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THE PROBLEM (1) 

! A sensor is a device that detects and responds to 
some type of input from the physical environment. 

! The specific input could be light, heat, motion, 
moisture, pressure, or any one of a great number of 
other environmental phenomena.  

! The output is generally a signal that is converted to 
human-readable display at the sensor location or 
transmitted electronically over a network for reading 
or further processing.  

! Sensor networks are dense wireless networks of 
small, low-cost sensors, which collect and 
disseminate environmental data. 

3 

THE PROBLEM (2) 

! Sensor networks are rapidly growing for their large 
applicability to various purposes.  

! From engineering perspectives, one of the most 
critical issues in sensor networks is energy, because: 
!  sensor networks are often deployed in remote areas 

where line powers are hard to obtain. It forces the sensor 
nodes to rely on batteries, but replacing the batteries is 
also hard in many cases 

!  sensor network applications often require long-term 
measurements over months. 
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THE PROBLEM (3) 

! So, improving the energy efficiency is mandatory for 
sensor networks.  

! Wireless communication is one of the most energy-
consuming operations on a sensor node 

 
                     try to reduce communication 
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THE PROBLEM (4) 

A possible approach: 
! Multi-hop communication to the base station. 
!  It can be inefficient depending on how densely the 

sensor nodes are deployed:  
!  When the node deployment is very sparse, each hop 

distance becomes large and thus the large amount of 
energy is necessary for sending data over that distance.  

!  When the node deployment is very dense, the nodes close 
to the base station need to forward the data from many 
remote nodes and thus tend to run out of energy soon.  
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THE PROBLEM (5) 
Another approach: 
! Exploit the mobility.  
! A data mule is a mobile node that has wireless 

communication capability and also a sufficient amount 
of storage to store the data from the (static) sensor 
nodes in the field. It can be used for data collection. 
!  Data mule travels across the sensing field and collects data 

from each sensor node when the distance is short, and later 
deposits all the data to the base station.  

!  Each sensor node can conserve a significant amount of energy, 
since it only needs to send the data over a shorter distance and 
has no need to forward other sensors’ data all the way to the 
base station.  

!  As data mules return to the base station after the travel, energy 
issue is usually not critical for data mules.  
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THE PROBLEM (6) 

Data mule scheduling problem:  
!  “how to control a data mule such that it collects data 

from all the nodes in the minimal amount of time?” 
! We formulate it as a scheduling problem, since we view 

communication from each node as a job.  
! We can control the movement of the data mule (path, 

speed) as well as its communication (i.e., which node it 
collects data from at certain time duration), where the 
latter corresponds to job allocation in classical 
scheduling problems.  
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THE PROBLEM (7) 
Data mule scheduling problem (cntd)  

!  Despite the similarities with a scheduling problem, data 
mule scheduling problem has both location and time 
constraints.  

!  Availability of each job is determined by the range of 
wireless communication, which primarily depends on the 
distance from a node and thus serves as a location 
constraint.  

!  On the other hand, by assuming the bandwidth of wireless 
communication is constant, we also have a time constraint 
for each node necessary for transmitting the data to a data 
mule.  

!  The movement of data mule determines how the location 
constraints map to time constraints and produces different 
real-time scheduling problems.   
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THE PROBLEM (8) 
Data mule scheduling problem (cntd)  
 

Decompose the problem into the following three 
subproblems:  
1.  Path selection: which trajectory the data mule follows 
2.  Speed control: how the data mule changes the speed 

during the travel 
3.  Job scheduling: from which sensor the data mule 

collects data at each time point  
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THE PROBLEM (9) 
Data mule scheduling problem (cntd)  

1.  Path selection is to determine the trajectory of the data 
mule in the sensor field. To collect data from each 
particular sensor, the data mule needs to go within the 
sensor’s communication range at least once.  

2.   Speed control is to determine how the data mule changes 
its speed along the chosen path. The data mule needs to 
change the speed so that it stays within each node’s 
communication range long enough to collect all the data 
from it.  

3.  Job scheduling: data collection from each sensor is a job. 
Each job has one or more intervals in which it can be 
executed. Job scheduling is to determine the allocation of 
time slots to jobs so that all jobs can be completed.  11 

THE PROBLEM (10) 

For what concerns the third subproblem, it can be 
reduced to classical scheduling problems 
 

 possible students’ lesson 
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THE PROBLEM (11) 

We now focus on the first problem (path selection): 
! We consider a sensor network that has sensor nodes in 

different areas operating at different sampling rates 
(e.g. in the case of pollution sensors).  

! Each sensor has a finite buffer for storing the sensed 
values and a data mule (acting as a base station) does 
the job of the data gathering.  

! Once the mobile element visits a sensor node, it 
transfers the data to its own memory and the sensor’s 
memory is freed.  

! … 
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THE PROBLEM (12) 
! A problem that naturally crops up is the scheduling of 

the visits of the data mule so that none of the sensor 
nodes’ buffer overflows: Mobile Element Scheduling 
(MES) problem.  

