
1

SECOND PART:
WIRELESS NETWORKS
2.B. SENSOR NETWORKS

Prof. Tiziana Calamoneri
Network Algorithms

A.y. 2017/18

2

THE CENTRALIZED
DEPLOYMENT
OF MOBILE SENSORS

I.E.
THE MINIMUM WEIGHT
PERFECT MATCHING

ON BIPARTITE GRAPHS

THE PROBLEM
3

MOBILE SENSORS

¢ Devices of small dimension and low cost
(~150 $)

¢ Monitoring Unit (sensing)
¢ Transmitter/receiver Unit
¢ Small battery
¢ Motion system

Mobile sensors are especially useful in
critical environments (e.g. in presence of
dispersion of pollutants, gas plumes,
fires, …)

4

5

THE PROBLEM (1)

Given an Area of Interest (AoI) to cover:

We can assume that each sensor is able to
monitor a disk centered at its position and
having radius r=sensing radius.

The aim is to entireley cover the AoI (final
equilibrium state).

THE PROBLEM (2)

¢ At the same time, some parameters need to be
optimized:
� Traversed Distance
� Number of starting/stopping
� Communication costs
� Computation costs

6

Coordination algorithm

Initial Config. Desired Config.
Can be:
• casual
• from a safe location

Can be:
• regular tassellation
• any configuration, provided
that the AoI is covered

THE PROBLEM (3)
¢Traversed Distance:

� It is the dominant cost
¢Number of starting/stopping

� start/stop moves are more expensive than a
continuous movement

¢Communication cost
� It depends on the number of exchanged

messages and on the packet dimension at
each transmission

¢Computation cost
� Usually negligible, unless processors are

extremely sophisticated
7

THE PROBLEM (4)
It is well known that an optimal coverage

using equally sized circles is the one
positioning the centers on the vertices of a
triangular grid opportunely sized.

8

THE PROBLEM (5)
In the centralized case:
¢The whole coverage is guaranteed

assigning to each sensor a position on the
grid

¢The total energy consumption should be
minimized

¢We model this problem with the classical
minimum weight perfect matching

¢Obs. This model works only for the
centralized case, where the AoI and the
initial position of each sensor are known.

9

THE GRAPH MODEL
10

THE GRAPH MODEL (1)

¢Formal definition of the problem:
¢Set of n mobile sensors S={S1, S2, …, Sn}
¢Set of p locations on the AoI L={L1, L2, …,

Lp}
¢n≥p (in order to guarantee the complete

coverage)
¢For each Si, determine the location Lj that

Si will have to reach, so to minimize the
total consumed energy.

11

THE GRAPH MODEL (2)
¢ Define a weighted bipartite graph

G=(S U L, E, w) as follows:
� One node for each sensor Si

� One node for each location Lj

� An edge between Si and Lj for each i=1…n and
j=1…p

� For each edge eij, w(eij) is proportional to the
energy consumed by Si to reach location Lj

� The aim is to choose a matching between sensors
and locations so that the total consumed energy is
minimized 12

THE PERFECT MATCHING ON
BIPARTITE GRAPHS

13

MATCHING (1)
¢Def. A matching is a set of edges MÍE

such that every node is adjacent to at
most one edge in M.

¢Maximal matching
� There exists no eÏM such that M È {e} is a

matching
¢Maximum matching

� Matching M such that|M| is maximum
¢Perfect matching

� |M| = n/2: each node is adjacent to exactly
one edge in M. 14

MATCHING (2)

15

Example

Maximal
matching Maximum

matching

MATCHING (3)
¢ Nomenclature

16

matching

Free node

MATCHING (4)
¢ Note. The maximum matching is not unique

17

MATCHING (5)
Original problem: wedding problem
¢ the nodes of a set are men
¢ the nodes of the other set are wemen
¢ An edge connects a man and a woman
who like each other

18

¢ Maximum matching aims at maximizing the number
of couples

MATCHING PROBLEMS

¢ Given a graph G, to find a:
� Maximal matching is easy (greedy)
� Maximum matching is

¢polynomial; not easy.
¢Easier in the important case of bipartite

graphs
� Perfect matching

¢It is a special case of the maximum matching
¢For it, some theorems can help

19

MAXIMUM MATCHING IN BIPARTITE GRAPHS (1)
¢ TH. (P. Hall) Given a bipartite graph G with

|V1|£|V2|, G has a perfect matching iff for each
set S of k nodes in V1 there are at least k nodes in
V2 adjacent to some node in S.
In symbols, " SÍV1, |S| £ |adj(S)|.

