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THE PROBLEM

® Co-Channel reuse distance o .
® Minimum distance between stations

@ The goal of assigment’s algorithms is to
assign channels to stations in a way such
that the Co-Channel Reuse distance
constraint and the minimum distance
beetween close stations constraint are
respected. The number of the channels used
must be as small as possible.



THE MODEL

® Graph G(VE) such that
V= The stations set
E = Couples of close stations

® d(u,v) = Distance between vertex u
and vertex v

® C = Set of non negative integers

® g, = Minimum distance between
channels assigned to vertices at
distance 7



THE MODEL

® L(oy, 0y .., 0-1)-coloration of the graph
G(VE) 1s a function f: VV-> C such that:

[f(u) -f(v) =0 it d(uv)=1i
® k-L(oy, 07, ..., 0-1)-coloration of the graph

G(VE) IS a function:
f:V->{12 ..k}

® A(G)= The biggest color used in an
optimal coloration of the graph &

® A(G)+1= The number of colors used



PROBLEMS STUDIED

® We study problems with 0 =3 and o =4
@ In particular L(2,1) and L(2,1,1)

® Assignment costs



CONCEPTS



CLIQUE K-

@ If the graph G'is a clique K. of n nodes,
since the nodes are all adjacent to each

other, we have that A(G) = 2(n - 1) for both
problems L(2Z,1) and L(2,1,1)

@ For the classical vertex coloring problem n
colors are requested to color the K. clique



REDUCTION TO THE CLASSICAL
VERTEX COLORING PROBLEM

® Suppose we want to calculate the
L(1,1,..,1)-coloration of the graph
AAY)

® We can build the augmented graph
Go(V, E;), where
F-={ (uv)such that d(uv) <o-1}



REDUCTION TO THE CLASSICAL
VERTEX COLORING PROBLEM
O, G Ga
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® The numbers of colors used, in a classical
vertex coloring of the graph G- Is a lower
bound for the numbers of channels used In
alL(l1,..1)-coloration of the graph ¢



REDUCTION TO THE CLASSICAL
VERTEX COLORING PROBLEM

@ If the graph G- have a K. cligue, then nis
a lower bound for the number of colors
used

® So nis a lower bound also for the
number of colorsusedina L(11,...1)-
coloration of G

® To refine this bound we need to find the
maximum clique of the graph G-



LOWER BOUNDS FOR L(k,1,...1)

@ A lower bound for the L(1,1,...1)-coloring
of ¢Is a lower bound for the
L(k 1,...,1)-coloring of G, with k> 1

@ So lower bounds for L(1,1,1) are lower
bounds for L(2,1,1) too and lower

bounds for L(1,1) are also lower bounds
for L(2,1)



LEMMA 1

@ Consider the L(k 1,...,1)-coloration of an
augmented graph G(VE), with k£ >2.
A(G) = /V] + 1 iff ¢"has an hamiltonian
path.

® G(VE’) is the complementh graph of ¢,
where E’={(u,v) such that (u,v) do not
belongs to E }



PR

OOF OF LEMMA 1

(FIRST IMPLICATION —)

® If we want to satisfy the channel
separation constraint, two vertices of ¢ can
have consecutive colors iff they are not

adjacent.

So they are adjacent in ¢

@ If A(G) = /V/ + 1 then there is an ordering
vy, ...Vin) Of the vertices such that

(vo,
f(V)—I

® For what we’ve seen before,

every couple (vll vi), In that ordered set, IS
an edge of £’
® So the ordered set (v, v, ...viy2) represent

an hamiltonian path in ¢’



PROOF OF LEMMA 1
(SECOND IMPLICATION « )

@ If ¢"has an hamiltonian path
(vo, vi, ...vy1) then we can build a
function f:V->{01, ... /V/-1 }such that
f(vi)=iforevery 0<i</V/-1

@ This function is clearly optimal for the
L(k 1,...,1)-coloration problem of ¢



LEMMA 2

@ Let Sk be a star graph with degree «.

@ Let cbe the vertex with degree k of the
star (the center of the star).

@ The biggest color used for the
L(2,1)-coloration of S IS :
k+1 Iif f(c)=0or f(c) =k+1
k+2 If 1<f(c)<k



CHANNELS TO




HEXAGONAL GRIDS

® An hexagonal grid H(r - ¢ E) Is a graph with r
rows (from 0to r- 1) and ccolumns
(from Oto c- 1), with r=3 and c > 2.

@ A generic vertex uis denoted u = (7, j) where i
IS his row and j Is his column.



HEXAGONAL GRIDS

@ Each vertex has degree 3, except for
some vertices on the boards.



