) \approx \frac{1}{\sqrt{2\pi \ det(\Sigma_X)}} \exp\left(-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})\right)$

Technical approach

- We use the special cases as a building blocks for efficient heuristics
- We designed heuristics with different trade-off accuracy vs. complexity
- Top-W: pick top sectors ranked according to the weight $w_j = \frac{1}{c_j} \left(\frac{\sum_{i=1}^N \sigma_{ij}^2}{\sigma_{jj}} \right)$ $O(N^2)$
- Top-W-update: pick the top sectors but update the conditional covariance matrix

$$\Sigma_Y = \Sigma_{YY} - \Sigma_{Yx_i^*} \Sigma_{x_i^* x_i^*}^{-1} \Sigma_{x_i^* Y}$$

 Batch-selection: pick the variable that minimizes the MSE considering the already selected variables


$$x_i^* = \arg\min_{x_l \in Y} tr(\Sigma_{Y \setminus \{x_l\} \mid S \cup \{x_l\}})$$

 $O(N^3)$

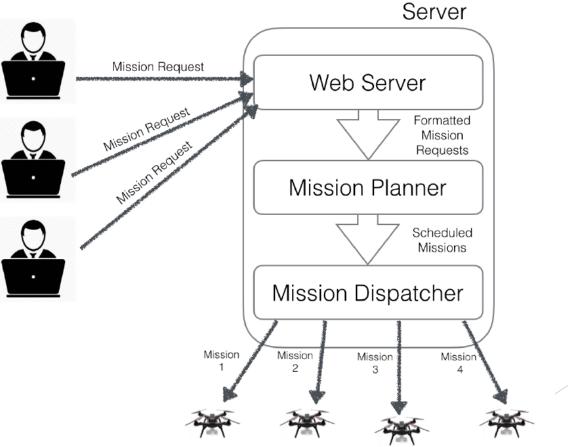
 $O(N^5)$

Preliminary results

- □ Simulator based on synthetic and real traces
- □ Comparison with Compressed Sensing (CS) approach

Papers:

- S. Silvestri, R. Urgaonkar, M. Zafer, B. Ko,"An online method for minimizing network monitoring overhead" in Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), 2015
- S. Silvestri, R. Urgaonkar, M. Zafer, B. Ko, "A Framework for the Inference of Sensing Measurements based on Correlation", in ACM Transactions on Sensor Networks (to appear).


28

A Web Application for the Remote Control of Multiple Unmanned Aerial Vehicles

- In the context of our project multiple users (researchers) are interested in monitoring different sectors of a crop field
- We want to realize a web system thanks to which users can submit monitoring missions, composed by:
 - A set of sectors to be monitored
 - The sensing to be performed (RGB, hyperspectral, thermal, etc.)
 - ► A time range when the measurements should be collected
- The users should not be aware of the number, location, and flight operations of the UAVs

Structure of the Web application

We realize a web application with the following structure

Web Client Interface

It is used by the users to submit monitoring missions

UAV	Info

UAV Id	UAV Status	UAV Battery	Sensing Type	
Solo Gold	Connected	100	RGB	
Solo Green	Connected	73	Thermal	

Mission details

Drone	Marker	Latitude	Longitude	Altitude	Time Interval
Solo Gold	1	37.92472884	-91.77257647	5	[10.00am, 11.00am]
Solo Gold	2	37.92492772	-91.77286078	7	[10.00am. 11.00am]
Solo Green	3	37.92450668	-91.77207758	7	[09.00am, 09.45am]
Solo Gold	4	37.92483039	-91.77208563	6	[10.30am, 11.30am]
Solo	5	37 9244F436	-91 77261670	٩	ing nnam

Monitoring missions

÷

Select type of monitoring missions:

Point Mission

Live Flight Information

In this section will be displayed all the information sent by drones in flight

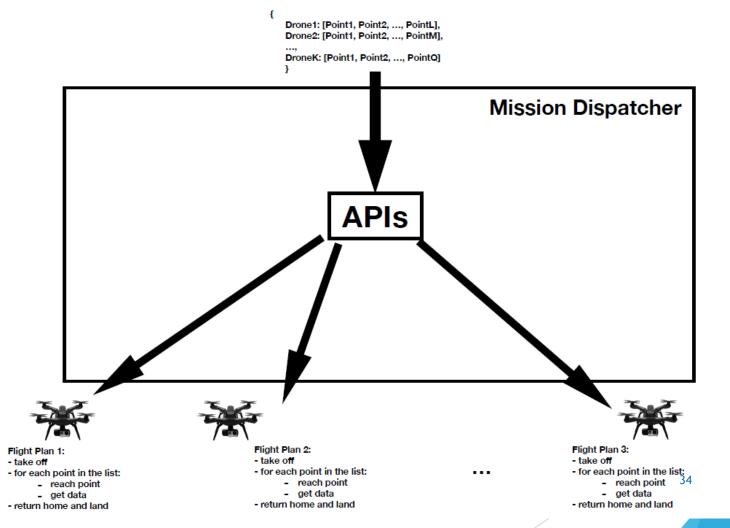
Web Server

Receives monitoring missions and translates in a format for the mission planner

Point mission	Location 1:
request	latitude: -37.123456789
	longitude: 91.234551234
	altitude: 12
	time range: [10:00am, 11:00am] ' er
	camera: 'RGB'
	Location 2:
	latitude: -37.786789012
	longitude: 91.456456244
	altitude: 10
	time range: [3:00pm, 5:00pm]
	camera: 'Hyperspectral'
	Location 3:
	latitude: -37.712339012
	longitude: 91.413453544
	altitude: 7
▼	time range: [2:00pm, 2:30pm]
	camera: 'Thermal'