¢ PROOF. Necessary condition: If G has a perfect
matching M and S is any subset of V1, each node
in S is matched through M with a different node
in adj(S). Hence |S| £ |adj(S)|.

20

MAXIMUM MATCHING IN BIPARTITE GRAPHS (2)
(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a perfect
matching iff " SÍV1, |S| £ |adj(S)|.

¢ PROOF. sufficient condition: We have to prove that if
the Hall condition is true then there is a perfect
matching. By contradiction, assume that M is a
maximum matching but |M|<|V1|.

¢ By hypothesis,|M|<|V1|Þ$ u0ÎV1 s.t. u0ÏM.
Let S={u0}; it holds 1=|S|£|adj(S)| from the Hall cond.,
so there exists a v1ÎV2 adjacent to u0.

a. v1ÏM
b. v1ÎM

V1 V2

u0 v1

v1
21

MAXIMUM MATCHING IN BIPARTITE GRAPHS (3)
(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a perfect
matching iff " SÍV1, |S| £ |adj(S)|.

a. If v1ÏM OK
b. Consider the node matched with v1 through M, call it u1.

V1 V2

u0

v1 u1
S={u0,u1} and 2= |S|£|adj(S)|.
There exists another node v2,
Different from v1, and adjacent either
to u0 or to u1.
a. v2ÏM
b. v2ÎM

v2

v2

22

MAXIMUM MATCHING IN BIPARTITE GRAPHS (4)

(proof of the Hall theorem - cntd) G bipartite with |V1|£|V2|, G has a
perfect matching iff " SÍV1, |S| £ |adj(S)|.

Continue in this way. As G is finite, we will eventually
reach a node vr that is free w.r.t. M. Each vi is
adjacent to at least one among u0,u1,…,ui-1.

Analogously to the case r=2:

u0 v1 u1 v2 u2 ur-1 vr

u0 v1 u1 v2 u2 ur-1 vr 23

n

MAXIMUM MATCHING IN BIPARTITE GRAPHS (5)

COR. If G is bipartite, k-regular, with|V1|=|V2|, then G has
k disjoint perfect matchings.

Proof. Let S be a subset of V1.
adj(S) has at most k|S| nodes (if each node in adj(S) has

degree 1 in the subgraph induced by S È adj(S)).
adj(S) has at least |S| nodes (if each node in adj(S) has

degree k in the subgraph induced by SÈadj(S)).
In every case, the Hall condition is true and hence there is a

perfect matching.
Remove it and get a new graph that is bipartite, (k-1)-

regular and with |V1|=|V2|.
Repeat the reasoning. n

24

¢ The P. Hall Theorem does not provide an algorithmic
method to construct a perfect matching.

¢ The perfect matching problem in a bipartite graph is
equivalent to the maximum flow problem in a network:
Given G=(V=V1ÈV2, E), construct a flow network
G’=(V’, E’) as follows:
� V’=V U {s} È {t}
� E’:

¢ From the source s to all nodes in V1 :{(s,u)| u � V1} U
¢ All edges in E: {(u,v)| u � V1, v � V2, e (u,v)�E} U
¢ From all nodes in V2 to the tale t: {(v,t)| v � V2}

� Capacity: c(u,v) = 1, for all (u,v) � E'
25

MAXIMUM MATCHING IN BIPARTITE GRAPHS (6)
¢ Fact: Let M be a matching in a bipartite graph G.

There exists a flow f in the network G’ s.t. |M|=|f|.
Vice-versa, if f is a flow of G’, there exists a matching
M in G s.t. |M|=|f|.

26

MAXIMUM MATCHING IN BIPARTITE GRAPHS (7)

¢ Th: (integrality) If the capacity c assumes only
integer values, the max flow f is such that |f| is
integer. Moreover, for all nodes u and v, f(u,v) is
integer.

¢ Corol.: The cardinality of a max matching M in a
bipartite graph G is equal to the value of the max
flow f in the associated network G’.

