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THE PROBLEM 
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THE PROBLEM (1) 

! As we already know, a wireless ad-hoc network 
consists of a set S of (fixed) radio stations joint by 
wireless connections.  

! We assume that stations are located on the 
Euclidean plane (only partially realistic hp).  

!  Nodes have omnidirectional antennas: each 
transmission is listened by all the neighborhood 
(natural broadcast) 

! … 

3 

THE PROBLEM (2) 

! Two stations communicate either directly (single-hop)   
-if they are sufficiently close- or through intermediate 
nodes (multi-hop). 

! A transmission range is assigned to every station: a 
range assignment r : S � R determines a directed 
communication graph G=(S,E), where edge (i, j) � E iff 
dist(i, j) ≤ r(i) (dist(i, j)= euclidean distance between i 
and j).  

!  In other words, (i, j) � E iff j belongs to the disk 
centered at i and having radius r(i). 
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What does it means 
“sufficiently close”?
… 



THE PROBLEM (3) 

!  For reasons connected with energy saving, each 
stat ion can dynamical ly modulate i ts own 
transmission power.  

!  In fact, the transmission radius of a station depends 
on the energy power supplied to the station. 

! The general aim is to save energy as much as possible. 
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THE PROBLEM (4) 

!  In particular, the power Ps required by a station s to 
transmit data to another station t must satisfy: 

  where�≥1 is the distance-power gradient. 
 Usually 2≤�≤4 (it depends on the envorinment). 
 In the empty space �=2. 

! Hence, in order to have a communication from s to t, 
power Ps must be proportional to dist(s,t)�  
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€ 

Ps
dist(s,t)α

≥1

THE PROBLEM (5) 

! Stations of an ad hoc network cooperate in order to 
provide specific network connectivity properties by 
adapting their transmission ranges and, at the 
same time, they try to save energy. 

! … 
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THE PROBLEM (6) 
! … According to the required property, different problems 

are proposed.  
! For example: 

!  The transmission graph is required to be strongly 
connected. In such a case, the problem is NP-hard and 
there is a 2-approximate alg. in 2 dim. [Kirousis, Kranakis, 

Krizanc, Pelc ’01]; there exists an r>1 s.t. the problem is not 
r-approximable. 

!  The transmission graph is required to have diameter at 
most h. Not trivial approximate results are not known. 

!  Given a source node s, the transmission graph is 
required to include a spanning tree rooted at s.  … 8 



THE PROBLEM (7) 

In this latter case: 
!  A Broadcast Range Assignment  (for short  

Broadcast) is a range assignment that yields a 
communication graph G containing a directed 
spanning tree rooted at a given source station s. 

! A fundamental problem in the design of ad-hoc 
wireless networks is the Minimum-Energy 
Broadcast problem (for short Min Broadcast), that 
consists in finding a broadcast of minimal overall 
energy. 
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THE PROBLEM (8) 

Th. Min Broadcast is not approximable within any 
constant factor. 

 Proof. Recall the MinSetCover problem: 
 given a collection C of subsets of a finite set S, find a 
subset C’ of C with min cardinality, s.t. each element 
in S belongs to at least one element of C’. 

   Example: 
   S={1,2,3,4,5}     C={{1,2}, {1,2,3}, {3}, {3,4,5}} 
   C’={{1,2,3},{3,4,5}} 
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THE PROBLEM (9) 

Proof (cntd). 

 Note. MinSetCover is not approximable within c log n 
for some constant c>0, where n=|S|. 

 
Given an instance x of MinSetCover it is possible to 

construct an instance y of MinBroadcast s.t. there 
exists a solution for x of cardinality k iff there exists a 
solution for y of cost k+1. 

So, if MinBroadcast is approximable within a constant, 
then even MinSetCover is. Contradiction.     
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THE PROBLEM (10) 

Proof (cntd). Reduction: 
x=(S,C) instance of MinSetCover with:  
       S={s1, s2, …, sn} and C={C1, C2, …, Cm}. 
We construct y=(G,w,s) of MinBroadcast. 
Nodes of G: {s} U {VC} U {VS} 
Edges of G:{(s, vi

C), 1≤i≤m}U{(vi
C, vj

S), 1≤i≤m, s.t. sj in Ci} 
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THE PROBLEM (11) 

Proof (cntd).  