EDGES OF AN HEXAGONAL GRID

® Avertex (7, j), which does not belongs
to the board of the graph, is adjacent to
the following 3 vertices:

® 1—\Vertex (i-1,))

® 2—\Vertex (i+1,))

® 3—Vertex (,j+ 1)or Vertex (i j-1)
(it depends on whether 7and jare both
even or odd or one is even and the other

IS odd)



LEMMA 3

@ Forr=3 and c> 3 thereisa L(Z 1)-
coloration of an hexagonal grid A of size
r-conlyif A(H)=5

@ The proof follows the Lemma 2, since

there Is at least one vertex with degree
3, that cannot be colored either 0 or 4.



ALGORITHM HEXAGONAL 5-L(2,1)
COLORING

IF((r=3)AND (c=3))

Assign to each vertex u = (i, ]) the color
flu) = (21 + 3-)) MOD 6

This algorithm is optimal for hexagonal
grids with r=3and c=> 3



ALGORITHM HEXAGONAL 5-L(2,1)

COLORING
' 0 ) 0 '
¢ ) )
' 0 ) 0 )
¢ ) )
® White = 0,
® Yellow = 3

O,



LEMMA 4

@Forr=>3and c>3,or r=5and c =2,
there is a L(2, 1, 1)-coloration of an
hexagonal grid A of size r-c only if
ACH) = 6



PROOF OF LEMMA 4
(CASEr=3ANDc=3)

® Consider the augmented graph G«(VE”)
and his subset:
S={©00),0 1D (L0 (1L1)Z0),21]

® Vertices In the subset S are mutually at
distance 3in H, so they form a clique In
G

® Therefore, A(H) > 5




PROOF OF LEMMA 4
( SUBGRAPH INDUCED )

@ Consider the subgrap
and the vertex (3, 0).

oo @

N Hs iInduced by .$

o

0@ @




PROOF OF LEMMA 4
( SUBGRAPH INDUCED )

@ To satisfy the co-channel reuse distance
constraint, vertex (3, 0) must get the
same color as vertex (0, 1).

@ To satisfy the channel separation
constraint , the colors assigned to
vertices (2, 0) and (3, 0) must have a
gap of at least 2.



PROOF OF LEMMA 4
( SUBGRAPH INDUCED)

@ This Is equivalent to add, in Hs, special
edges
((20)01)) ((L1D (L)) ((21)(00))

oo @ @

(o)) /\ (1,1)

2.0 @) (2.1)




PROOF OF LEMMA 4
( GRAPH COMPLEMENT )

@ If we consider H,' (the complement of
graph H).

(2,1)
@ Since H;’consist of 2 component
connected, it has no hamiltonian path



PROOF OF LEMMA 4
(CONCLUSION)

® From the Lemma 1, we can conclude
that A(H)=6

® Lower bound In the case of r=5 and
c =2 can be proved by similar
arguments



ALGORITHM HEXAGONAL-6-
L(2, 1, 1) COLORING

IF((r=83)AND(c>38)) OR((r=5)AND (c=2))
FOR EACH vertex u = (i, ))

[F (1MOD 6 =0 AND jiseven ) OR (1 MOD 6 = 3 AND jis odd )
flu)y=0

IF (1MOD 6 =0 AND jisodd ) OR (1 MOD 6 = 3 AND j is even )
flu) = 4

IF (1MOD 6 =1 AND jiseven ) OR (1 MOD 6 = 4 AND j is odd )
flu) =6

I[F(1MOD 6 =1AND jisodd)OR (1 MOD 6 = 4 AND j is even)
flu) = 2

IF (1MOD 6 =2 AND jiseven ) OR (1 MOD 6 = 5 AND j is odd )
flu) = 1

IF (1MOD 6 =2 AND jisodd ) OR (1 MOD 6 = 5 AND ] is even )
flu) = 5



ALGORITHM HEXAGONAL-6-L(2, 1, 1)

.COLORING

® White = 0,
® Yellow = 3
®



CORRECTNESS OF THE
ALGORITHM

® We have to proof that:

® The channel separation constraint is
verified

® The co-channel reuse constraint IS
verified



CORRECTNESS (THE CHANNEL
SEPARATION CONSTRAINT )

® Let u=(i j) be a vertex

® For any adjacent vof u such that
v=_j+1)or v=(ij-1) it has:
f(v)=f(u)+4 or f(v)=£fu)-4
@ Moreover, any pair (u, v)of adjacent vertices
on the same coloumn can be colored only in
this manners:
f(u) =0and f(v) =6
f(lu)=6and f(v) =1
f(u)=1and f(v) =4
f(u)=4and f(v) =2
flu)=2and f(v) =5
f(u)= 5and f(v) =0




CORRECTNESS (THE CHANNEL
SEPARATION CONSTRAINT )

@ Therefore, a gap between the colors
assigned to each pair of adjacent
vertices Is at least 2

® So we can conclude that the channel
separation constraint is verified



CORRECTNESS (THE CO-
CHANNEL REUSE CONSTRAINT )

® Each row of HIs colored with 2 colors and
any 3 consecutive rows are colored with
different colors.