27

MAXIMUM MATCHING IN BIPARTITE GRAPHS (8) MAXIMUM MATCHING IN BIPARTITE GRAPHS (9)

¢ The algorithm by Ford-Fulkerson for the max
flow in a network runs in O(m|f|) time.

¢ The max flow of G’ has cardinality upper
bounded by min{|V1|, |V2|}. Hence, the
complexity of an algorithm for the max matching
exploiting the max flow runs in O(nm) time.

28

¢ Def. Given a matching M in a graph G, an
alternating path w.r.t. M is the path alternating
edges of M and edges in E\M.

29

MAXIMUM MATCHING IN BIPARTITE GRAPHS (10)
¢ Def. Given a matching M in a graph G, an augmenting

path w.r.t. M is an alternating path starting and
finishing in two free nodes w.r.t. M.

30

MAXIMUM MATCHING IN BIPARTITE GRAPHS (11)

Swapping the role of
the edges in M and
in E\M,M has
larger cardinality.

¢ Th. (Augmenting path) [Berge 1975] M is a max
matching iff there are no augmenting paths w.r.t.
M.

¢ Proof. (è) If M max, then there are no
augmenting paths.
Negating, if there are some augmenting paths,
then M is not max. This is obvious because we
can swap the role of the edges in the augmenting
path and increase the cardinality of M.

¢ …
31

MAXIMUM MATCHING IN BIPARTITE GRAPHS (12)
(Proof of Th. M is a max matching iff there are no augmenting paths

w.r.t. M – cntd)

¢ (ç) There are no augmenting paths, then M is max.
By contradiction M is not max. Let M’ s.t.

|M’|>|M|.
Consider graph H induced by M and M’. Edges that
are both in M and in M’ are put twice. So H is a
multigraph.

¢ …

32

MAXIMUM MATCHING IN BIPARTITE GRAPHS (13)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t.
M – cntd)

¢ H has the following property:
� For each v in H, deg(v)≤2. (indeed each node has at

most one edge from M and one edge from M’)
¢ So, each connected component of H is either a cycle or

a path.
� Cycles necessarily have even length, otherwise a

node would be incident to two edges of the same
matching (M or M’); this is absurd by the definition
of matching.

33

MAXIMUM MATCHING IN BIPARTITE GRAPHS (14)
(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t.

M – cntd)

¢ More in detail, the connected components of H can be
classified into 6 kinds:

1. An isolated node
2. a 2-cycle
3. a 2k-cycle, k>1
…

34

MAXIMUM MATCHING IN BIPARTITE GRAPHS (15)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t.
M – cntd)
…
4. a 2k-path
5. a (2k+1)-path whose extremes are incident to M

6. a (2k+1)-path whose extremes are incident to M’

35

MAXIMUM MATCHING IN BIPARTITE GRAPHS
(16)

(Proof of Th. M is a max matching iff there are no augmenting paths w.r.t. M – cntd)

¢ Reminder: |M|<|M’| by hp.
¢ Among all the components just defined, only 5 and 6

have a different number of edges from M and from
M’; only 6 has more edges from M’ than from M.

¢ So, there is at least one component of kind 6

¢ This comp. is an augmenting path w.r.t. M:
contradiction. n

36

MAXIMUM MATCHING IN BIPARTITE GRAPHS (17)

¢ We exploit the Augmenting Path Th. to design an
iterative algorithm.

¢ During each iteration, we look for a new
augmenting path using a modified Breadth First
Search starting from the free nodes.

¢ In this way, nodes are structured in layers.

37

MAXIMUM MATCHING IN BIPARTITE GRAPHS (18) MAXIMUM MATCHING IN BIPARTITE GRAPHS (19)

Idea of the algorithm:
¢ Let M be an arbitrary matching (possibly empty)
¢ Find an augmenting path P
¢ While there is an augmenting path:

� Swap in P the role of the edges in and out of the
matching

� Find an augmenting path P
Complexity: it dipends on the complexity of finding an

augmenting path.
38

MAXIMUM MATCHING IN BIPARTITE GRAPHS (20)
¢ Example: Let M be an arbitrary matching

39

¢ Find an augmenting path: Choose a free node…

¢ …and -in some way (??)- go through the graph…

MAXIMUM MATCHING IN BIPARTITE GRAPHS (21)

