
53

§ Each edge has a cost

§ The definition of weighted matching is the same as
the simple matching (weight does not affect the
definition)

§ We look for a minimum weight perfect matching

§ Note. This is equivalent to look for a maximum
weight perfect matching, where the weights are all
negative.

54

55

46 6
3

Weight of this matching:
6+3+1=10

46 6
3

Max weight matching:
6+4+1+1+1=13

(the unweighted edges have weight=1)

56

Def. augmenting path (different w.r.t. the previous one!) It
is any alternating path such that the weight of the edges
out of the matching is greater than the weight of the edges
in the matching.
Weight of the augmenting path= weight of the edges out of
M – weight of the edges in M

46 6
3

Note. In this case, aug. paths do not need to end in a
free node.

Algorithm:

§ Start with an empty matching

§ Repeat
§ Find an aug. path P with max weight
§ If this weight is positive, swap the role of the edges
§ Else return the found matching (that is the one of

max weight).

§ Complexity: at least O(nm).

57

§ It is possible to model the minimum weight perfect
matching problem as an ILP problem (Hungarian method):
§ Given a matching M, let x be its incidence matrix, where

xij = 1 if (i, j) is in M and xij = 0 otherwise.
§ The problem can be written as follows:

minimize subject to

§ Complexity: O(n3).

58

€

cij xij
i, j
∑

€

xij
j
∑ =1,i∈ A

xij
i
∑ =1, j ∈B

xij ≥ 0,i∈ A, j ∈B
xij int eger,i∈ A, j ∈B

MAXIMUM MATCHING IN
GENERAL GRAPHS

59

§ We have already noticed that the critical point of
general graphs are odd cycles containing a
maximal number of edges in the matching

60

¢ Such cycles are called blossoms

§ Lemma (cycle contraction). Let M be a matching of G
and let B be a blossom. Let B node-disjoint from the rest
of M. Let G’ be the graph obtained by G contracting B in
a single node. Then M’ of G’ induced by M is maximum
in G’ iff M is maximum in G.

§ Proof. M max in G => M’ max in G’

By contradiction. Assume M’ not max. Hence there exists
an aug. path P in G’ w.r.t. M’.

Let b be the node representing B.

Two cases can hold:

1. P does not cross b => P augmenting for M, too.
Contradiction

61

Proof of the Cycle contraction lemma – cntd.

Observe that b is free as it represents the node v in
B adjacent to two edges out of M. In other words, v is
free if we restrict to B.

2. P crosses b => b must be an end-point of P.

Define P’=P U P” where P” is inside B.

P’ is augmenting for G. A contradiction.

…

62

Proof of the Cycle contraction lemma – cntd.

§ M’ max in G’ => M max in G
By contradiction, M is not max. Let P be an aug. path
for M.
Two cases hold:

1. P does not cross b => P is aug. for G’. A
contradiction.

2. P crosses b. Since B contains only one free node, at
least an end-point of P lies outside B. Let it be w.
Let P’ be the sub-path of P joining w with b.
P’ is an aug. path for G’. A contradiction. n

63

§ In order to find an aug. path in general graphs, it is
“enough” to modify the algorithm on bipartite graphs in
order to include blossom search.

§ For each found blossom, it is shrinked in a node and a
new (reduced) graph is generated.

§ Each aug. path found in this new graph can be easily
“translated” into an aug. path in G.

§ Thanks to the previous lemma, if M is max in the new
graph, it is max even in G.

§ This is the Edmonds algorithm [‘65]
§ The time complexity depends on how blossoms are

handled. Varying with the used data structures, it can
be either O(n3) or O(mn2). The best known time
complexity is O(m√n) [Micali & Vazirani ‘80] 64

Example:

65

Example – cntd

66

67

Not this year: directly goes to page 73
Edmonds Algorithm [‘65]
¢ M matching for G
¢ L subset of the free nodes (if L empty => M max)
¢ F forest s.t. each node of L is the root of a tree in F
¢ Expand F by adding
¢ Nodes that are at odd distance from a node of L have

degree 2 (1 in M and 1 in E\M): we call them internal
nodes

¢ The other nodes: external nodes
¢ …

68

Edmonds algorithm – cntd

¢ Consider the neighbors of the external nodes.
¢ 4 possibilities hold:

1. There esists x esternal and incident to a node y
not in F:
add to F edges (x,y) and (y,z), and (y,z) is in M.

…

x

69

Edmonds algorithm – cntd

2. Two external nodes lying in two different
components of F are adjacent:
augmenting path

… …

70

Edmonds algorithm – cntd

3. Two external nodes x, y in the same
component in F are adjacent:
let C be the found cycle. It is possible to move
the edges in M around C so that the cycle
contraction lemma can be used => reduced
graph G’

… x

y

71

Edmonds algorithm – cntd

4. All the external nodes are adjacent to internal
nodes:
M is maximum.

…

…

72

Lemma. At each step of the Edmonds algorithm, either
the dimension of F increases, or the dimension of G
decreases, or an aug. path is found, or M is
maximum.