@ Vertices (i, j)and (i, j+1) are colored,
respectively, as vertices (i+3, j+1)and
(i+3, j). Hence, two vertices in rows 7and
(i+3) get the same color If their distance is
at least 4

® The /th and the (7+6)-th rows are colored
the same. Hence the same color can be
reused only in two vertices at distance 6.



CORRECTNESS (THE CO-
CHANNEL REUSE CONSTRAINT )

@ Finally all the even (and the odd )
column are colored in the same way.

@ But the distance between vertices (7, j)
and (7, j+2) Is at least 4, since there are
no consecutive horizontal edges.

® SO0, the co-Channel Reuse distance
constraint I1s verified too.



BIDIMENSIONAL GRIDS

@ A Bidimensional grid B(r - ¢ E)Is obtained
from an hexagonal grid of the same size,
simply connecting all the pair of
consecutive nodes lying on the same row



BIDIMENSIONAL GRIDS

@ A generic vertex (7, j), that is not lying on
the board, is adjacent to vertices:

(I-1.j), (i+1)), Gj-1), (G, j+1)
® Therefore, a vertex vhas degree at most 4



LEMMA 5

® The optimal L(Z, 1)-coloring of a
bidimensional grid B(r - ¢, E), where r= 3
and c= 3, has A(B)=6

® From the Lemma 2, since there is at

least a vertex with degree 4, we cannot
color it with color 0 or 5.



ALGORITHM BIDIMENSIONAL
0-L(2,1) COLORING

IF((r=3)AND (c=3))

Assign to each vertex u = (i, ]) the color
flu) = (2:1+ 4+)) MOD 7



ALGORITHM BIDIMENSIONAL 6-L(2,1)

COLORING
' 0
J 0
' '
' 0
o 0
® White = 0,
® Yellow = 3

O,



LEMMA ©

@Forr=5and c>4, or r=4and c= 5,
there is a L(2, 1, 1)-coloration of a
bidimensional grid B of size r-conly If
ACH) =8



PROOF OF LEMMA 6
(CASEr>5AND c >4 )

@ Let us consider the augmented graph B-
For any pair of vertices u = (i, j) and
v= (1+3, J), let S.» the following set:

{ (1)) (+1)) (112 J), (i+3,]), (I+1,j-1),
(i+2,J-1), (i+1, j+1), (i+2, j+1) }

@ All of vertices that belongs to S.. are
pairwaise at distance no more than 3

@ To satisfy the co-channel reuse distance
constraint all of those vertices must be
colored with different colors, since both
S.» and S.»’induce a clique in B,



PROOF OF LEMMA 6

® Now, consider the set:
ww = Suv U { all the vertices of B at

horizontal distance 1 to a vertex on the
border of Suv }

O 0000
G900
Q06



PROOF OF LEMMA 6

6 o © o6 O
e o 9

@ Let us consider vertices: a=(i, j+1), b=(i+1,
j+Z2) and the bidimensional grid M induced by
SLIV

® Su.v»has been assigned to all different colors

@ If we want to use only &colors, vertices b and a
must be assigned to the two colors used for the
vertices zand v



PROOF OF LEMMA 6

@ The color assigned to vertices aand b
must be at least 2 from the color
assigned to the vertex
s=((+1j+1).

@ This Is equivalent to add two edges:

(s, z)and (s,v)to the augmented graph.

@ Similar arguments we can repeat for the
pairs of vertices: (¢ d), (e 1), (g h)

® So we can add other edges



PROOF OF LEMMA 6
0
% 0
c
@

® Either £ or e are colored as vertex u.

@ Colors f(u)and f(v) must be assigned to two
adjacent vertices intheset {e £ g A }In
particular f(u) can be assigned to vertex e and

f(v)can be assigned to vertex A.
@ Thus, one further edge can be added: (u, v)




PROOF OF LEMMA 6

® Let us consider the subgraph M with vertices
fupts zwy V}and let us build its
complement M’

® Since M’consist of two connected
components, M’does not contains an
Hamiltonian path



PROOF OF LEMMA 6

@ Recalling Lemma 1 we can conclude
that there is no 7-L(2,1,1)-coloring for a
bidimensional grids of size r - ¢, where
r=5and c =>4

® The proof when r>4 and c=>5 Is
analogous.

