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HETEROGENEOUS SENSORS

§ Sensors are not necessarily all equal. We speak about
a heterogeneous sensor network if:
§ the devices are different
§ The sensing and communicating ability of the

sensors depend on their position (not smooth
terrain, obstacles, …)

§ The previously described approaches (based on
virtual forces and on Voronoi cells) do not work well
with heterogeneous sensors:
§ Virtual forces: forces depend on the distance
§ Voronoi: cells do not take into account the coverage

capability
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§ The protocol based on the
construction of Voronoi cells
would assign:
§ The left halfplane to s1

(included the blue zone)
§ The right halfplane to s2
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VorDesired
line

s1 s2

§ Stale situation:
§ the sensors on the left (big

circles) do not move since
they completely cover their
cells

§ the sensors on the right (small
circles) do not move since
their circles are completely
used to cover a portion of
their cell (in other words, their
coverage capacity is
maximized).
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• In the known algorithms, the heterogeneity is
ignored

• We introduce a new notion of distance
keeping into account:

w The Euclidean distance
w The heterogeneity of the devices

• There are many possibilities, but we aim at having:
w Diagrams with straigh edges (convex polygons)
w a distance whose set of points equally distant from

two sensors contains the intersection of their sensing
circles

s1 s2
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[W. Blaschke. Vorlesungen uber Differentialgeometrie III. Springer Berlin. 1929]

• Defined in R3

• Given two points P=(x,y,z) and Q=(x’,y’,z’), their Laguerre
distance is:
w dL

2(P,Q)=(x-x’)2+(y-y’)2-(z-z’)2

• P can be seen as the (oriented) circle centered at (x,y)
and having radius |z|
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• Given two circles C1 and C2, centered at C1 and C2

respectively, and with radii r1 and r2, their Laguerre
distance is:
w dL

2(C1, C2)= dE
2(C1, C2 ) - (r1 - r2 )2

• The Laguerre distance between a point P=(x,y) and a
circle C=(x’,y’,r) is:
w dL

2(P,C)=(x-x’)2+(y-y’)2-r2
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• Lemma. Given two circles C1 and C2 centered at C1 and
C2 (C1≠C2) and radii r1 and r2, the sets of point equally
distant from C1 and C2 is a straight line (called radical
axis) orthogonal to the segment joining C1 and C2 and
at distance k from C1, where

C1

C2

€ 

k =
dE (C1,C2)

2
+

r1
2 − r2

2

2dE (C1,C2)
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Proof. Consider the set of points P(t)=(x(t), y(t)) equally
distant fromC1 and C2, i.e. such that
dL(P(t),C1)=dL(P(t),C2).

• If C1=C2 and r1=r2 Þ P(t) is the whole plane
• If C1=C2 and r1¹r2 Þ P(t) is the empty set
• If C1¹C2:

x(t)2+y(t)2-r1
2=(dE(C1,C2)-x(t))2+y(t)2-r2

2 ◼
C1

C2

dL
2(P,C)=(x-x’)2+(y-y’)2-r2
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• Lemma. Given two circles C1 and C2 centered at C1 and
C2 (C1≠C2) and having radii r1 and r2, theri centers lie on
the same side w.r.t. the radical axis if and only if

dE
2(C1,C2) < |r1

2-r2
2|.

Proof. The axis can lie either to the right or to the left.
• Right:

dE
2(C1,C2) £ r1

2-r2
2 Þr1³r2

• Left:

dE
2(C1,C2) £ r2

2-r1
2 Þr2³r1 n

C1

C2

€ 

k =
dE (C1,C2)

2
+

r1
2 − r2

2

2dE (C1,C2)
≥ dE (C1,C2)

€ 

dE (C1,C2)
2

+
r1
2 − r2

2

dE (C1,C2)
≤ 0
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Possible positions of the radical axis of two criclesC1
andC2
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Voronoi-Laguerre diagram ofC1, …, Cn:
w Vi = Ç {p Î R2 | dL

2(Ci,P) < dL
2(Cj,P)}

[H. Imai, M. Iri, K. Murota. “Voronoi Diagram in the Laguerre Geometry and its
Applications”. SIAM J. Comput. 14(1), 93-105. 1985]

