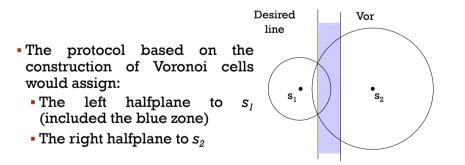


LIMITATIONS OF THE PROTOCOLS BASED ON VORONOI CELLS (1)



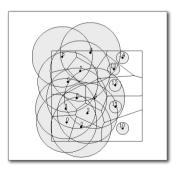
HETEROGENEOUS SENSORS

• Sensors are not necessarily all equal. We speak about a heterogeneous sensor network if:

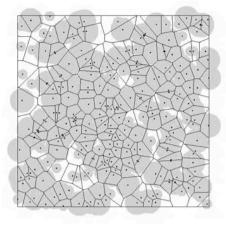
- the devices are different
- The sensing and communicating ability of the sensors depend on their position (not smooth terrain, obstacles, ...)
- The previously described approaches (based on virtual forces and on Voronoi cells) do not work well with heterogeneous sensors:
 - Virtual forces: forces depend on the distance
 - Voronoi: cells do not take into account the coverage capability

LIMITATIONS OF THE PROTOCOLS BASED ON VORONOI CELLS (2)

- Stale situation:
 - the sensors on the left (big circles) do not move since they completely cover their cells
 - the sensors on the right (small circles) do not move since their circles are completely used to cover a portion of their cell (in other words, their coverage capacity is maximized).



LIMITATIONS OF THE PROTOCOLS BASED ON VORONOI CELLS (3)



A NEW NOTION OF DISTANCE

- In the known algorithms, the heterogeneity is ignored
- We introduce a new notion of distance keeping into account:
 - The Euclidean distance
 - The heterogeneity of the devices
- There are many possibilities, but we aim at having:
 - Diagrams with straigh edges (convex polygons)
 - a distance whose set of points equally distant from two sensors contains the intersection of their sensing circles

LAGUERRE DISTANCE (1)

[W. Blaschke. Vorlesungen uber Differentialgeometrie III. Springer Berlin. 1929]

- Defined in \mathcal{R}^3
- Given two points P=(x,y,z) and Q=(x',y',z'), their Laguerre distance is:
 - $d_L^2(P,Q) = (x-x')^2 + (y-y')^2 (z-z')^2$
- *P* can be seen as the (oriented) circle centered at (*x*,*y*) and having radius |*z*|

LAGUERRE DISTANCE (2)

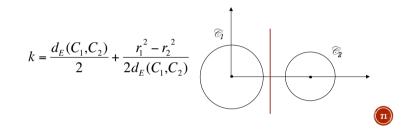
- Given two circles \mathcal{C}_1 and \mathcal{C}_2 , centered at C_1 and C_2 respectively, and with radii r_1 and r_2 , their Laguerre distance is:
 - $d_L^2(\mathcal{O}_1, \mathcal{O}_2) = d_E^2(C_1, C_2) (r_1 r_2)^2$
- The Laguerre distance between a point P=(x,y) and a circle @=(x',y',r) is:
 - $d_L^2(P,C) = (x-x')^2 + (y-y')^2 r^2$

 \mathbf{S}_2

S.

LAGUERRE DISTANCE (3)

Lemma. Given two circles *C*₁ and *C*₂ centered at *C*₁ and *C*₂ (*C*₁≠*C*₂) and radii *r*₁ and *r*₂, the sets of point equally distant from *C*₁ and *C*₂ is a straight line (called radical axis) orthogonal to the segment joining *C*₁ and *C*₂ and at distance *k* from *C*₁, where



LAGUERRE DISTANCE (4)

- **Proof.** Consider the set of points P(t)=(x(t), y(t)) equally distant from \mathcal{O}_1 and \mathcal{O}_2 , i.e. such that
- $d_L(P(t), \mathcal{C}_1) = d_L(P(t), \mathcal{C}_2).$
- If $C_1 = C_2$ and $r_1 = r_2 \Rightarrow P(t)$ is the whole plane
- If $C_1 = C_2$ and $r_1 \neq r_2 \Rightarrow P(t)$ is the empty set
- If $C_1 \neq C_2$: $x(t)^2 + y(t)^2 - r_1^2 = (d_E(C_1, C_2) - x(t))^2 + y(t)^2 - r_2^2$ $d_L^2(P, C) = (x - x')^2 + (y - y')^2 - r^2$