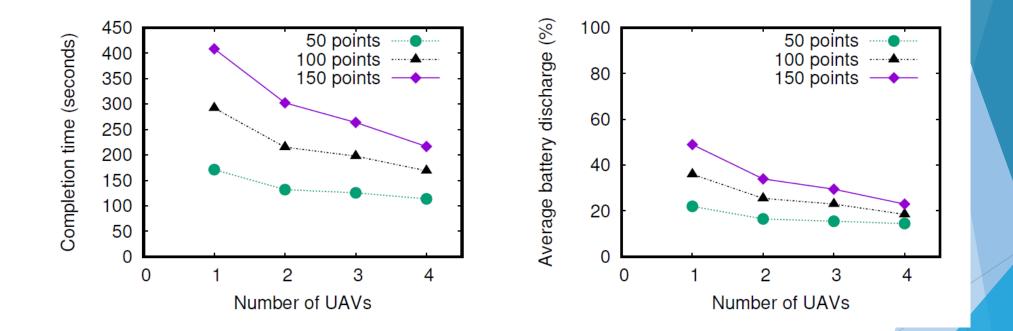
Mission Planner

Solves a modified version of the Multi TSP

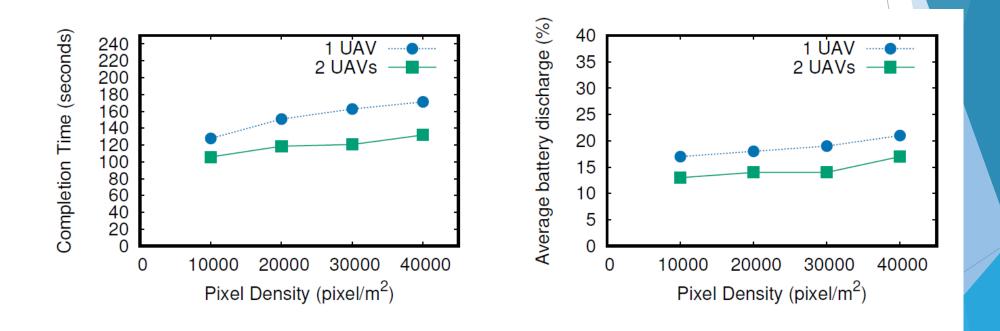

$$\begin{array}{c} \text{maximize} \quad \sum_{l=1}^{m} z_l + \alpha \left(E_{max} - \sum_{r=1}^{L} E(P_r) \right) \quad (1) \\ \text{subject to } z_l \leq \frac{1}{|P_l|} \sum_{r=1}^{L} \sum_{i=1}^{N} y_i^r q_{il} \forall l \quad (2) \\ \text{Assignments constraints} \quad \sum_{r=1}^{N} y_i^r \leq 1 \forall i \quad (3) \\ \sum_{i=1}^{N} x_{i,j}^r \leq 1 \forall j, r; \quad \sum_{j=1}^{N} x_{i,j}^r \leq 1 \forall i, r \quad (4) \\ x_{i,j}^r \leq y_i^r \forall i, r; \quad x_{i,j}^r \leq y_j^r \forall j, r \quad (5) \\ \sum_{i=1}^{N} x_{i,j}^r = \sum_{i=1}^{r} y_i^r \forall r \quad (6) \\ u_i^r - u_j^r + x_{i,j}^r N \leq N - 1 \forall r \quad (7) \\ u_i^r \leq y_i^r N \forall i, r \quad (8) \\ y_i^r t_i^{min} \leq t_i^r \leq t_i^{max} y_i^r \forall i, r \quad (9) \\ t_j^r - t_i^r + 2(1 - x_{ij}^r) T_{max} \geq \delta_{i,j} \quad (10) \\ \sum_{i=1}^{N} y_i^r \leq R(P_r) \forall r \quad (11) \end{array}$$

- Optimize nr. of accomplished missions and energy consumption
- P_r is the path for drone r
- The function E(), R() come from the realistic models
- E(): Energy consumed
- R(): number of traversable points
- i,j are used to index sectors r is used to index drones l is used to index missions

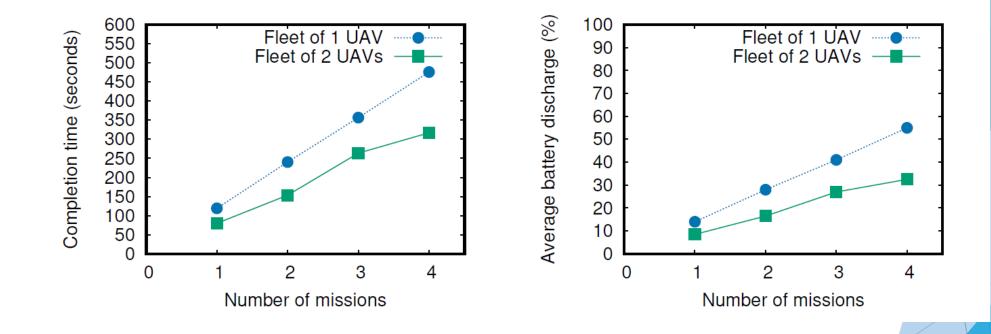
33


Mission dispatcher

Translates the output of the optimization problem into flight commands for the drones


Experimental results (1)

The application improves the scalability, but 3DR Solo problems reduce the gains


Experimental results (2)

The application improves the scalability, but 3DR Solo problems reduce the gains

Experimental results (3)

The application improves the scalability, but 3DR Solo problems reduce the gains