Complexity. Number of iterations ≤
num. of times F is increased (at most n)+
num. of times a blossom is shrinked (at most n)+
num. of found aug. paths (at most n/2).
The time complexity depends on how blossoms are
handled. Varying with the used data structures, it can
be either O(n3) or O(mn2).

Best known time complexity: O(m√n)
[Micali & Vazirani ‘80]

ANOTHER APPLICATION

73

Reminder:

§ Interconnection topologies are constituted by
layers of basic modules that are 2x2 cross-bar
switches

§ Any output can be reached by any input by
properly setting some switches

§ A single routing can be easily performed if the
network is self-routing (e.g. Butterfly, Baseline,
etc.)

74

§ The log N-stage networks are not rearrangeable,
i.e. not all routes can be done simultaneously

§ Two packets may want to use the same link at the
same time

§ Solution: buffering (though buffers increase delay)

75

The multistage topologies are good to use, because
they are:

§ modular

§ scalar

Nevertheless, the buffers at each node provoke:

§ delays for going through the stages

§ decreased throughput due to internal blocking

Solution: (input) buffers that are external to the
topology

76

Eytan Modiano
Slide 19

Input buffer architecture

• Packets buffered at input rather than output
– Switch fabric does not need to be as fast

• During each slot, the scheduler established the crossbar
connections to transfer packets from the input to the outputs

– Maximum of one packet from each input
– Maximum of one packet to each output

• Head of line (HOL) blocking – when the packet at the head of two
or more input queues is destined to the same output, only one can
be transferred and the other is blocked

Crossbar switch

X = connect

Scheduler
X

X

X

X

1

2

3

4

1 2 3 4

§ Head of line (HOL) buffer: only the first packet can
leave the buffer.

§ Buffers are connected through a crossbar network
to the inputs of the topology

§ During each slot, the scheduler establishes the
crossbar connections to transfer packets from the
buffers to the inputs

77

§ When the packets at the head of two or more input
queues are destined to the same input node, only
one can be transferred and the other is blocked

§ This behavior limits throughput because some
inputs (and consequently outputs) are kept idle
during a slot even when they have other packets to
send

§ …

78

§ If the inputs are allowed to transfer packets that are not
at the head of their buffers, throughput can be improved

§ Example:

§ How does the scheduler decide which input to transfer
to the network? 79

Eytan Modiano
Slide 24

Overcoming HOL blocking

• If inputs are allowed to transfer packets that are not at the head of
their queues, throughput can be substantially improved (not
FCFS)

Example:

• How does the scheduler decide which input to transfer to which
output?

21

23

34

24

input 1

input 2

input 3

input 4

Eytan Modiano
Slide 25

Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

Backlog matrix:

§ rows: input buffers

§ columns: outputs

§ each entry (i,j) represents the number of packets
in buffer i destined to output j

80

§ During each slot, the scheduler can transfer at
most one packet from each buffer to each output

§ The scheduler must choose at most one packet
from each row and from each column of the
backlog matrix

§ This can be done by solving a bipartite matching
algorithm…

81

Eytan Modiano
Slide 26

Bi-partite graph representation

• There is an edge in the graph from an input to an output if there is a
packet in the backlog matrix to be transferred from that input to that
output
– For previous backlog matrix, the bi-partite graph is:

• Definition: A matching is a set of edges, such that no two edges share
a node
– Finding a matching in the bi-partite graph is equivalent to finding a set of

packets such that no two packets share a row or column in the backlog
matrix

• Definition: A maximum matching is a matching with the maximum
possible number of edges
– Finding a maximum matching is equivalent to finding the largest set of

packets that can be transferred simultaneously

1

2

3

1

2

3

Eytan Modiano
Slide 25

Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

§ The bipartite graph G=(V UW, E) is built as follows:

§ V: N nodes representing the buffers

§ W: N nodes representing the outputs

§ E: there is an edge from a buffer i to an output j iff there is a
packet in the backlog matrix to be transferred from i to j.

§ Example:

§ Finding a maximum matching is equivalent to finding the
largest set of packets that can be transferred simultaneously

82

§ Finding a maximum matching during each time slot
does not eliminate the effects of HOL blocking

§ It is, indeed, necessary to look beyond a single slot
when making scheduling decisions

§ Solution: edge (i,j) is assigned a weight equal to the
value of element (i,j) of the backlog matrix

§ Theorem: A scheduler that chooses, during each time
slot, the maximum weighted matching achieves full
utilization.

§ Proof and other details: see [McKeon et al. 1999]

83