Finally, define w(e)=1 for any edge e. 
Let C’ be a solution for x. 
A sol. for y assigns 1 to s and to all nodes of VC in C’. 
The resulting transmission graph contains a spanning 

tree rooted at s because each element in S is contained 
in at least one element of C’. The cost of such a 
solution is |C’|+1. 
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THE PROBLEM (14) 

Proof (cntd).  

… 
Conversely, assume that r is a feasible sol. for y, (w.l.o.g. 

r(v) is either 0 or 1 if v is in VC: other values would be 
meaningless) and r(v)=0 if v is in VS. 

We derive a solution C’ for x selecting all subsets Ci s.t. 
r(vi

C)=1. 
It holds that |C’|=cost(r)-1.        " 
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THE PROBLEM (15) 

Note 
We proved that Min Broadcast is not approximable 

within a constant factor, but we have dealt with the 
general problem. 

There are some special cases (e.g. the Euclidean 
bidimensional one) that are particularly interesting 
and that behave better! 

In the following, we restrict to the special case of 
Euclidean plane… 
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THE PROBLEM (16) 

! Collaborating in order to minimize the overall energy 
is crucial: 
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S2 S3 

S1 

! S1 needs to communicate with S2 

!  let�=2 
! Cost of S1!S2 = dist(S1, S2)2 

! Cost of S1!S3!S2= 
 dist(S1, S3)2+dist(S3, S2)2 

! When angle S1S3S2 is obtuse: 
 dist(S1, S2)2>   
  dist(S1, S3)2+dist(S3, S2)2 

 



THE PROBLEM (17) 

!  In the Euclidean case, a range assignment r can be 
represented by the correspondent family D = 
{D1, . . . , Dl} of disks, and the overall energy is 
defined as: 

 where ri is the radius of Di. 
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€ 

cos t(D) = ri
α

i=1

l

∑

THE PROBLEM (18) 

! Consider the complete and weighted graph G(�) 
where the weight of each arc e=(u,v) is dist(u,v)�. 

! The broadcast problem is strictly related with the 
minimum spanning tree on G(�), in view of some 
important properties…  
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THE PROBLEM (19) 

19 

The set of connections used to 
perform a broadcast from s: 
•  cannot generate a cycle, because 
nodes do not need to be informed 
twice   

    tree 
•  minimizes the overall energy  

 
long arcs waste more energy than 
short ones. 

THE PROBLEM (20) 

20 

 
•  The energy used by each node 
u is 
 
(i.e. not all the arcs appear with 
their contribution)  

€ 

max(u,v )∈T dist(u,v){ }α

! Nevertheless, the Minimum Broadcast problem is not 
the same as the Min Spanning Tree problem: 

•  Leaves waste no energy 



THE PROBLEM (21) 

! The Minimum Broadcast problem is NP-hard in its 
general version and it is neither approximable within 
(1-�)� where� is the maximum degree of T and �is 
an arbitrary constant 

! Nothing is known about the hardness of the geometric 
version (i.e. on the Euclidean plane). 
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THE PROBLEM (22) 

! An approx algorithm is based on the computation of the 
MST: 
!   compute the MST of the complete graph induced by S, 
!  Assign a direction to arcs (from s to the leaves) 
!  Assign to each node i a radius equal to the length of the 

longest arc outgoing from i 
! Easy to implement # deep analysis of the approx ratio. 

!  [Clementi+al.’01] the first constant approx ratio (about 40)  
!  [Ambüehl ’05] the best (tight) known approx ratio (6) 
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THE MINIMUM SPANNING TREE 
PROBLEM (RECUP) 
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MINIMUM SPANNING TREE (1) 
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! Obs. 1: If the weights are positive, then a MST is in fact 
a minimum-cost subgraph connecting all nodes. 

! Proof: A subgraph containing cycles necessarily has a 
higher total weight.             " 

! Obs. 2: There may be several minimum spanning trees of 
the same weight having a minimum number of edges. 

!  In particular, if all the edge weights of a given graph are 
the same, then every spanning tree of that graph is 
minimum.  



MINIMUM SPANNING TREE (2) 
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! Obs. 3: If each edge has a distinct weight, then there is a 
unique MST. 

!   This is true in many realistic situations, where it's 
unlikely that any two connections have exactly the same 
cost 

! Proof: Assume by contradiction that MST T is not 
unique. So, there is another MST with equal weight, say 
T’. 

