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THE PROBLEM 

 

 Co-Channel reuse distance σ . 

 Minimum distance between stations   

 The goal of assigment’s algorithms is to 
assign channels to stations in a way such 
that the Co-Channel Reuse distance 
constraint and the minimum distance 
beetween close stations constraint are 
respected. The number of the channels used 
must be as small as possible. 

  
 



THE MODEL 

Graph G(V,E) such that                            

V = The stations set                        

E = Couples of close stations 

 d(u,v) = Distance between vertex u 

and vertex v 

 C = Set of non negative integers 

 σi = Minimum distance between 

channels assigned to vertices at 

distance i 

    



THE MODEL 

  L(σ1, σ2, …, σσ-1)-coloration of the graph 
G(V,E)  is a function f : V -> C  such that:          

    | f(u) – f(v) | ≥ σi  iff d(u,v) = i 

 k-L(σ1, σ2, …, σσ-1)-coloration  of the graph 
G(V,E) is a function:                                  
f : V -> {1,2, …, k} 

 λ(G) = The biggest color used in an 
optimal coloration of the graph G 

 λ(G)+1 = The number of colors used 



PROBLEMS STUDIED 

 

 We study problems with σ = 3  and σ = 4  

 

 In particular L(2,1)  and L(2,1,1) 

 

 Assignment costs 





CLIQUE Kn 

 

 

 

 

 If the graph G is a clique Kn  of n nodes, 

since the nodes are all adjacent to each 

other, we have that λ(G) = 2(n – 1) for both 

problems L(2,1)  and L(2,1,1) 

 For the classical vertex coloring problem n 

colors are requested to color the Kn clique  
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REDUCTION TO THE CLASSICAL 

VERTEX COLORING PROBLEM 

 Suppose we want to calculate the 

L(1,1,…,1)-coloration  of the graph 

G(V,E). 

 We can build the augmented graph       

Gσ(V, Eσ), where                                             

Eσ = { (u,v) such that  d(u,v)  ≤ σ – 1 } 



REDUCTION TO THE CLASSICAL 

VERTEX COLORING PROBLEM 

           G                                G4 

 

 

 

 

 

 

 The numbers of colors used, in a classical 
vertex coloring of the graph Gσ,  is a lower 
bound for the numbers of channels used in 
a L(1,1,…,1)-coloration  of the graph G 
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REDUCTION TO THE CLASSICAL 

VERTEX COLORING PROBLEM 

 If the graph Gσ have a Kn  clique, then n is 

a lower bound for the number of colors 

used 

 So n is a lower bound also for the 

number  of colors used in a L(1,1,…1)-
coloration of G 

 To refine this bound we need to find the 

maximum clique of the graph Gσ 



LOWER BOUNDS FOR L(k,1,…1) 

 A lower bound for the L(1,1,…1)-coloring 
of G is a lower bound for the    

L(k,1,…,1)-coloring  of G, with k ≥ 1 

 So lower bounds for L(1,1,1) are lower 

bounds for L(2,1,1) too and lower 

bounds for L(1,1) are also lower bounds 

for L(2,1) 



LEMMA 1 

 Consider the L(k,1,…,1)-coloration  of an 

augmented graph G(V,E), with k ≥2.          

λ(G) = |V| + 1  iff G′ has an hamiltonian 

path. 

 G′(V,E′)  is the complementh graph of G, 

where  E′ = { (u,v) such that (u,v) do not 
belongs to E } 



PROOF OF LEMMA 1            

(FIRST IMPLICATION →) 
 If  we want to satisfy the channel 

separation constraint, two vertices of G can 
have consecutive colors iff they are not 
adjacent.  So they are adjacent in G′. 

 If λ(G) = |V| + 1  then there is an ordering 
(v0, v1, …v|V|-1) of the vertices such that      
f(vi) = i 

 For what we’ve seen before,                     
every couple (vi-1, vi), in that ordered set, is 
an edge of E′ 

 So the ordered set (v0, v1, …v|V|-1)  represent 
an hamiltonian path in G′ 
 



PROOF OF LEMMA 1        

(SECOND IMPLICATION ← ) 

 If G′ has an hamiltonian path                

(v0, v1, …v|V|-1)  then we can build a 

function  f : V -> { 0,1, … |V| -1 } such that 

f(vi) = i  for every 0 ≤ i ≤ |V| -1  

 This function is clearly optimal for the 

L(k,1,…,1)-coloration  problem of G 



LEMMA 2 

 Let Sk  be a star graph with degree k. 

 Let c be the vertex with degree k of the 

star (the center of the star).  

