
Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2018/19

1 2

§ A sensor is a device that detects and responds to
some type of input from the physical environment.

§ The specific input could be light, heat, motion,
moisture, pressure, or any one of a great number of
other environmental phenomena.

§ The output is generally a signal that is converted to
human-readable display at the sensor location or
transmitted electronically over a network for reading
or further processing.

§ Sensor networks are dense wireless networks of small,
low-cost sensors, which collect and disseminate
environmental data.

3

§ Sensor networks are rapidly growing for their large
applicability to various purposes.

§ From engineering perspectives, one of the most
critical issues in sensor networks is energy, because:
§ sensor networks are often deployed in remote areas

where line powers are hard to obtain. It forces the
sensor nodes to rely on batteries, but replacing the
batteries is also hard in many cases

§ sensor network applications often require long-term
measurements over months.

4

§ So, improving the energy efficiency is mandatory for
sensor networks.

§ Wireless communication is one of the most energy-
consuming operations on a sensor node

try to reduce communication

5

A possible approach:

§ Multi-hop communication to the base station.

§ It can be inefficient depending on how densely the
sensor nodes are deployed:
§ When the node deployment is very sparse, each

hop distance becomes large and thus the large
amount of energy is necessary for sending data
over that distance.

§ When the node deployment is very dense, the
nodes close to the base station need to forward the
data from many remote nodes and thus tend to run
out of energy soon.

6

Another approach:

§ Exploit the mobility.

§ A data mule is a mobile node that has wireless
communication capability and also a sufficient amount of
storage to store the data from the (static) sensor nodes in
the field. It can be used for data collection.
§ Data mule travels across the sensing field and collects

data from each sensor node when the distance is short,
and later deposits all the data to the base station.

§ Each sensor node can conserve a significant amount of
energy, since it only needs to send the data over a
shorter distance and has no need to forward other
sensors’ data all the way to the base station.

§ As data mules return to the base station after the travel,
energy issue is usually not critical for data mules.

7

Data mule scheduling problem:

§ “how to control a data mule such that it collects data from
all the nodes in the minimal amount of time?”

§ We formulate it as a scheduling problem, since we view
communication from each node as a job.

§ We can control the movement of the data mule (path,
speed) as well as its communication (i.e., which node it
collects data from at certain time duration), where the
latter corresponds to job allocation in classical
scheduling problems.

8

Data mule scheduling problem (cntd)

§ Despite the similarities with a scheduling problem, data mule
scheduling problem has both location and time constraints.

§ Availability of each job is determined by the range of
wireless communication, which primarily depends on the
distance from a node and thus serves as a location constraint.

§ On the other hand, by assuming the bandwidth of wireless
communication is constant, we also have a time constraint for
each node necessary for transmitting the data to a data mule.

§ The movement of data mule determines how the location
constraints map to time constraints and produces different
real-time scheduling problems.

9

Data mule scheduling problem (cntd)

Decompose the problem into the following three
subproblems:

1. Path selection: which trajectory the data mule follows

2. Speed control: how the data mule changes the speed
during the travel

3. Job scheduling: from which sensor the data mule
collects data at each time point

10

Data mule scheduling problem (cntd)

1. Path selection is to determine the trajectory of the data
mule in the sensor field. To collect data from each
particular sensor, the data mule needs to go within the
sensor’s communication range at least once.

2. Speed control is to determine how the data mule
changes its speed along the chosen path. The data mule
needs to change the speed so that it stays within each
node’s communication range long enough to collect all
the data from it.

3. Job scheduling: data collection from each sensor is a
job. Each job has one or more intervals in which it can
be executed. Job scheduling is to determine the
allocation of time slots to jobs so that all jobs can be
completed. 11

For what concerns the third subproblem, it can be
reduced to classical scheduling problems

possible students’ lesson

12

We now focus on the first problem (path selection):

§ We consider a sensor network that has sensor nodes in
different areas operating at different sampling rates (e.g.
in the case of pollution sensors).

§ Each sensor has a finite buffer for storing the sensed
values and a data mule (acting as a base station) does
the job of the data gathering.

§ Once the mobile element visits a sensor node, it
transfers the data to its own memory and the sensor’s
memory is freed.

§ …

13

§ A problem that naturally crops up is the scheduling of the
visits of the data mule so that none of the sensor nodes’
buffer overflows: Mobile Element Scheduling (MES)
problem.

§ Observe the similitude with the Traveling Salesman
Problem (TSP):

Given a set of cities, a salesman has to visit each one
of the cities starting from a certain one (e.g. the
hometown) and returning to the same city. The
challenge of the problem is that the traveling
salesman wants to minimize the total length of the
trip.