   … 

MINIMUM SPANNING TREE (3) 
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(proof – cntd) 
! Let e1 be an edge that is in T but not in T’. As T’ is a MST, 

{e1} U T’ contains a cycle C and there is at least one edge e2 
in T’ that is not in T and lies on C. 

!  If the weight of e1 is less than that of e2: 
replacing e2 with e1 in T’ yields tree {e1} U  T’ \ {e2} which 
has a smaller weight compared to T’. 
Contradiction, as we assumed T’ is a MST but it is not. 

!  If the weight of e1 is larger than that of e2:  
a similar argument involving tree {e2} U T \ {e1} also leads 
to a contradiction.  

! We conclude that the assumption that there is a further 
MST was false.            " 

MINIMUM SPANNING TREE (4) 
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! Obs. 4: For any cycle C in the graph, if the weight of an 
edge e of C is larger than the weights of all other edges of 
C, then this edge cannot belong to an MST. 

! Proof: Assuming the contrary, i.e. that e belongs to an 
MST T1, then deleting e will break T1 into two subtrees 
with the two endpoints of e in different subtrees. The 
remainder of C reconnects the subtrees, in particular 
there is an edge f of C with endpoints in different 
subtrees, i.e., it reconnects the subtrees into a tree T2 
with weight less than that of T1, because the weight of f 
is less than the weight of e.            " 

MINIMUM SPANNING TREE (5) 
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! Obs. 5: If the edge of a graph with the minimum cost e is 
unique, then this edge is included in any MST.  

! Proof: If e was not included in the MST, removing any of 
the (larger cost) edges in the cycle formed after adding e 
to the MST, would yield a spanning tree of smaller 
weight.                  " 

 



MINIMUM SPANNING TREE (6) 
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! Obs. 6: For any cut C in the graph, if the weight of an 
edge e of C is strictly smaller than the weights of all 
other edges of C, then this edge belongs to all MSTs of 
the graph.  

! Proof: If e was not included in the MST, adding e to the 
MST produces a cycle. Removing any of the (larger cost) 
edges of the cut in the cycle, would yield a spanning tree 
of smaller weight.                   " 

! By similar arguments, if more than one edge is of 
minimum weight across a cut, then each such edge is 
contained in a minimum spanning tree. 

 

MINIMUM SPANNING TREE (7) 
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Three classical algorithms: 
! Kruskal [‘56] 
! Prim [‘57] 
! Boruvka [’26] 

MINIMUM SPANNING TREE (8) 
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! The three algorithms are all greedy algorithms and 
based on the same structure: 
!  Given a set of arcs A containing some MST arcs, e is a 

safe arc w.r.t. A if A U {e} contains only MST arcs, too. 
!  A=empty set 

 While A is not a MST 
 find a safe arc e w.r.t. A 
 A=A U e 

“difficult” issue 

MINIMUM SPANNING TREE (9) 
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!  A=empty set 
 while A is not a MST 

 find a safe arc e w.r.t. A 
 A=A U e 

whenever:  
! A is acyclic 
!  graph GA=(V, A) is a forest whose each connected 

component is either a node or a tree 
! Each safe arc connects different connected components of 

GA 

!   the while loop is run n-1 times 



KRUSKAL ALGORITHM (1) 
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!  A=empty set 
 While GA is not a MST 

 find a safe arc e w.r.t. A 
 A=A U {e} 

Implementation using: 
! Data structure Union-Find 
! The set of the arcs of G is sorted w.r.t. their weight 
! Time Complexity: O(m log n)  

 [Johnson ‘75, Cheriton & Tarjan ‘76] 

Among those 
connecting two 

different connected 
components in GA, 

choose the one 
with minimum 

weight 
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KRUSKAL ALGORITHM (2) 
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PRIM ALGORITHM (1) 
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!  A=empty set 
 While GA is not a MST 

 find a safe arc e w.r.t. A 
 A=A U {e} 

Implementation using: 
! Nodes in a min-priority queue w.r.t. key(v)=min weight 

of an arc connecting v to a node of the main connected 
component; ∞ if it does not exist 

!  If the priority queue is a heap # Complexity: O(m log n) 
!  If the priority queue is a Fibonacci heap  

       # Complexity: O(m+n log n)  
  [Ahuja, Magnanti & Orlin ‘93] 

Among those 
connecting the 
main connected 
component with 
an isolated node, 

choose the one 
with minimum 

weight 
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PRIM ALGORITHM (2) 
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BORUVKA ALGORITHM (1) 