40…until another free node is reached, i.e. an augmenting
path has been found

MAXIMUM MATCHING IN BIPARTITE GRAPHS
(22)

41Swap the role of edges in and out of the matching

MAXIMUM MATCHING IN BIPARTITE GRAPHS (23)

42

Repeat: choose another free node…

…consider all its adjacent
nodes, and the adjacent
nodes of the adjacent
nodes…

… and swap
No more augmenting
paths.
Stop

MAXIMUM MATCHING IN BIPARTITE GRAPHS (24)
¢ Problem: how to find an augmenting path w.r.t. M?
¢ Idea:

� Choose a free node
� Run a modified search as follows:

¢Keep trace of the current layer
¢If the layer is even, use an edge in M
¢If the layer is odd, use an edges in E\M
¢As soon as a free node has been encountered, a

new augmenting path has been found

43

MAXIMUM MATCHING IN BIPARTITE GRAPHS (25)
� Choose a free node
� Run a modified search as follows:

¢ Keep trace of the current layer
¢ If the layer is even, use an edge in M
¢ If the layer is odd, use edges in E\M
¢ As soon as a free node has been

encountered, a new augmenting path has
been found

44

Exemple:

1

2
3

6 5

4

1

2
3

6 5

4

But also:

MAXIMUM MATCHING IN BIPARTITE GRAPHS (26)

¢ Problem: presence of odd cycles in the graph:
� in an odd cycle there is always a free node adjacent

to two edges not in M belonging to the cycle
� If the search goes through the cycle along the

“wrong” direction, the augmenting path is not
detected

¢ Graphs without odd cycles: bipartite graphs
45

1

2
3

6 5

4

MAXIMUM MATCHING IN BIPARTITE GRAPHS (27)
Algorithm SearchAugmentingPathInBip (G=(U U W,E), M)

� Choose a free node in U
� Repeat

¢If the current node is in U follow an edge out of M
¢Else follow an edge in M
¢As soon as a free node in W has been reached, a new

augmenting path has been detected

Complexity: O(n+m)
Complexity of the algorithm finding the max matching:

n/2[O(n+m)+O(n)]=O(nm) 46

max no. of
iterations

Swapping of the edges
on the aug. path

MAXIMUM MATCHING IN BIPARTITE GRAPHS (28)

¢ The Hopcroft–Karp algorithm (1973) finds a max
matching in a bipartite graph in O(m√n) time.

¢ The idea is similar to the previous one, and
consists in augmenting the cardinality of the
current matching exploiting augmenting paths.

¢ During each iteration, this algorithm searches
not one but a maximal set of augmenting paths.

¢ In this way, only O(√n) iterations are enough.

47

MAXIMUM MATCHING IN BIPARTITE GRAPHS (29)
Hopcroft–Karp Algorithm
During the k-th step:
¢ Run a modified breadth first search starting from ALL

the free nodes in V1. The BFS ends when some free nodes
in V2 are reached at layer k.

¢ All the detected free nodes in V2 at layer k are put in a
set F.
Obs. v is put in F iff it is the endpoint of an aug. path

¢ Find a maximal set of length k aug. paths node disjoint
using a depth first search from the nodes in F to the
starting nodes in V1 (climbing on the BFS tree).

¢ Each aug. Path is used to augment the cardinality of M.
¢ The algorithm ends when there are no more aug. paths.

48

MAXIMUM MATCHING IN BIPARTITE GRAPHS (30)
Example: Hopcroft–Karp algorithm

49

1 2 3 4 5

a b c d e

k=1 2

a e

4

b c e

1 2 3 4 5

a b c d e

k=2 2

a e

1

b d

1 2 3 4 5

a b c d e

MAXIMUM MATCHING IN BIPARTITE GRAPHS (31)
Analsis of the Hopcroft–Karp algorithm (sketch)
¢ Each step consists in a BFS and a DFS. Hence it runs

in O(n+m)=O(m) time.
¢ The first √n steps take O(m √n) time.
¢ Note. At each step, the length of the found aug. paths is

larger and larger; indeed, during step k, ALL paths of
length k are found and, after that, only longer aug.
paths can be in the graph.

¢ So, after the first √n steps, the shortest aug. path is at
least √n long.