14

§ In fact, MES problem and TSP are different:
§ In TSP, the goal is to find a minimum cost tour that visits

each node exactly once.
§ In MES problem, a node may need to be visited

multiple times before all other nodes are visited
depending on the strictness of its deadline i.e.
frequency of sampling.

§ In addition, as soon as a node is visited, its deadline i.e.
time before which it should be revisited to avoid buffer
overflow is updated. Thus deadlines are “dynamically”
updated as the mobile element performs the job of
data gathering.

§ Nevertheless, TSP seems very useful to solve MES
problem.

15

16

TSP (decisional version):

§ Let Kn=(V,E) be a complete graph, w a non negative
edge-weight function, and t a non negative real
value.

Def. A Hamiltonian cycle is a cycle passing
through all nodes exactly once.
Question: Does Kn contains a Hamiltonian cycle
with cost not exceeding t?
The problem of finding a Hamiltonian cycle (HC)
is NP-complete.

17

§ The origins of TSP are unclear:

§ A handbook for travelling salesmen from 1832
mentions the problem and includes example tours
through Germany and Switzerland, but contains no
mathematical treatment.

§ It was mathematically formulated in the 1800s by the
mathematician W.R. Hamilton and T. Kirkman.

§ The general form has been first studied during the
1930s considering the obvious brute-force
algorithm, and observing the non-optimality of the
nearest neighbor heuristic.

18

§ Th. TSP is NP-complete.

§ Proof.

1. TSP belongs to NP: to check a solution it is enough
to check that the tour contains each node exactly
once. Then we sum the cost of all the edges in the
tour and check that it is bounded by t.

2. We reduce HC to TSP:
Assume G=(V,E) is an instance of HC and construct
the complete graph Kn=(V,E’). Let t=n and function w
is defined as follows:
§ w(i,j)=1 if (i,j) is in E
§ w(i,j)=2 if (i,j) is in E’\E

19

NP-completeness proof (cntd).

§ Assume now that a HC C exists in G.

§ All edges in C have weight 1 since they are all in G.

§ So, if G has a HC then Kn has a TS tour of cost n.

§ Conversely, if Kn has a TS tour of cost n then all the
used edges must come from G and hence the tour is
a HC for G. n

20

TSP can be formulated as an ILP:

§ Assume that the tour is oriented.

§ We define boolean variables xij=1 iff the tour passes from
node i to node j, xij=0 otherwise.

§ Call wij the weight of oriented edge (i,j).

The objective is: minΣi,j=1..nwij xij

subject to: Σj=1..nxij=1, Σi=1..nxij=1

and the subtour elimination constraints (guaranteeing that
a cycle cover is not a solution):

Σi,j in S xij <|S| for each S proper subset of V, indeed if
S forms a cycle the sum is =|S|. 21

The following negative result holds:

Th. If there exists a polyomial time algorithm for TSP
with any constant approximation ratio r>1 then P=NP.

Proof. We prove that if TSP is r-approximable, then there
exists a polynomial time exact algorithm for HC.

Let G=(V,E) be an instance of HC and Kn a complete
graph with |V|=n.

…

22

If there exists a polyomial algorithm for TSP with any approximation ratio
r>1 then P=NP. (proof cntd)

…
We define edge weights on Kn as follows:

w(i,j)=1 if (i,j) is an edge of E
w(i,j)=2+(r-1)n otherwise.

Then, a tour with cost n exists in Kn if and only if G has a
HC.
In this case, if we assume there exists an r-
approximation algorithm A for TSP, if the cost is n, A will
find a solution H with cost(H) ≤ rn.
…

23

If there exists a polyomial algorithm for TSP with any approximation ratio
r>1 then P=NP. (proof cntd)

…

If H contains an edge that is not in E, then:

cost(H) ≥ (n-1)+2+(r-1)n=rn+1

That is a contradiction.

Hence, to a solution of TSP with cost(H) ≤ rn
corresponds an HC in G. n

24

Inapproximability result: Bad news!

How to manage the problem?

Some special cases…

25

Def. Given any three nodes a, b, c if:

w(a,c) ≤ w(a,b)+w(b,c)

then we say that w satisfies the triangle inequality.

§ Note. The weigth of a minimum spanning tree T (MST) is
a lower bound on the cost of an optimal traveling
salesman tour. Indeed: let H* be an optimal tour. A ST P
can be deduced from H* by deleting an edge.
Moreover, P is a path. It holds that:

w(T) ≤ w(P) ≤ w(H*).