(purpose: an efficient electrical  
                   coverage of Moravia) 
Hipothesis: each arc has a  
distinct weight 

!  A=empty set 
 While A is not a MST 

 for each connected component Ci of GA 

  find a safe arc ei w.r.t. Ci 

  A=A U {ei} 
Trick: handle many arcs (exactly log of the # of connected 

components) during the same loop 
Impossible to introduce cycles, thanks to the hipothesis! 
Complexity: O(m log n) 

Among those 
connecting Ci to 

another 
component, the 

one with minimum 
weight 
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BORUVKA ALGORITHM (2) 
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OTHER ALGORITHMS (1) 

!  [Friedman & Willard ‘94] Linear time algorithm, but it 
assumes the edges are already sorted w.r.t. their 
weight. Not used in practice, as the asymptotic 
notation hides a huge constant. 

!  [Matsui ’95] Linear time algorithm for planar graphs 
(possible lesson) 
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OTHER ALGORITHMS (2) 

!  [Frederickson ‘85, Eppstein ‘94] Given a graph and its 
MST, it is even interesting to find a new MST 
after that the original graph has been slightly 
modified. It can be performed in average time 
O(log n) 

! Only O(n+m) time is necessary to verify whether 
a given spanning tree is minimum. 

40 



ANOTHER APPLICATION 

! A telecommunication company wants to lay cable to 
a new neighborhood.  

!  It is constrained to bury the cable only along certain 
paths (e.g. along roads). 

! Model as a (not geometrical) graph: 
!  nodes: represent points  
!  edges: represent those paths 
!  (edge) weight: cost of adding cable on that path.  

Note 1. some of those paths might be more expensive, because 
they are longer, or require the cable to be buried deeper  
Note 2. there is no requirement for edge lengths to obey 
normal rules of geometry such as the triangle inequality.  

!  A minimum spanning tree for that graph would be a 
subset of those paths that has no cycles but still 
connects to every house with the lowest total cost, thus 
would represent the least expensive path for laying the 
cable. 
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AGAIN ON  
MINIMUM ENERGY BROADCAST 
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HEURISTICS (1) 

In [Wieselthier, Nguyen, Ephremides, 00]: three heuristics all 
based on the greedy technique: 

! SPT (spanning path tree): it runs Dijkstra algorithm to 
get the minimum path tree, then it directs the edges of 
the tree from the root to the leaves. 

! BAIP (Broadcast Average Incremental Power): it is a 
modification of the Dijkstra algorithm based on the 
nodes (i.e. a new node is added to the tree on the basis 
of its minimum average cost). 

! MST (min spanning tree): it runs Prim algorithm to get 
a MST, then it directs the edges of the tree from the 
root to the leaves. 
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HEURISTICS (2) 
GREEDY IS NOT ALWAYS GOOD  

Greedy is not always good [Wan, Calinescu, Li, Frieder ‘02]: 
! SPT: it runs Dijkstra algorithm to get the minimum path 

tree, then it directs the edges of the tree from the root to 
the leaves 
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(let�=2) 
! SPT outputs a tree with total 

energy: 
 �2+n/2(1-�)2 

!  If the root transmits with 
radius 1 the energy is 1 

! When �$0 SPT is far n/2 
from the optimal solution. 

p1q1

q2

p3

q3

p2

pm

qm

1−ε ε o



HEURISTICS (3) 
GREEDY IS NOT ALWAYS GOOD  

! BAIP (Broadcast Average Incremental Power): it is a 
modification of the Dijkstra algorithm based on the 
nodes: a new node is added to the tree on the basis of 
the min average cost=energy increasing/# of added 
nodes. 

!   It has been designed to solve the problems of SPT. 
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HEURISTICS (4) 
GREEDY IS NOT ALWAYS GOOD  

46 

(let �=2): 
! The min transmission power of the source to reach k 

receiving nodes is √k2=k and thus the average power 
efficiency is k/k=1 

! On the other hand, the min transmission power of the 
source to reach all receiving nodes is  
(√n-�)2=n-�and thus the average power efficiency is (n-
�)/n=1-�/n… 

√1 
√2 

√3 … 

€ 

n −ε

HEURISTICS (5) 
GREEDY IS NOT ALWAYS GOOD  
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! BAIP will let the source to transmit at power  
√n-�to reach all nodes in a single step. 