¢ … 50

MAXIMUM MATCHING IN BIPARTITE GRAPHS (32)
Analisis of the Hopcroft–Karp algorithm (sketch) – cnt.d
¢ The symmetric difference between a maximum matching

and the partial matching M found after the first √n steps
is a set of vertex-disjoint alternating cycles, alternating
paths and augmenting paths.

¢ Consider the augmenting paths. Each of them must be at
least √n long, so there are at most √n such paths.
Moreover, the maximum matching is larger than M by at
most √n edges.

¢ Each step of the algorithm augments the dimension of M
by one, so at most √n furhter steps are enough.

¢ The whole algorithm executes at most 2√n steps, each
running in O(m) time, hence the time complexity is
O(m √n) in the worst case.

51

MAXIMUM MATCHING IN BIPARTITE GRAPHS (33)

¢ In many cases this complexity can be improved.
¢ For example, in the case of random sparse bipartite

graphs it has been proved [Bast et al.’06] that the
augmenting paths have in average logarithmic
length.

¢ As a consequence, the Hopcroft–Karp algorithm runs
only O(log n) steps and so it can be executed in
O(m log n) time.

52

MINIMUM WEIGHT
PERFECT MATCHING IN
BIPARTITE GRAPHS

53

WEIGHTED MATCHING (1)
¢ Each edge has a cost
¢ The definition of weighted matching is the same

as the simple matching (weight does not affect
the definition)

¢ We look for a minimum weight perfect matching
¢ Note. This is equivalent to look for a maximum

weight perfect matching, where the weights are
all negative.

54

WEIGHTED MATCHING (2)

55

46 6
3

Weight of this matching:
6+3+1=10

46 6
3

Max weight matching:
6+4+1+1+1=13

(the unweighted edges have weight=1)

WEIGHTED MATCHING (3)

56

Def. augmenting path (different w.r.t. the previous one!) It
is any alternating path such that the weight of the edges
out of the matching is greater than the weight of the edges
in the matching.
Weight of the augmenting path= weight of the edges out of
M – weight of the edges in M

46 6
3

Note. In this case, aug. paths do not need to end in a
free node.

WEIGHTED MATCHING (4)
Algorithm:
¢ Start with an empty matching
¢ Repeat

� Find an aug. path P with max weight
� If this weight is positive, swap the role of the

edges
� Else return the found matching (that is the

one of max weight).

¢Complexity: at least O(nm).
57

WEIGHTED MATCHING (5)
¢ It is possible to model the minimum weight perfect

matching problem as an ILP problem (Hungarian method):
� Given a matching M, let x be its incidence matrix, where xij = 1

if (i, j) is in M and xij = 0 otherwise.
� The problem can be written as follows:

minimize subject to

¢Complexity: O(n3).

58€

cij xij
i, j
∑

€

xij
j
∑ =1,i∈ A

xij
i
∑ =1, j ∈B

xij ≥ 0,i∈ A, j ∈B
xij int eger,i∈ A, j ∈B

MAXIMUM MATCHING IN
GENERAL GRAPHS

59

BLOSSOMS (1)
¢ We have already noticed that the critical point of

general graphs are odd cycles containing a
maximal number of edges in the matching

60

¢ Such cycles are called blossoms

BLOSSOMS (2)
¢ Lemma (cycle contraction). Let M be a matching

of G and let B be a blossom. Let B node-disjoint
from the rest of M. Let G’ be the graph obtained
by G contracting B in a single node. Then M’ of G’
induced by M is maximum in G’ iff M is
maximum in G.

¢ Proof. M max in G => M’ max in G’
By contradiction. Assume M’ not max. Hence
there exists an aug. path P in G’ w.r.t. M’.
Let b be the node representing B.
Two cases can hold:

1. P does not cross b => P augmenting for M, too.
Contradiction 61

BLOSSOMS (3)
Proof of the Cycle contraction lemma – cntd.

Observe that b is free as it represents the node v in
B adjacent to two edges out of M. In other words, v
is free if we restrict to B.
2. P crosses b => b must be an end-point of P.

Define P’=P U P” where P” is inside B.
P’ is augmenting for G. A contradiction.

…

62

BLOSSOMS (4)
Proof of the Cycle contraction lemma – cntd.