 The biggest color used for the        

L(2,1)-coloration  of S  is :                        

k + 1     if    f(c) = 0 or  f(c) = k+1                      
k + 2   if   1 ≤ f(c) ≤ k 





HEXAGONAL GRIDS 

 

 

 

 

 

 

 

 An hexagonal grid H( r · c, E)  is a graph with r 
rows (from 0 to r - 1) and c columns          
(from 0 to c – 1), with r ≥ 3  and c ≥ 2. 

 A generic vertex u is denoted u = (i, j)  where i 
is his row and j is his column. 

 

 

 



HEXAGONAL GRIDS 

 

 

 

 

 

 

 Each vertex has degree 3, except for 

some vertices on the boards. 

 

 

 



EDGES OF AN HEXAGONAL GRID 

 A vertex (i, j) , which does not belongs 

to the board of the graph, is adjacent to 

the following 3 vertices: 

  1 – Vertex ( i – 1, j) 

  2 – Vertex ( i + 1, j) 

  3 – Vertex ( i, j + 1) or  Vertex ( i, j - 1)       
(it depends on whether i and j are both 

even or odd or one is even and the other 

is odd)                



LEMMA 3 

 For r ≥ 3  and c ≥ 3  there is a L(2, 1)-
coloration of an hexagonal grid H of size 

r · c  only if λ(H)=5 

 The proof follows the Lemma 2, since 

there is at least one vertex with degree 

3, that cannot be colored either 0 or 4. 



ALGORITHM HEXAGONAL 5-L(2,1) 

COLORING 

 

IF ( ( r ≥ 3 ) AND ( c ≥ 3 ) ) 

         Assign to each vertex u = (i, j) the   color   

f(u) = (2·i + 3·j) MOD 6 

 

This algorithm  is optimal for hexagonal 

grids with r ≥ 3 and c ≥ 3  

 

 



ALGORITHM HEXAGONAL 5-L(2,1) 

COLORING 
 

 

 

 

 

 White = 0, Black = 1 

 Red = 2, Yellow = 3 

 Green = 4, Blu = 5 

 

 

 



LEMMA 4 

 For r ≥ 3 and c ≥ 3, or r ≥ 5 and c = 2,  

there is a L(2, 1, 1)-coloration of an 

hexagonal grid H of size r · c  only if 

λ(H) ≥ 6 

 



PROOF OF LEMMA 4                      

(CASE r ≥ 3 AND c ≥ 3 ) 

 Consider  the augmented graph G4(V,E′) 
and his subset:                                    
S = {  (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1) } 

 

  Vertices in the subset S are mutually at 

distance 3 in H, so they form a clique in 

G4 

 Therefore, λ(H) > 5 



PROOF OF LEMMA 4                      

( SUBGRAPH INDUCED ) 

 Consider the subgraph Hs  induced by S 

and the vertex (3, 0).  

( 0, 0) 

( 1, 0) 

( 2 ,0 ) 

( 0, 1) 

( 1, 1) 

( 2, 1) 

( 3, 0) 



PROOF OF LEMMA 4                      

( SUBGRAPH INDUCED ) 

 To satisfy the co-channel reuse distance 

constraint, vertex (3, 0)  must get the 

same color as vertex (0, 1). 

 To satisfy the channel separation 

constraint , the colors assigned to 

vertices (2, 0)  and (3, 0)  must have a 

gap of at least 2. 

 



PROOF OF LEMMA 4                      

( SUBGRAPH INDUCED) 

 This is equivalent to add, in Hs , special 

edges                                                        
( (2, 0), (0, 1) ), ( (1, 1), (1, 0) ), ( (2, 1), (0, 0 ) ) 

( 0, 0) 

( 1, 0) 

( 2, 0) 

( 0, 1) 

( 1, 1) 

( 2, 1) 



PROOF OF LEMMA 4                      

( GRAPH COMPLEMENT ) 

 If we consider  Hs′ ( the complement  of 
graph Hs).  