! However, the opt. routing is a path consisting of all 
nodes from left to right. Its min power is: 

√1 
√2 

√3 … 

€ 

n −ε

€ 

( i − i −1)2 + ( n −ε − n −1)2
i=1

n−1

∑ < ( i − i −1)2 =
i=1

n

∑

€ 

( i − i −1)2 ( i + i −1)2

( i + i −1)2i=1

n

∑ =
(( i − i −1)( i + i −1))2

( i + i −1)2i=1

n

∑ =

€ 

=
(i − (i −1))2

( i + i −1)2i=1

n

∑ =
1

( i + i −1)2i=1

n

∑ =1+
1

( i + i −1)2i=2

n

∑ ≤

HEURISTICS (6) 
GREEDY IS NOT ALWAYS GOOD  

48 

(computation of the performance ratio of BAIP – cntd) 
√1 

√2 
√3 … 

€ 

n −ε

≤1+ 1
2i−1+ 2(i−1)

=1+ 1
4i−3i=2

n

∑ ≤1+ 1
4(i−1)i=2

n

∑ ≤
i=2

n

∑

Substituting i=j+1: 

Thus the approx ratio of BAIP is at least: 

€ 

n −ε
ln(n −1) + 5

4

→(ε →0) 4n
ln(n −1) + 5

=
4n
lnn

+ o(1)
€ 

≤1+
1
4 j
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∑ 1+
1
4

1
j
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1
4
(ln(n −1) +1) =

ln(n −1) + 5
4j=1

n−1

∑
€ 

≤1+
1

i + (i −1) + 2 i i −1)i=2

n

∑ ≤1+
1

2i −1+ 2(i −1)
≤

i=2

n

∑



49 

HEURISTICS (7) 
GREEDY IS NOT ALWAYS GOOD  

MST: it runs Prim algorithm to get a MST, then it directs 
the edges of the tree from the root to the leaves 
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!  Path op1…p6 is the unique 
MST, and its total energy is 6. 

! On the other hand, the opt. 
routing is the star centered at 
o, whose energy is (1+�)�. 

! The approx. ratio converges to 
6, as � goes to 0. 

1

1

1

1

1

1

p3

p4

p5

p6

p1

p2

o

1+ε
1+ε

1+ε

1+ε

1+ε
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HEURISTICS (8)  

!  We have just shown a lower bound on the 
approximation ratio of MST. 

! This ratio is a constant and an upper bound is 12. 
! The proof involves complicated geometric arguments, 

and therefore we only sketch some of them: 
!  … 

50 
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HEURISTICS (9) 

51 

! Any pair of edges do not cross each other 
 

The blue edge is necessarily 
shorter than at least one of the 
two crossing edges 
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HEURISTICS (10) 

52 

(properties of the geometric MST – cntd) 

! The angles between any two edges incident to a 
common node is at least π/3 

The blue edge is necessarily 
shorter than at least one of the 
two orange edges 
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HEURISTICS (11) 

53 

(properties of the geometric MST - cntd) 

! The lune determined by each edge does not 
contain any other nodes. 

The lune through points p1 and 
p2 is the intersection of the two 
open disks of radius dist(p1,p2) 
centered at p1 and p2, 
respectively, hence an internal 
node would create a cycle 
 54 

HEURISTICS (12) 

54 

(properties of the geometric MST – cntd) 

! Let p1p2 be any edge. Then the two endpoints of any 
other edge are either both outside the open disk D(p1, 
dist(p1, p2)) or both outside the open disk D(p2, 
dist(p1, p2))  

The red edges are added before 
than the blue edge because 
they are shorter. The blue 
edge would create a cycle. 
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HEURISTICS (13) 

! Obs. The proof in [Wan, Calinescu, Li, Frieder ‘02] contains a 
small flaw that can be solved, arriving to an 
approximation ratio of 12,15 [Klasing, Navarra, Papadopoulos, 
Perennes ’04] 

!  Indipendently, an approximation ratio of 20 has been 
stated in [Clementi, Crescenzi, Penna, Rossi, Vocca ‘01] 

! Approx. ratio improved to 7,6 [Flammini, Klasing, Navarra, 
Perennes ‘04] 

! Approx. ratio improved to 6,33 [Navarra ‘05] 

! Optimal bound 6 [Ambüehl ’05] 
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HEURISTICS (14) 

! For realistic instances, experiments suggest that the 
tight approximation ratio is not 6 but 4 [Flammini, Navarra, 

Perennes ‘06] -> possible lesson 


