
1

SECOND PART:
WIRELESS NETWORKS

2.B. SENSOR NETWORKS 2Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2018/19

3

§ Devices of small dimension and low cost
(~150 $)

§ Monitoring Unit (sensing)

§ Transmitter/receiver Unit

§ Small battery

§ Motion system

Mobile sensors are especially useful in critical
environments (e.g. in presence of dispersion
of pollutants, gas plumes, fires, …)

4

5

Given an Area of Interest (AoI) to cover:

We can assume that each sensor is able to monitor a disk
centered at its position and having radius r=sensing
radius.

The aim is to entireley cover the AoI (final equilibrium
state).

§ At the same time, some parameters need to be
optimized:
§ Traversed Distance
§ Number of starting/stopping
§ Communication costs
§ Computation costs 6

Coordination algorithm

Initial Config. Desired Config.
Can be:
• random
• from a safe location

Can be:
• regular tassellation
• any configuration, provided
that the AoI is covered

§ Traversed Distance:
§ It is the dominant cost

§ Number of starting/stopping
§ start/stop moves are more expensive than a

continuous movement

§ Communication cost
§ It depends on the number of exchanged

messages and on the packet dimension at each
transmission

§ Computation cost
§ Usually negligible, unless processors are

extremely sophisticated

7

It is well known that an optimal coverage using
equally sized circles is the one positioning the
centers on the vertices of a triangular grid
opportunely sized.

8

In the centralized case:

§ The whole coverage is guaranteed assigning to
each sensor a position on the grid

§ The total energy consumption should be minimized

§ We model this problem with the classical minimum
weight perfect matching

§ Obs. This model works only for the centralized case,
where the AoI and the initial position of each sensor
are known.

9

10

§ Formal definition of the problem:

§ Set of n mobile sensors S={S1, S2, …, Sn}

§ Set of p locations on the AoI L={L1, L2, …, Lp}

§ n≥p (in order to guarantee the complete coverage)

§ For each Si, determine the location Lj that Si will have
to reach, so to minimize the total consumed energy.

11

§ Define a weighted bipartite graph

G=(S U L, E, w) as follows:
§ One node for each sensor Si

§ One node for each location Lj

§ An edge between Si and Lj for each i=1…n and j=1…p
§ For each edge eij, w(eij) is proportional to the energy

consumed by Si to reach location Lj

§ The aim is to choose a matching between sensors and
locations so that the total consumed energy is minimized

12

13

§Def. A matching is a set of edges MÍE such that
every node is adjacent to at most one edge in M.

§Maximal matching
§ There exists no eÏM such that M È {e} is a matching

§Maximum matching
§ Matching M such that|M| is maximum

§Perfect matching
§ |M| = n/2: each node is adjacent to exactly one edge in

M.

14

15

Example

Maximal
matching Maximum

matching

§ Nomenclature

16

matching

Free node

§ Note. The maximum matching is not unique

17

Original problem: wedding problem

§ the nodes of a set are men

§ the nodes of the other set are wemen

§ An edge connects a man and a woman

who like each other

18

¢ Maximum matching aims at maximizing the number of
couples

§ Given a graph G, to find a:
§ Maximal matching is easy (greedy)
§ Maximum matching is

§ polynomial; not easy.
§ Easier in the important case of bipartite graphs

§ Perfect matching
§ It is a special case of the maximum matching
§ For it, some theorems can help

19

§ TH. (P. Hall) Given a bipartite graph G with
|V1|£|V2|, G has a perfect matching iff for each set S
of k nodes in V1 there are at least k nodes in V2
adjacent to some node in S.
In symbols," SÍV1, |S| £ |adj(S)|.

§ PROOF. Not this year: directly go to page 24
§ Necessary condition: If G has a perfect matching M

and S is any subset of V1, each node in S is matched
through M with a different node in adj(S). Hence |S|
£ |adj(S)|.

20

(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a
perfect matching iff " SÍV1, |S| £ |adj(S)|.

§ PROOF. sufficient condition: We have to prove that if the
Hall condition is true then there is a perfect matching. By
contradiction, assume that M is a maximum matching but
|M|<|V1|.

§ By hypothesis,|M|<|V1|Þ$ u0ÎV1 s.t. u0ÏM.
Let S={u0}; it holds 1=|S|£|adj(S)| from the Hall cond.,
so there exists a v1ÎV2 adjacent to u0.

21

a. v1ÏM
b. v1ÎM

V1 V2

u0 v1

v1

22

(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a perfect
matching iff " SÍV1, |S| £ |adj(S)|.

a. If v1ÏM OK
b. Consider the node matched with v1 through M, call it u1.

V1 V2

u0

v1 u1
S={u0,u1} and 2= |S|£|adj(S)|.
There exists another node v2,
Different from v1, and adjacent either to
u0 or to u1.
a. v2ÏM

b. v2ÎM

v2

v2

23

(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a perfect
matching iff " SÍV1, |S| £ |adj(S)|.