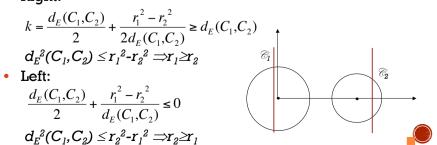
LAGUERRE DISTANCE (5)

• Lemma. Given two circles \mathcal{C}_1 and \mathcal{C}_2 centered at C_1 and C_2 ($C_1 \neq C_2$) and having radii r_1 and r_2 , theri centers lie on the same side w.r.t. the radical axis if and only if

$$d_E^2(C_1, C_2) \le |r_1^2 - r_2^2|.$$

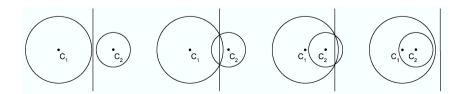
Proof. The axis can lie either to the right or to the left.

• Right:



LAGUERRE DISTANCE (6)

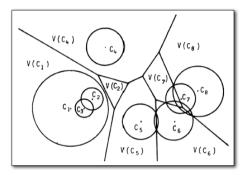
Possible positions of the radical axis of two cricles \mathcal{C}_l and \mathcal{C}_2



VORONOI-LAGUERRE DIAGRAM (1)

Voronoi-Laguerre diagram of $\mathcal{C}_l, ..., \mathcal{C}_n$: • $V_i = \cap \{ p \in \mathcal{R}^2 \mid d_L^{-2}(\mathcal{C}_i, P) \leq d_L^{-2}(\mathcal{C}_i, P) \}$

[H. Imai, M. Iri, K. Murota. "Voronoi Diagram in the Laguerre Geometry and its Applications". SIAM J. Comput. 14(1), 93-105. 1985]



They have similarities and differences w.r.t. the classical Voronoi diagrams...

VORONOI-LAGUERRE DIAGRAM (2)

Similarities:

- Voronoi-Laguerre polygons partition the plane
- *V_i* is always convex because it is the intersection of some halfplanes
- if $r_i=0$ for each i=1, ..., n, theVoronoi-Laguerre diagram is in fact the classical Voronoi diagram.

VORONOI-LAGUERRE DIAGRAM (3)

 $V(\mathcal{O}_2)$

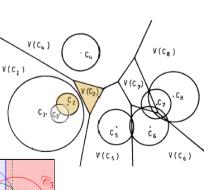
V(C

Differences:

- \widehat{c}_i can be external to V_i (see \widehat{c}_2)
- V_i can be empty (e.g. if *c*_i is inside the union of other circles see *c*₃)

V(@)

V(@



VORONOI-LAGUERRE DIAGRAM (4)

• Theorem. Given *n* circles \mathcal{C}_i centered at $C_i = (x_i, y_i)$ and having radii r_i , $i=1, \ldots, n$, let V_i be their Voronoi-Laguerre polygons.

For each *i* and *j*, $V_i \cap \mathcal{C}_j \subseteq \mathcal{C}_i$.

In other words, the intersection of V_i with a circle \mathcal{C}_j is included in \mathcal{C}_i .

VORONOI-LAGUERRE DIAGRAM (5)

- **Proof.** By contradiction, assume that ther exists a point $P \subseteq V_i$ in \mathcal{D} but non in \mathcal{D} , for some $j \neq i$.
- Since $P \subseteq V_i$ it holds $d_L(P, \mathcal{C}_i) < d_L(P, \mathcal{C}_j)$ for each $j \neq i$, i.e. $d_E^2(P, \mathcal{C}_i) - r_i^2 < d_E^2(c_j, P) - r_j^2$
- Since P is in \mathfrak{G}_j but non in \mathfrak{G}_i , $d_E^2(P, \mathfrak{G}) \leq r_j^2$ and $d_E^2(P, \mathfrak{G}) \geq r_i^2$
- Combining: 0<0 Contradiction.