! Observe the similitude with the Traveling Salesman 
Problem (TSP): 

Given a set of cities, a salesman has to visit each one 
of the cities starting from a certain one (e.g. the 
hometown) and returning to the same city. The 
challenge of the problem is that the traveling 
salesman wants to minimize the total length of the 
trip.  
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THE PROBLEM (13) 
!  In fact, MES problem and TSP are different: 

!  In TSP, the goal is to find a minimum cost tour that 
visits each node exactly once.  

!  In MES problem a node may need to be visited 
multiple times before all other nodes are visited 
depending on the strictness of its deadline i.e. 
frequency of sampling. 

!  In addition, as soon as a node is visited, its deadline 
i.e. time before which it should be revisited to avoid 
buffer overflow is updated. Thus deadlines are 
“dynamically” updated as the mobile element 
performs the job of data gathering.  

! Nevertheless, TSP seems very useful to solve MES 
problem.  
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THE TRAVELING SALESMAN 
PROBLEM 
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THE TRAVELING SALESMAN PROBLEM (1) 

TSP (decisional version): 
! Let Kn=(V,E) be a complete graph, w a non 

negative edge-weight function, and t a non 
negative real value. 

Def. A Hamiltonian cycle is a cycle passing 
through all nodes exactly once. 
Question: Does Kn contains a Hamiltonian 
cycle with cost not exceeding t? 
The problem of finding a Hamiltonian cycle 
(HC) is NP-complete. 
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THE TRAVELING SALESMAN PROBLEM (2) 

! The origins of TSP are unclear: 
! A handbook for travelling salesmen from 1832 

mentions the problem and includes example 
tours through Germany and Switzerland, but 
contains no mathematical treatment. 

!  It was mathematically formulated in the 1800s 
by the mathematician W.R. Hamilton and T. 
Kirkman. 

! The general form has been first studied during 
the 1930s considering the obvious brute-force 
algorithm, and observing the non-optimality of 
the nearest neighbor heuristic. 18 

THE TRAVELING SALESMAN PROBLEM (3) 

! Th. TSP is NP-complete. 
! Proof.  
1.  TSP belongs to NP: to check a solution it is enough 

to check that the tour contains each node exactly 
once. Then we sum the cost of all the edges in the 
tour and check that it is bounded by t. 

2.  We reduce HC to TSP: 
Assume G=(V,E) is an instance of HC and construct 
the complete graph Kn=(V,E’). Let t=n and function 
w is defined as follows: 

! w(i,j)=1 if (i,j) is in E 
! w(i,j)=2 if (i,j) is in E’\E 19 

THE TRAVELING SALESMAN PROBLEM (4) 

NP-completeness proof (cntd). 
 

! Assume now that a HC C exists in G.  
! All edges in C have weight 1 since they are all in 

G. 
! So, if G has a HC then G’ has a TS tour of cost n. 
! Conversely, if G has a TS tour of cost n then all 

the used edges must come from G and hence the 
tour is a HC for G.          " 
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THE TRAVELING SALESMAN PROBLEM (5) 

TSP can be formulated as an ILP: 
! Assume that the tour is oriented.  
! We define boolean variables xij=1 iff the tour passes 

from node i  to node j, xij=0 otherwise. 
! Call wij the weight of oriented edge (i,j). 

The objective is: min�i,j=1..nwij xij 

subject to: �j=1..nxij=1, �i=1..nxij=1  
and the subtour elimination constraints 
(guaranteeing that a cycle cover is not a solution): 

 �i,j in S xij <|S| for each S proper subset of V, 
indeed if S forms a cycle the sum is =|S|. 21 

INAPPROXIMABILITY (1) 

The following negative result holds: 
 
Th. If there exists a polyomial algorithm for TSP with 
any constant approximation ratio r>1 then P=NP. 
Proof. We prove that if TSP is r-approximable, then 
there exists a polynomial time exact algorithm for HC. 
Let G=(V,E) be an instance of HC and Kn a complete 
graph with |V|=n. 
… 
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INAPPROXIMABILITY (2) 

If there exists a polyomial algorithm for TSP with any approximation 
ratio r>1 then P=NP. (proof cntd) 

… 
We define edge weights on Kn as follows: 

 w(i,j)=1 if (i,j) is an edge of E 
 w(i,j)=2+(r-1)n otherwise. 

Then, a tour with cost n exists in Kn if and only if G has 
a HC. 
In this case, if we assume there exists an r-
approximation algorithm A for TSP, if the cost is n, A 
will find a solution H with cost(H) ≤ rn. 
… 
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INAPPROXIMABILITY (3) 

If there exists a polyomial algorithm for TSP with any approximation 
ratio r>1 then P=NP. (proof cntd) 

… 
If H contains an edge that is not in E, then: 
cost(H) ≥ (n-1)+2+(r-1)n=rn+1 
That is a contradiction. 
Hence, to a solution of TSP with cost(H) ≤ rn 
corresponds an HC in G. 
… 
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APPROXIMATE ALGORITHMS (1) 

Inapproximability result: Bad news! 
How to manage the problem? 
 