 

 

 

 

 

 Since Hs′ consist of 2 component 
connected, it has no hamiltonian path 

( 0, 0) 

( 1, 0) 

( 2, 0) 

( 0, 1) 

( 1, 1) 

( 2, 1) 



PROOF OF LEMMA 4     

(CONCLUSION) 

 From the Lemma 1, we can conclude 

that  λ(H) ≥ 6 

 

 Lower bound in the case of r ≥ 5  and 

c = 2  can be proved by similar 

arguments  



ALGORITHM   HEXAGONAL–6–

L(2, 1, 1) COLORING 
 

 IF ( ( r ≥ 3 ) AND ( c ≥ 3 ) )  OR ( (r ≥ 5) AND ( c = 2 ) ) 

 

  FOR EACH vertex u = (i, j)  

 

   IF ( i MOD 6 = 0 AND j is even ) OR ( i MOD 6 = 3 AND j is odd ) 

    f(u) = 0  

   IF ( i MOD 6 = 0 AND j is odd ) OR ( i MOD 6 = 3 AND j is even ) 

    f(u) = 4 

   IF ( i MOD 6 = 1 AND j is even ) OR ( i MOD 6 = 4 AND j is odd ) 

    f(u) = 6 

   IF ( i MOD 6 = 1 AND j is odd ) OR ( i MOD 6 = 4 AND j is even) 

    f(u) = 2 

   IF ( i MOD 6 = 2 AND j is even ) OR ( i MOD 6 = 5 AND j is odd ) 

    f(u) = 1 

   IF ( i MOD 6 = 2 AND j is odd ) OR ( i MOD 6 = 5 AND j is even ) 

    f(u) = 5 
 

 

 

 

 

    



ALGORITHM HEXAGONAL–6–L(2, 1, 1) 

COLORING 
 

 

 

 

 

 White = 0, Black = 1 

 Red = 2, Yellow = 3 

 Green = 4, Blu = 5, Violet = 6 

 

 

 



CORRECTNESS OF THE 

ALGORITHM 

 We have to proof that: 

 The channel  separation constraint is 

verified 

  The co-channel reuse constraint is 

verified 

 

 



CORRECTNESS (THE CHANNEL 

SEPARATION CONSTRAINT )  
 Let u=(i, j)  be a vertex 

 For any adjacent v of u such that                     
v = (i, j+1) or v = (i, j-1), it has:                      
f(v)=f(u)+4  or f(v)=f(u)-4 

 Moreover, any pair (u, v) of adjacent vertices 
on the same coloumn can be colored only in 
this manners:                                               
f(u) = 0 and f(v) = 6                                               
f(u) = 6 and f(v) = 1                                               
f(u) = 1 and f(v) = 4                                               
f(u) = 4 and f(v) = 2                                                             
f(u) = 2 and f(v) = 5                                               
f(u)=  5 and f(v) = 0 



CORRECTNESS (THE CHANNEL 

SEPARATION CONSTRAINT )  

 Therefore, a gap between the colors 

assigned to each pair of adjacent 

vertices is at least 2 

 So we can conclude that the channel 

separation constraint is verified 



CORRECTNESS (THE CO-

CHANNEL REUSE CONSTRAINT )  

 Each row of H is colored with 2 colors and 
any 3 consecutive rows are colored with 
different colors. 

 Vertices (i, j) and (i, j+1) are colored, 
respectively, as vertices (i+3, j+1) and 
(i+3, j).  Hence, two vertices in rows i and 
(i+3)  get the same color if their distance is 
at least 4 

 The i-th and the (i+6)-th rows are colored 
the same. Hence the same color can be 
reused only in two vertices at distance 6. 

 



CORRECTNESS (THE CO-

CHANNEL REUSE CONSTRAINT )  

 Finally all the even (and  the odd ) 

column are colored in the same way. 

 But the distance between vertices (i, j) 
and (i, j+2)  is at least 4, since there are 

no consecutive horizontal edges. 

 So, the co-Channel Reuse distance 

constraint is verified too. 



BIDIMENSIONAL GRIDS 

 

 

 

 

 

 

 A Bidimensional grid B(r · c, E) is obtained 
from an hexagonal grid of the same size, 
simply connecting all the pair of 
consecutive nodes lying on the same row 

 

 

 



BIDIMENSIONAL GRIDS 

 

 

 

 

 

 

 A generic vertex (i, j), that is not lying on 
the board, is adjacent to vertices:              
(i-1, j), (i+1, j), (i, j-1), (i, j+1) 

 Therefore, a vertex v has degree at most 4 

 

 

 



 LEMMA 5 

 The optimal L(2, 1)-coloring  of a 

bidimensional grid B(r · c, E), where r ≥ 3 
and c ≥ 3, has λ(B)=6 

 From the Lemma 2, since there is at 

least a vertex with degree 4, we cannot 

color it with color 0 or 5. 