¢ M’ max in G’ => M max in G
By contradiction, M is not max. Let P be an aug.
path for M.
Two cases hold:

1. P does not cross b => P is aug. for G’. A
contradiction.

2. P crosses b. Since B contains only one free node, at
least an end-point of P lies outside B. Let it be w.
Let P’ be the sub-path of P joining w with b.
P’ is an aug. path for G’. A contradiction. n 63

MAX MATCHING IN GENERAL GRAPHS (1)
¢ In order to find an aug. path in general graphs, it is

“enough” to modify the algorithm on bipartite graphs
in order to include blossom search.

¢ For each found blossom, it is shrinked in a node and a
new (reduced) graph is generated.

¢ Each aug. path found in this new graph can be easily
“translated” into an aug. path in G.

¢ Thanks to the previous lemma, if M is max in the new
graph, it is max even in G.

¢ This is the Edmonds algorithm [‘65]
� The time complexity depends on how blossoms are

handled. Varying with the used data structures, it can be
either O(n3) or O(mn2). The best known time complexity

is O(m√n) [Micali & Vazirani ‘80]

64

MAX MATCHING IN GENERAL GRAPHS (2)
Example:

65

MAX MATCHING IN GENERAL GRAPHS (3)
Example – cntd

66

67

MAX MATCHING IN GENERAL GRAPHS (4)

Edmonds Algorithm [‘65]
¢ M matching for G
¢ L subset of the free nodes (if L empty => M max)
¢ F forest s.t. each node of L is the root of a tree in

F
¢ Expand F by adding
¢ Nodes that are at odd distance from a node of L

have degree 2 (1 in M and 1 in E\M): we call
them internal nodes

¢ The other nodes: external nodes
¢ … 68

MAX MATCHING IN GENERAL GRAPHS (5)

Edmonds algorithm – cntd

¢ Consider the neighbors of the external nodes.
¢ 4 possibilities hold:

1. There esists x esternal and incident to a node
y not in F:
add to F edges (x,y) and (y,z), and (y,z) is in M.

…
x

69

MAX MATCHING IN GENERAL GRAPHS (6)

Edmonds algorithm – cntd

2. Two external nodes lying in two different
components of F are adjacent:
augmenting path

… …

70

MAX MATCHING IN GENERAL GRAPHS (7)

Edmonds algorithm – cntd

3. Two external nodes x, y in the same
component in F are adjacent:
let C be the found cycle. It is possible to move
the edges in M around C so that the cycle
contraction lemma can be used => reduced
graph G’

… x

y

71

MAX MATCHING IN GENERAL GRAPHS (8)

Edmonds algorithm – cntd

4. All the external nodes are adjacent to internal
nodes:
M is maximum.

…

…

72

MAX MATCHING IN GENERAL GRAPHS (9)
Lemma. At each step of the Edmonds algorithm, either

the dimension of F increases, or the dimension of G
decreases, or an aug. path is found, or M is
maximum.

Complexity. Number of iterations ≤
num. of times F is increased (at most n)+
num. of times a blossom is shrinked (at most n)+
num. of found aug. paths (at most n/2).
The time complexity depends on how blossoms are
handled. Varying with the used data structures, it
can be either O(n3) or O(mn2).

Best known time complexity: O(m√n)
[Micali & Vazirani ‘80]

73

ANOTHER APPLICATION

SWITCH BUFFER (1)

Reminder:
¢ Interconnection topologies are constituted by

layers of basic modules that are 2x2 cross-bar
switches

¢ Any output can be reached by any input by
properly setting some switches

¢ A single routing can be easily performed if the
network is self-routing (e.g. Butterfly, Baseline,
etc.)

74

SWITCH BUFFER (2)

¢ The log N-stage networks are not rearrangeable,
i.e. not all routes can be done simultaneously

¢ Two packets may want to use the same link at
the same time

¢ Solution: buffering (though buffers increase
delay)

75

MULTISTAGE TOPOLOGIES WITH BUFFERS (1)

The multistage topologies are good to use, because
they are:
¢ modular
¢ scalar
Nevertheless, the buffers at each node provoke:
¢ delays for going through the stages
¢ decreased throughput due to internal blocking
Solution: (input) buffers that are external to the
topology

76

Eytan Modiano
Slide 19

Input buffer architecture

• Packets buffered at input rather than output
– Switch fabric does not need to be as fast

• During each slot, the scheduler established the crossbar
connections to transfer packets from the input to the outputs