   Some special cases… 
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APPROXIMATE ALGORITHMS (2) 

Def. Given any three nodes a, b, c if: 
 w(a,c) ≤ w(a,b)+w(b,c) 

   then we say that w satisfies the triangle inequality. 

! Note. The weigth of a minimum spanning tree T 
(MST) is a lower bound on the cost of an optimal 
traveling salesman tour. Indeed: let H* be an optimal 
tour. A ST P can be deduced from H* by deleting an 
edge. Moreover, P is a path. It holds that: 

w(T) ≤ w(P) ≤ w(H*). 
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APPROXIMATE ALGORITHMS (3) 

In the hypothesis of triangular inequality (metric TSP), 
using a minimum spanning tree we will create a tour the 
cost of which is at most 2 times the weight of the spanning 
tree.  
2-Approx-mTSP 
Input: Kn(V,E) 
Output: a Hamiltonian cycle 
 
1.  Select a “root” node r of Kn 
2.  Compute a MST T from r 
3.  let L be the sequence of nodes visited in a preorder walk 

of T  
4.  Return the HC that visits the nodes in the order L 

without repetitions 
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APPROXIMATE ALGORITHMS (4) 

1.  Select a “root” node r of Kn 
2.  Compute a MST T from r 

3.  let L be the sequence of 
nodes visited in a preorder 
walk of T  

4.  Return the HC that visits 
the nodes in the order L 
without repetitions 
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APPROXIMATE ALGORITHMS (5) 
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APPROXIMATE ALGORITHMS (6) 

Th. 2-Approx-TSP is a 2-approximation algorithm for 
TSP if w satisfies the triangle inequality. 
Proof. Let H* be an optimal tour and T a MST. We 
know that w(T) ≤ w(H*).  
In L every edge appears exactly twice, so the tour C 
deduced by L is such that w(C)=2 w(T). 
Unfortunately, C is not a tour, since some nodes are 
repetead. We can erase some visits without increasing 
the cost: if a node a appears for the second time in the 
full path between b and c, we can go from b to c 
directly. In this way we get a tour H. By the triangle 
inequality: 
w(H) ≤ w(C) =2 w(T) ≤ 2 w(H*).     " 
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APPROXIMATE ALGORITHMS (7) 

Euclidean TSP 
! When the cities that the salesman has to visit lie in 

the Euclidean plane, the problem is called Euclidean 
TSP. 

! Like the general TSP, Euclidean TSP is NP-hard in 
either case.  

! Euclidean TSP is a particular case of metric TSP, 
since distances in a plane obey the triangle 
inequality -> 2-approximation algorithm.  

! Can we do better? 
 
 
 

31 

APPROXIMATE ALGORITHMS (8) 
Euclidean TSP(cntd) 

!  Yes: in general, there is a polynomial-time approximation 
scheme (PTAS) i.e. for any c > 0, if d is the number of 
dimensions in the Euclidean space, there is a polynomial-
time algorithm that finds a tour of length at most (1 + 1/c) 
times the optimal for geometric instances of TSP in time 

 
 
!  Sanjeev Arora and Joseph S. B. Mitchell were awarded the 

Gödel Prize in 2010 for their concurrent discovery of a 
PTAS for the Euclidean TSP. 

!  In 2013, Bartal and Gottlieb improved the time complexity 
of the PTAS 

!  But in practice, simpler heuristics with weaker guarantees 
continue to be used… 
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SOME GENERALIZATIONS (1) 

! We can drop the condition that thetravelling salesman 
should visit each city exactly once, so that we now 
consider not Hamiltonian cycles anymore, but simply 
closed walks containing each node at least once. 

!  If the problem is metric, any optimal tour will be also 
an optimal solution, but this is not true in general. 
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w-x-y-z-x-w is a shortest 
closed walk (of length 6), but 
the shortest tour w-x-y-z-w 
has length 8. 

SOME GENERALIZATIONS (2) 

Asymmetric TSP 
!  Instead of Kn, we consider the complete directed graph 

K’n on n nodes. 
! This problem contains the usual TSP as a special case, 

and hence it is likewise NP-hard (indeed, notice that 
symmetry simply halves the number of possible 
solutions). 
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SOME GENERALIZATIONS (3) 

! We may also consider an arbitrary connected graph G 
with some length function w instead of Kn. 

!  In this case, it is not at all clear whether any tours 
exist: we need to check first whether G is Hamiltonian. 
As we know, this fasibility question is already an NP-
complete problem in itself. 

35 

CONCLUDING REMARKS 

! The TSP, in particular the Euclidean variant of the 
problem, has attracted the attention of researchers in 
cognitive psychology.  

!  It has been observed that humans are able to produce 
good quality solutions quickly [Macgregor, Ormerod ‘96]. 

! These results suggest that computer performance on 
the TSP may be improved by understanding and 
emulating the methods used by humans for these 
problems, and have also led to new insights into the 
mechanisms of human thought. 
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