Continue in this way. As G is finite, we will eventually
reach a node vr that is free w.r.t. M. Each vi is adjacent
to at least one among u0,u1,…,ui-1.

Analogously to the case r=2:

u0 v1 u1 v2 u2 ur-1 vr

u0 v1 u1 v2 u2 ur-1 vr

n 24

COR. If G is bipartite, k-regular, with|V1|=|V2|, then G has k
disjoint perfect matchings.

Proof. Let S be a subset of V1.
adj(S) has at most k|S| nodes (if each node in adj(S) has

degree 1 in the subgraph induced by S È adj(S)).
adj(S) has at least |S| nodes (if each node in adj(S) has

degree k in the subgraph induced by SÈadj(S)).
In every case, the Hall condition is true and hence there is a

perfect matching.
Remove it and get a new graph that is bipartite, (k-1)-regular

and with |V1|=|V2|.

Repeat the reasoning. n

§ The P. Hall Theorem does not provide an algorithmic
method to construct a perfect matching.

§ The perfect matching problem in a bipartite graph is
equivalent to the maximum flow problem in a network:

Given G=(V=V1ÈV2,E), construct a flow network G’=(V’,
E’) as follows:
§ V’=V U {s} È {t}
§ E’:

§ From the source s to all nodes in V1 :{(s,u)| u �V1} U
§ All edges in E: {(u,v)| u �V1, v �V2, e (u,v)�E} U
§ From all nodes in V2 to the tale t: {(v,t)| v �V2}

§ Capacity: c(u,v) = 1, for all (u,v) � E'
25

§ Fact: Let M be a matching in a bipartite graph G. There
exists a flow f in the network G’ s.t. |M|=|f|.

Vice-versa, if f is a flow of G’, there exists a matching
M in G s.t. |M|=|f|.

26

§ Th: (integrality) If the capacity c assumes only
integer values, the max flow f is such that |f| is
integer. Moreover, for all nodes u and v, f(u,v) is
integer.

§ Corol.: The cardinality of a max matching M in a
bipartite graph G is equal to the value of the max
flow f in the associated network G’.

27

§ The algorithm by Ford-Fulkerson for the max flow
in a network runs in O(m|f|) time.

§ The max flow of G’ has cardinality upper bounded
by min{|V1|, |V2|}. Hence, the complexity of an
algorithm for the max matching exploiting the max
flow runs in O(nm) time.

28

§ Def. Given a matching M in a graph G, an
alternating path w.r.t. M is the path alternating
edges of M and edges in E\M.

29

§ Def. Given a matching M in a graph G, an augmenting path
w.r.t. M is an alternating path starting and finishing in two
free nodes w.r.t. M.

30

Swapping the role of
the edges in M and
in E\M,M has larger
cardinality.

§ Th. (Augmenting path) [Berge 1975] M is a max
matching iff there are no augmenting paths w.r.t. M.

§ Proof. not this year: directly go to page 37
§ (è) If M max, then there are no augmenting paths.

Negating, if there are some augmenting
paths, then M is not max. This is obvious
because we can swap the role of the
edges in the augmenting path and
increase the cardinality of M.

§…

31

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

§ (ç) There are no augmenting paths, then M is max.

By contradiction M is not max. Let M’ s.t.

|M’|>|M|.

Consider graph H induced by M and M’. Edges that
are both in M and in M’ are put twice. So H is a
multigraph.

§ …

32

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M –
cntd)

§ H has the following property:
§ For each v in H, deg(v)≤2. (indeed each node has at

most one edge from M and one edge from M’)

§ So, each connected component of H is either a cycle or
a path.
§ Cycles necessarily have even length, otherwise a

node would be incident to two edges of the same
matching (M or M’); this is absurd by the definition of
matching.

33

(Proof of Th. M is a max matching iff there are no augmenting paths
w.r.t. M – cntd)

§ More in detail, the connected components of H can be
classified into 6 kinds:

1. An isolated node

2. a 2-cycle

3. a 2k-cycle, k>1

…

34

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M –
cntd)

…
4. a 2k-path

5. a (2k+1)-path whose extremes are incident to M

6. a (2k+1)-path whose extremes are incident to M’

35

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M –
cntd)

§ Reminder: |M|<|M’| by hp.

§ Among all the components just defined, only 5 and 6
have a different number of edges from M and from
M’; only 6 has more edges from M’ than from M.

§ So, there is at least one component of kind 6

§ This comp. is an augmenting path w.r.t. M:
contradiction. n

36

§ We exploit the Augmenting Path Th. to design an
iterative algorithm.

§ During each iteration, we look for a new
augmenting path using a modified Breadth First
Search starting from the free nodes.

§ In this way, nodes are structured in layers.