26

In the hypothesis of triangular inequality (metric TSP), using
a minimum spanning tree we will create a tour the cost of
which is at most 2 times the weight of the spanning tree.

2-Approx-mTSP
Input: Kn(V,E)
Output: a Hamiltonian cycle

1. Select a “root” node r of Kn

2. Compute a MST T from r

3. let L be the sequence of nodes visited in a preorder walk
of T

4. Return the HC that visits the nodes in the order L without
repetitions

27

1. Select a “root” node r of Kn

2. Compute a MST T from r

3. let L be the sequence of
nodes visited in a preorder
walk of T

4. Return the HC that visits the
nodes in the order L without
repetitions

28

example

1

2

34

5

1 2

2

2

2
3

1 1 4 3

1

2

34

5

1 2

2

2

2
3

1 1 4 3

Weight=5
L=1 5 4 5 3 5 1 2 1

1

2

34

5

1 2

2

2

2
3

1 1 4 3

Weight=9

to pass from T (or from L) to a cycle…

29

example

1

2

34

5

L=1 5 4 5 3 5 1 2 1

1

2

34

5

L=1 5 4 5 3 5 1 2 1

L=1 5 4 3 5 1 2 1

1

2

34

5

L=1 5 4 3 1 2 1

1

2

34

5

L=1 5 4 3 2 1

1

2

34

5

Th. 2-Approx-TSP is a 2-approximation algorithm for TSP
if w satisfies the triangle inequality.

Proof. Let H* be an optimal tour and T a MST. We know
that w(T) ≤ w(H*).

In L every edge appears exactly twice, so the tour C
deduced by L is such that w(C)=2 w(T).

Unfortunately, C is not a tour, since some nodes are
repetead. We can erase some visits without increasing
the cost: if a node a appears for the second time in the
full path between b and c, we can go from b to c
directly. In this way we get a tour H. By the triangle
inequality:

w(H) ≤ w(C) =2 w(T) ≤ 2 w(H*). n 30

Euclidean TSP

§ When the cities that the salesman has to visit lie in the
Euclidean plane, the problem is called Euclidean TSP.

§ Like the general TSP, Euclidean TSP is NP-hard.

§ Euclidean TSP is a special case of metric TSP, since
distances in a plane obey the triangle inequality

-> 2-approximation algorithm.

§ Christofides [C76] improves the previous
approximation to 3/2 by exploiting a max matching
when passing from the spanning tree to the cycle

§ Can we do better?
31

Euclidean TSP(cntd)

§ Yes: in general, there is a poly-time approx scheme (PTAS)
i.e. for any c > 0, if d is the dimension of the Euclidean
space, there is a poly-time algorithm that finds a tour of
length at most (1 + 1/c) times the optimal for geometric
instances of TSP in time

!(#(log #) () *�
,-.
)

§ Arora and Mitchell were awarded with the Gödel Prize in
2010 for their concurrent discovery of a PTAS for the
Euclidean TSP.

§ In 2013, Bartal and Gottlieb improved the time complexity
of the PTAS

§ But in practice, simpler heuristics with weaker guarantees
continue to be used… 32

§ We can drop the condition that the travelling salesman
should visit each city exactly once, so that we now
consider not Hamiltonian cycles anymore, but simply
closed walks containing each node at least once.

§ If the problem is metric, any optimal tour will be also an
optimal solution, but this is not true in general:

33

w

y z

x
5 51

1

1

2

Example:
w-x-y-z-x-w is a shortest
closed walk (of length 6), but
the shortest tour w-x-y-z-w
has length 8.

Asymmetric TSP

§ Instead of Kn, we consider the complete directed graph
K’n on n nodes.

§ This problem contains the usual TSP as a special case,
and hence it is likewise NP-hard (indeed, notice that
symmetry simply halves the number of possible
solutions).

34

§ We may also consider an arbitrary connected graph G
with some length function w instead of Kn.

§ In this case, it is not at all clear whether any tours exist:
we need to check first whether G is Hamiltonian. As we
know, this feasibility question is already an NP-
complete problem in itself.

35

§ The TSP, in particular the Euclidean variant of the
problem, has attracted the attention of researchers in
cognitive psychology:
It has been observed that humans are able to produce
good quality solutions quickly [Macgregor, Ormerod
‘96].

§ These results suggest that computer performance on
the TSP may be improved by understanding and
emulating the methods used by humans for these
problems, and have also led to new insights into the
mechanisms of human thought.

36