® Hence A(B) =&



ALGORITHM GRID-8-L(2, 1, 1)
COLORING

IF((r=5)AND (c=>4)) OR((r=4)AND (c>5))
FOR EACH vertex u = (i, ))

IF ((i+))MOD 4 =0 AND 1iiseven AND jiseven )
flu)y=0

IF((1+))MOD 4 =0 AND iisodd AND jis odd)
flu) = 1

IF((1+))MOD 4 =1 AND 1iiseven AND jisodd )
f(u) = 7

IF((i+))MOD4 =1 AND iisodd AND jis even)
flu) = 8

IF ((i+))MOD 4 =2 AND iiseven AND jiseven)
flu) = 2

IF((i+))MOD 4 =2 AND iisodd AND jis odd)
flu) = 3

IF((i+))MOD 4 =3 AND iisodd AND jiseven)
flu) = 5

IF ((i+))MOD 4 =3 AND iiseven AND jis odd)
flu) =6



ALGORITHM GRID-8-L(2, 1, 1)

.COLORING

® White = 0,
® Yellow = 3,
®



CORRECTNESS OF THE ALGORITHM
(CHANNEL SEPARATION CONSTRAINT)

® The channel separation coinstrant is
verified by construction of the algorithm

@ If color cis assigned to a vertex (i, j), color
c+1is assigned to the vertex (7, /'), where:
-(i"mod 2 ) # (imod 2)

-(j'mod?2) # (jmod2)

@ Vertices (4, j)and (7, j’) are at distance at

least 2

® SO0, any two consecutive vertices cannot be
assigned to consecutive colors.



CORRECTNESS OF THE ALGORITHM
(CO-CHANNEL REUSE CONSTRAINT)

@ To verify that the co-Channel Reuse
Distance constraint is verified it's
enough to note that two vertices
u=(i,j)and v = (h, k) are assigned to
the same color iff :

® d(uv) =4
@ Both /i-h/and /j-k/are even.



CELLULAR GRIDS

. . "

@ A cellular grid C of size r - c is obtained
from a bidimensional grid of the same size,
augmenting the set of edges with left-to-
right diagonal connections.



CELLULAR GRIDS

® So, a vertex u = (3, j), that is not lying on
the board, is connected with vertices: (i-1,

J), (i+1)), G J-1), G j+1), (Ii-1, j-1), (i+1,
J+1).

® Therefore it has degree 6



L(2,1) COLORING FOR A
CELLULAR GRID

® If one of this condition is verified :
- r=5and c=3
- r=3and c=5
- r=4and c=4

@ Then an optimal L(Z 1) coloring of a
cellular grid Chas A(C) =&




ALGORITHM CELLULAR 8-L(2,1)
COLORATING

[F((r=4)AND(c>=4)) OR ((r=5)
AND (c=>38)) OR ((r=38)AND
(¢=5))

Assign to each vertex u = (i, ]) the color
flu) = (8-1+ 2-)) MOD 9



ALGORITHM L(2,1,1) COLORING
FOR A CELLULAR GRID

@ Ifr=4and c=4 an optimal L(2,1,1)
coloring of a cellular grid has A(C) = 11

IF((r=4)AND (c>4))
FOR EACH vertex u = (3, ))

IF((1+))MOD6 =2 AND iiseven AND jiseven)
flu) =0

IF((1+))MOD6=0 AND iiseven AND jis even)
flu) = 1

[F ((1+)) MOD 6 =4 AND 1iis even AND jiseven)
flu) = 2



ALGORITHM L(2,1,1) COLORING
FOR A CELLULAR GRID

IF((i+))MOD6 =1 AND 1iis odd AND jiseven )

flu) = 3

IF((i+))MOD6 =3 AND iisodd AND jis even)
flu) = 4

IF((1+))MOD 6 =5 AND 1iis odd AND jiseven )
flu) =5

IF((i+))MOD6 =5 AND iiseven AND jis odd)
flu) =6

IF((i+))MOD6=2 AND iisodd AND jisodd)
f(u) = 7

IF ((i+))MOD 6 =4 AND iisodd AND jis odd)
flu) = 8

IF((i+)MOD6=1 AND iiseven AND jisodd)
flu) =9

IF ((i+))MOD6 =3 AND iiseven AND jis odd)
flu) = 10

IF ((i+))MOD 6 =0 AND iisodd AND jis odd )
flu) = 11



CONCLUSIONS

HEXAGONAL GRIDS 6 Colors 7 Colors

BIDIMENSIONAL 6 Colors 9 Colors
GRIDS

CELLULAR GRIDS 9 Colors 12 Colors