37

Idea of the algorithm:

§ Let M be an arbitrary matching (possibly empty)
¢Find an augmenting path P

§ While there is an augmenting path:
§ Swap in P the role of the edges in and out of the

matching
§ Find an augmenting path P

Complexity: it dipends on the complexity of finding an
augmenting path.

38

§ this year skip this example and directly go to page 43
§ Example: Let M be an arbitrary matching

39

¢ Find an augmenting path: Choose a free node…

¢ …and -in some way (??)- go through the graph… 40

…until another free node is reached, i.e. an augmenting
path has been found

41

Swap the role of edges in and out of the matching
42

Repeat: choose another free node…

…consider all its adjacent
nodes, and the adjacent
nodes of the adjacent
nodes…

… and swap
No more augmenting
paths.
Stop

§ Problem: how to find an augmenting path w.r.t. M?

§ Idea:
§ Choose a free node
§ Run a modified search as follows:

§ Keep trace of the current layer
§ If the layer is even, use an edge in M
§ If the layer is odd, use an edge in E\M
§ As soon as a free node has been encountered, a

new augmenting path has been found

43

§ Choose a free node
§ Run a modified search as follows:

§ Keep trace of the current layer
§ If the layer is even, use an edge in M
§ If the layer is odd, use edges in E\M
§ As soon as a free node has been

encountered, a new augmenting path
has been found

44

Example:

1

2
3

6
5

4

1

2
3

6
5

4

But also:

§ Problem: presence of odd cycles in the graph:
§ in an odd cycle there is always a free node adjacent to

two consecutive edges not in M belonging to the cycle
§ If the search goes through the cycle along the “wrong”

direction, the augmenting path is not detected

§ Graphs without odd cycles: bipartite graphs

45

1

2
3

6
5

4

Algorithm SearchAugmentingPathInBip (G=(U U W,E), M)
§ Choose a free node in U
§ Repeat

§ If the current node is in U then follow an edge out of M
§ Else follow an edge in M
§ As soon as a free node in W has been reached, a new

augmenting path has been detected

Complexity: O(n+m)
Complexity of the algorithm finding the max matching:

n/2[O(n+m)+O(n)]=O(nm)

46
max no. of
iterations

Swapping of the edges
on the aug. path

§ The Hopcroft–Karp algorithm (1973) finds a max
matching in a bipartite graph in O(m√n) time.

§ The idea is similar to the previous one, and
consists in augmenting the cardinality of the
current matching exploiting augmenting paths.

§ During each iteration, this algorithm searches not
one but a maximal set of augmenting paths.

§ In this way, only O(√n) iterations are enough.

No details this year: directly go to page 53

47

Hopcroft–Karp Algorithm

During the k-th step:

§ Run a modified breadth first search starting from ALL the
free nodes in V1. The BFS ends when some free nodes in V2
are reached at layer k.

§ All the detected free nodes in V2 at layer k are put in a set F.

Obs. v is put in F iff it is the endpoint of an aug. path

§ Find a maximal set of length k aug. paths node disjoint using
a depth first search from the nodes in F to the starting nodes
in V1 (climbing on the BFS tree).

§ Each aug. Path is used to augment the cardinality of M.

§ The algorithm ends when there are no more aug. paths.
48

Example: Hopcroft–Karp algorithm

49

1 2 3 4 5

a b c d e

k=1
2

a e

4

b c e

1 2 3 4 5

a b c d e

k=2 2

a e

1

b d

1 2 3 4 5

a b c d e

Analysis of the Hopcroft–Karp algorithm (sketch)

§ Each step consists in a BFS and a DFS. Hence it runs in
O(n+m)=O(m) time.

§ The first √n steps take O(m √n) time.

§ Note. At each step, the length of the found aug. paths is
larger and larger; indeed, during step k, ALL paths of
length k are found and, after that, only longer aug. paths
can be in the graph.

§ So, after the first √n steps, the shortest aug. path is at
least √n long.

§ …

50

Analisis of the Hopcroft–Karp algorithm (sketch) – cnt.d

§ The symmetric difference between a maximum matching and the
partial matching M found after the first √n steps is a set of vertex-
disjoint alternating cycles, alternating paths and augmenting paths.

§ Consider the augmenting paths. Each of them must be at least √n long,
so there are at most √n such paths. Moreover, the maximum matching
is larger than M by at most √n edges.

§ Each step of the algorithm augments the dimension of M by one, so at
most √n furhter steps are enough.

§ The whole algorithm executes at most 2√n steps, each running in O(m)
time, hence the time complexity is O(m √n) in the worst case.

51

§ In many cases this complexity can be improved.

§ For example, in the case of random sparse bipartite graphs it has
been proved [Bast et al.’06] that the augmenting paths have in
average logarithmic length.

§ As a consequence, the Hopcroft–Karp algorithm runs only
O(log n) steps and so it can be executed in O(m log n) time.

52