ALGORITHM BIDIMENSIONAL     

6-L(2,1) COLORING 

 

IF ( ( r ≥ 3 ) AND ( c ≥ 3 ) ) 

         Assign to each vertex u = (i, j) the   color   

f(u) = (2·i + 4·j) MOD 7 

 

 

 



ALGORITHM BIDIMENSIONAL 6-L(2,1) 

COLORING 
 

 

 

 

 

 White = 0, Black = 1 

 Red = 2, Yellow = 3 

 Green = 4, Blu = 5, Violet = 6 

 

 

 



LEMMA 6 

 For r ≥ 5 and c ≥ 4, or r ≥ 4 and c ≥ 5,  

there is a L(2, 1, 1)-coloration of a 

bidimensional grid B of size r · c only if 

λ(H) ≥ 8 

 



PROOF OF LEMMA 6                                      

( CASE r ≥ 5 AND c ≥ 4 )  
 Let us consider the augmented graph B4. 

For any pair of vertices u = (i, j) and          
v= (i+3, j), let Su,v  the following set:                           
{ (i, j), (i+1, j), (i+2, j), (i+3, j), (i+1, j-1), 
(i+2, j-1), (i+1, j+1), (i+2, j+1) } 

 All of vertices that belongs to Su,v are 
pairwaise at distance no more than 3 

 To satisfy the co-channel reuse distance 
constraint all of those vertices must be 
colored with  different colors, since both 
Su,v and Su,v′ induce a clique in B4 



PROOF OF LEMMA 6                                       

 Now, consider  the set:                              

Lu,v = Su,v U { all the vertices of B at 
horizontal distance 1 to a vertex on the 
border of Su,v } 
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PROOF OF LEMMA 6 

 

 

 

 

 

 Let us consider vertices: a=(i, j+1), b=(i+1, 
j+2)  and the bidimensional grid M induced by 
Su,v. 

 Su,v  has been assigned to all different colors 
 If we want to use only 8 colors, vertices b and a 

must be assigned to the two colors used for the 
vertices z and v 
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PROOF OF LEMMA 6 

 The color assigned to vertices a and b 

must be at least 2  from the color 

assigned to the vertex                            

s = (i+1, j+1). 

 This is equivalent to add two edges:    

(s, z) and (s,v) to the augmented graph. 

 Similar arguments we can repeat for the 

pairs of vertices: (c, d), (e, f), (g, h) 

 So we can add other edges  



PROOF OF LEMMA 6 

 

 

 

 

 

 Either f  or e are colored as vertex u. 
 Colors f(u) and f(v) must be assigned to two 

adjacent vertices in the set { e, f, g, h }, in 
particular f(u) can be assigned to vertex e and 
f(v) can be assigned to vertex h. 

 Thus, one further edge can be added: (u, v) 
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PROOF OF LEMMA 6 

 

 

 

 

 
 Let us consider the subgraph M  with vertices   

{ u, p, t, s, z, w, y, v } and let us build its 
complement, M′ 

 Since M′ consist of two connected 
components, M’ does not contains an 
Hamiltonian path 
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PROOF OF LEMMA 6 

 Recalling Lemma 1 we can conclude 

that there is no 7-L(2,1,1)-coloring  for a 

bidimensional grids of size r · c, where     

r ≥ 5 and c ≥ 4 

 The proof when r ≥ 4  and c ≥ 5  is 

analogous.  

 Hence λ(B) ≥ 8 



ALGORITHM GRID–8–L(2, 1, 1) 

COLORING 
 IF ( ( r ≥ 5) AND ( c ≥ 4 ) )  OR ( (r ≥ 4) AND ( c ≥ 5 ) ) 

 

  FOR EACH vertex u = (i, j)  

 

   IF ( (i + j) MOD 4 = 0  AND  i is even AND  j is even )  

    f(u) = 0  

   IF ( (i + j) MOD 4 = 0  AND  i is odd   AND  j is odd)  

    f(u) = 1 

   IF (( i + j) MOD 4 = 1  AND  i is even AND  j is odd )  

    f(u) = 7 

   IF ( (i + j) MOD 4 = 1  AND  i is odd   AND  j is even)  

    f(u) = 8 

   IF ( (i + j) MOD 4 = 2  AND  i is even   AND  j is even )  

    f(u) = 2  

   IF ( (i + j) MOD 4 = 2  AND  i is odd   AND  j is odd)  

    f(u) = 3 

   IF ( (i + j) MOD 4 = 3  AND  i is odd   AND  j is even )  

    f(u) = 5  

   IF ( (i + j) MOD 4 = 3  AND  i is even  AND  j is odd)  

    f(u) = 6 
 



ALGORITHM GRID–8–L(2, 1, 1) 

COLORING 
 

 

 

 

 

 White = 0, Black = 1, Red = 2 

 Yellow = 3, Azure = 4, Blu = 5 

 Violet = 6, Green = 7, Brown = 8 

 

 

 



CORRECTNESS OF THE ALGORITHM 

(CHANNEL SEPARATION CONSTRAINT) 

 The channel separation coinstrant is 
verified by construction of the algorithm 

 If color c is assigned to a vertex (i, j),  color 
c+1 is assigned to the vertex  (i′, j′), where:                                                         
- ( i′ mod 2 ) ≠ ( i mod 2)                                      
- ( j′ mod 2 ) ≠ ( j mod 2) 

 Vertices (i, j) and (i′, j′)  are at distance at 
least 2 

 So, any two consecutive vertices cannot be 
assigned to consecutive colors.  