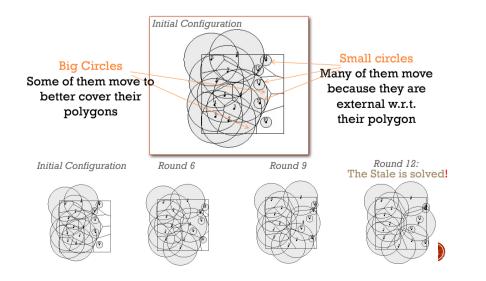
ALGORITHM BASED ON VORONOI-LAGUERRE DIAGRAM (1)

Algorithm executed by each sensor s_i:

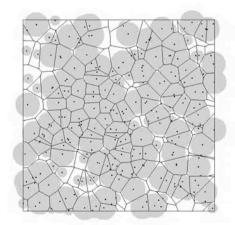
- Compute V_i
- If s_i is inside V_i , move toward the minimax (by at most by $d_i^{max} = r_{tx}/2 r_i$ where $r_{tx} = min_i r_i^{tx}$) if the coverage of V_i is increased
- If s_i is outside V_i , move toward the minimax (by at most $d_i^{max} = r_{tx}/2 r_i$)
- if V_i is empty, do nothing.

79

ALGORITHM BASED ON VORONOI-LAGUERRE DIAGRAM (2)



ALGORITHM BASED ON VORONOI-LAGUERRE DIAGRAM (3)

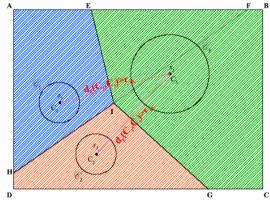


82

PROPERTIES OF THE ALGORITHM (1)

Obs.:

 "local" polygon≠"global" polygon and the set of local polygons do not constitute a partition!



83

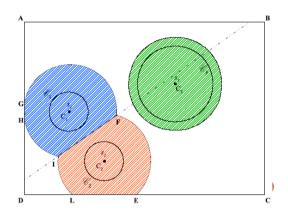
PROPERTIES OF THE ALGORITHM (3)

- Lemma. $V'_i \cap V'_j = \phi \forall i \neq j$
- Lemma. $\forall i \neq j, V'_i \cap \mathfrak{G} \subseteq \mathfrak{G}$.

In other words, each curve polygon can be covered by the sensor generating it better than by any other sensor.

PROPERTIES OF THE ALGORITHM (2)

• We define a curve polygon V'_i generated intersecting the "local" polygon with the circle of radius $d_i^{max}+r_i=r_{tx}/2$.



PROPERTIES OF THE ALGORITHM (4)

Th. The algorithm converges.

Proof. Let $V'_{i}^{(k)}$ be the curve polygon of s_i at round k.

- Let $A_i^{(k)}$ and $A_i^{(k)}(s_i)$ be the areas covered inside $V'_i^{(k)}$ by all the sensors and by the sole sensor s_i at round k, respectively. Let $A_i'^{(k)}$ be the covered area considering the positions of the sensors at round k+1.
- Obs. $A_i'^{(k)} \neq A_i^{(k+1)}$
- Let $A^{(k)}_{total}$ be the area covered by the AoI by all the sensors.
- We have to prove that $A^{(k)}_{total} < A^{(k+1)}_{total}$

PROPERTIES OF THE ALGORITHM (5)

Proof. (cntd.)

- $\mathcal{P}^{(k)} = \{ V'_1(k), V'_2(k), \dots, AoI \setminus \bigcup_i V'_i(k) \}$ is a partition of the AoI.
- $Aol \setminus \bigcup_i V'_i^{(k)}$ is constituted by points that are uncovered and cannot be covered in a single round; it does not contribute to $A^{(k)}_{total}$.
- $A^{(k)}_{total} = \Sigma_i A_i^{(k)}$
- $A_i^{(k)} = A_i^{(k)}(s_i)$ (by the previous lemma)
- $A_i^{(k)}(s_i) \le A_i^{(k)}(s_i)$ (by the algorithm)
- $A_i'^{(k)}(s_i) \leq A_i'^{(k)}$
- Hence: $A^{(k)}_{total} = \sum_i A_i^{(k)} < \sum_i A_i^{\prime(k)}$
- Since the coverage at round k+l does not depends on the partition: Σ_i A_i^{'(k)} = A^(k+l)_{total}

87

89

OPEN PROBLEMS

- Obstacles and terrain asperities
 - Anisotropy
 - Movement obstacles
- AOI with complex shape
 - concave regions and corridors

• ...

PROPERTIES OF THE ALGORITHM (6)

- Convergence does not imply termination.
- In order to guarantee termination, we introduce a minimum movement threshold &, so that sensors do not move if they are suppose to do by less than &.
- Corollary. The algorithm, with the addition of the minimum movement threshold, terminates.

88