– Maximum of one packet from each input
– Maximum of one packet to each output

• Head of line (HOL) blocking – when the packet at the head of two
or more input queues is destined to the same output, only one can
be transferred and the other is blocked

Crossbar switch

X = connect

Scheduler
X

X

X

X

1

2

3

4

1 2 3 4

MULTISTAGE TOPOLOGIES WITH BUFFERS (2)
¢ Head of line (HOL) buffer: only the first packet

can leave the buffer.
¢ Buffers are connected through a crossbar

network to the inputs of the topology
¢ During each slot, the scheduler establishes the

crossbar connections to transfer packets from the
buffers to the inputs

77

MULTISTAGE TOPOLOGIES WITH BUFFERS (3)
¢ When the packets at the head of two or more

input queues are destined to the same input
node, only one can be transferred and the other is
blocked

¢ This behavior limits throughput because some
inputs (and consequently outputs) are kept idle
during a slot even when they have other packets
to send

¢ …

78

MULTISTAGE TOPOLOGIES WITH BUFFERS (4)
¢ If the inputs are allowed to transfer packets that

are not at the head of their buffers, throughput
can be improved

¢ Example:

¢ How does the scheduler decide which input to
transfer to the network? 79

Eytan Modiano
Slide 24

Overcoming HOL blocking

• If inputs are allowed to transfer packets that are not at the head of
their queues, throughput can be substantially improved (not
FCFS)

Example:

• How does the scheduler decide which input to transfer to which
output?

21

23

34

24

input 1

input 2

input 3

input 4

Eytan Modiano
Slide 25

Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

MULTISTAGE TOPOLOGIES WITH BUFFERS (5)
Backlog matrix:
¢ rows: input buffers
¢ columns: outputs
¢ each entry (i,j) represents the number of packets

in buffer i destined to output j

80

MULTISTAGE TOPOLOGIES WITH BUFFERS (6)

¢ During each slot, the scheduler can transfer at
most one packet from each buffer to each output

¢ The scheduler must choose at most one packet
from each row and from each column of the
backlog matrix

¢ This can be done by solving a bipartite matching
algorithm…

81

Eytan Modiano
Slide 26

Bi-partite graph representation

• There is an edge in the graph from an input to an output if there is a
packet in the backlog matrix to be transferred from that input to that
output
– For previous backlog matrix, the bi-partite graph is:

• Definition: A matching is a set of edges, such that no two edges share
a node
– Finding a matching in the bi-partite graph is equivalent to finding a set of

packets such that no two packets share a row or column in the backlog
matrix

• Definition: A maximum matching is a matching with the maximum
possible number of edges
– Finding a maximum matching is equivalent to finding the largest set of

packets that can be transferred simultaneously

1

2

3

1

2

3

Eytan Modiano
Slide 25

Backlog matrix

• Each entery in the backlog matrix represent the number of
packets in input i’s queue that are destined to output j

• During each slot the scheduler can transfer at most one packet
from each input to each output
– The scheduler must choose one packet (at most) from each row, and

column of the backlog matrix
– This can be done by solving a bi-partite graph matching algorithm
– The bi-partite graph consists of N nodes representing the inputs and

N nodes representing the outputs

1

2

3

input

output

1 2 3

3 3

2 0

2

0

0

0 0

MULTISTAGE TOPOLOGIES WITH BUFFERS (7)
¢ The bipartite graph G=(V U W, E) is built as follows:
¢ V: N nodes representing the buffers
¢ W: N nodes representing the outputs
¢ E: there is an edge from a buffer i to an output j iff

there is a packet in the backlog matrix to be
transferred from i to j.

¢ Example:

¢ Finding a maximum matching is equivalent to finding
the largest set of packets that can be transferred
simultaneously

82

MULTISTAGE TOPOLOGIES WITH BUFFERS (8)

¢ Finding a maximum matching during each time slot
does not eliminate the effects of HOL blocking

¢ It is, indeed, necessary to look beyond a single slot
when making scheduling decisions

¢ Solution: edge (i,j) is assigned a weight equal to the
value of element (i,j) of the backlog matrix

¢ Theorem: A scheduler that chooses, during each time
slot, the maximum weighted matching achieves full
utilization.

¢ Proof and other details: see [McKeon et al. 1999]
83