They have similarities and 
differences w.r.t. the 
classical Voronoi
diagrams…
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Similarities:
• Voronoi-Laguerre polygons partition the plane
• Vi is always convex because it is the intersection of

some halfplanes
• if ri=0 for each i=1, …, n, theVoronoi-Laguerre

diagram is in fact the classical Voronoi diagram.
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Differences:
• Ci can be external to Vi (see

C2)
• Vi can be empty (e.g. if Ci is

inside the union of other
circles - see C3)

V(C1 )V(C2 )

C2 C1

V(C3)V(C2 )

C2 C3C1
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• Theorem. Given n circles Ci centered at Ci=(xi,yi) and
having radii ri, i=1, …, n, let Vi be their Voronoi-
Laguerre polygons.
For each i and j, ViÇCjÍCi.
In other words, the intersection of Vi with a circleCj is
included in Ci.
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Proof. By contradiction, assume that ther exists a point
PÍVi in Cj but non in Ci, for some j¹i.

• Since PÍVi it holds dL(P, Ci) < dL(P, Cj) for each j¹i, i.e.
dE

2(P,Ci)-ri
2<dE

2(cj,P)-rj
2

• Since P is in Cj but non in Ci,
dE

2(P,Cj)£rj
2 and dE

2(P,Ci) ³ ri
2

• Combining: 0<0 Contradiction. n
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Algorithm executed by each sensor si:
• Compute Vi

• If si is inside Vi, move toward the minimax (by at most by 
di

max=rtx/2-ri wherertx=mini ri
tx) if the coverage of Vi is

increased
• If si is outside Vi, move toward the minimax (by at most

di
max=rtx/2-ri )

• if Vi is empty, do nothing.
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Big Circles
Some of them move to

better cover their
polygons

Small circles
Many of them move

because they are
external w.r.t.
their polygon

Initial Configuration

Initial Configuration Round 6 Round 9 Round 12:
The Stale is solved!
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Obs.:
w “local” polygon¹“global” polygon and the set of local

polygons do not constitute a partition!
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• We define a curve polygon V’i generated intersecting the
“local” polygon with the circle of radius di

max+ri=rtx/2.
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• Lemma. V’i Ç V’j =ϕ " i ¹ j
• Lemma. " i ¹ j, V’ i Ç Cj Í Ci.

In other words, each curve polygon can be
covered by the sensor generating it better than by
any other sensor.
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Th. The algorithm converges.
Proof. Let V’ i

(k) be the curve polygon of si at round k.
• Let Ai

(k) and Ai
(k)(si) be the areas covered inside V’i

(k) by
all the sensors and by the sole sensor si at round k,
respectively. Let Ai’(k) be the covered area considering
the positions of the sensors at round k+1.

• Obs. Ai’(k) ≠ Ai
(k+1)

• Let A(k)
total be the area covered by the AoI by all the

sensors.
• We have to prove that A(k)

total < A(k+1)
total
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Proof. (cntd.) 
• P (k)={V’1

(k), V’2
(k), …, AoI\Èi V’i

(k)} is a partition of the AoI.
• AoI\Èi V’i

(k) is constituted by points that are uncovered and
cannot be covered in a single round; it does not contribute to
A(k)

total .
• A(k)

total =Si Ai
(k)

• Ai
(k) = Ai

(k)(si) (by the previous lemma)
• Ai

(k)(si)< Ai’(k)(si) (by the algorithm)
• Ai’(k)(si) £ Ai’(k)

• Hence: A(k)
total =Si Ai

(k) < Si Ai’(k)

• Since the coverage at round k+1 does not depends on the 
partition: Si Ai’(k)= A(k+1)

total n
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• Convergence does not imply termination.
• In order to guarantee termination, we introduce a

minimum movement threshold e, so that sensors do not

move if they are suppose to do by less than e.
• Corollary. The algorithm, with the addition of the

minimum movement threshold, terminates.
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• Obstacles and terrain asperities
w Anisotropy
w Movement obstacles

• AOI with complex shape
w concave regions and corridors

• …