CORRECTNESS OF THE ALGORITHM 

(CO-CHANNEL REUSE CONSTRAINT) 

 To verify that the co-Channel Reuse 

Distance constraint is verified it’s 

enough to note that two vertices            

u = (i , j) and v = (h , k) are assigned to 

the same color iff : 

 d(u,v) = 4  

 Both  | i – h | and  | j – k | are even. 

 



 CELLULAR GRIDS 

 

 

 

 

 

 

 A cellular grid C  of size r · c  is obtained 
from a bidimensional grid of the same size, 
augmenting the set of edges with left-to-
right diagonal connections. 

 

 

 



 CELLULAR GRIDS 

 

 

 

 

 

 

 So, a vertex u = (i, j), that is not lying on 
the board, is connected with vertices:  (i-1, 
j), (i+1, j), (i, j-1), (i, j+1), (i-1, j-1),  (i+1, 
j+1). 

 Therefore it has degree 6 
 

 

 



L(2,1) COLORING FOR A 

CELLULAR GRID 

 If one of this condition is verified :            

-  r ≥ 5  and  c ≥ 3                                             
-  r ≥ 3  and  c ≥ 5                                              
-  r ≥ 4  and  c ≥ 4  

 Then  an optimal L(2,1)  coloring of  a 

cellular grid C has λ(C) = 8 



ALGORITHM CELLULAR 8-L(2,1) 

COLORATING 

 

 

IF ( ( r ≥ 4 ) AND ( c ≥ 4 ) )    OR    ( ( r ≥ 5 ) 

AND ( c ≥ 3 ) )       OR        ( ( r ≥ 3 ) AND 

( c ≥ 5 ) ) 

         Assign to each vertex u = (i, j) the   color   

f(u) = (3·i + 2·j) MOD 9 

 



ALGORITHM L(2,1,1) COLORING 

FOR A CELLULAR GRID 
 If r ≥ 4  and  c ≥ 4  an optimal L(2,1,1) 

coloring of a cellular grid has λ(C) = 11  
 

 

 

 

IF ( ( r ≥ 4) AND ( c ≥ 4 )) 

 

  FOR EACH vertex u = (i, j)  

 

   IF ( (i + j) MOD 6 = 2  AND  i is even AND  j is even )  

    f(u) = 0  

   IF ( (i + j) MOD 6 = 0  AND  i is even   AND  j is even)  

    f(u) = 1 

   IF (( i + j) MOD 6 = 4  AND  i is even AND  j is even )  

    f(u) = 2 

 

 



ALGORITHM L(2,1,1) COLORING 

FOR A CELLULAR GRID 
 

              IF ( (i + j) MOD 6 = 1  AND  i is odd AND  j is even )  

    f(u) = 3 

   IF ( (i + j) MOD 6 = 3  AND  i is odd   AND  j is even)  

    f(u) = 4 

   IF (( i + j) MOD 6 = 5  AND  i is odd AND  j is even )  

    f(u) = 5 

   IF ( (i + j) MOD 6 = 5  AND  i is even   AND  j is odd)  

    f(u) = 6 

   IF ( (i + j) MOD 6 = 2  AND  i is odd   AND  j is odd )  

    f(u) = 7  

   IF ( (i + j) MOD 6 = 4  AND  i is odd   AND  j is odd)  

    f(u) = 8 

   IF ( (i + j) MOD 6 = 1  AND  i is even   AND  j is odd )  

    f(u) = 9  

   IF ( (i + j) MOD 6 = 3  AND  i is even  AND  j is odd)  

    f(u) = 10 

            IF ( (i + j) MOD 6 = 0  AND  i is odd AND  j is odd )  

    f(u) = 11 
 

 



CONCLUSIONS 

L(2, 1) L(2, 1, 1) 

HEXAGONAL GRIDS 6 Colors 7 Colors 

BIDIMENSIONAL 

GRIDS 

6 Colors 9 Colors 

CELLULAR GRIDS 9 Colors 12 Colors 






