
THE MINIMUM ENERGY BROADCAST
PROBLEM
I.E.
THE MINIMUM SPANNING TREE
PROBLEM

Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2016/17

1

THE PROBLEM
2

THE PROBLEM (1)

! As we already know, a wireless ad-hoc network
consists of a set S of (fixed) radio stations joint by
wireless connections.

! We assume that stations are located on the
Euclidean plane (only partially realistic hp).

!  Nodes have omnidirectional antennas: each
transmission is listened by all the neighborhood
(natural broadcast)

! …

3

THE PROBLEM (2)

! Two stations communicate either directly (single-hop)
-if they are sufficiently close- or through intermediate
nodes (multi-hop).

! A transmission range is assigned to every station: a
range assignment r : S � R determines a directed
communication graph G=(S,E), where edge (i, j) � E iff
dist(i, j) ≤ r(i) (dist(i, j)= euclidean distance between i
and j).

!  In other words, (i, j) � E iff j belongs to the disk
centered at i and having radius r(i).

4

What does it means
“sufficiently close”?
…

THE PROBLEM (3)

!  For reasons connected with energy saving, each
stat ion can dynamical ly modulate i ts own
transmission power.

!  In fact, the transmission radius of a station depends
on the energy power supplied to the station.

! The general aim is to save energy as much as possible.

5

THE PROBLEM (4)

!  In particular, the power Ps required by a station s to
transmit data to another station t must satisfy:

 where�≥1 is the distance-power gradient.
 Usually 2≤�≤4 (it depends on the envorinment).
 In the empty space �=2.

! Hence, in order to have a communication from s to t,
power Ps must be proportional to dist(s,t)�

6

€

Ps
dist(s,t)α

≥1

THE PROBLEM (5)

! Stations of an ad hoc network cooperate in order to
provide specific network connectivity properties by
adapting their transmission ranges and, at the
same time, they try to save energy.

! …

7

THE PROBLEM (6)
! … According to the required property, different problems

are proposed.
! For example:

!  The transmission graph is required to be strongly
connected. In such a case, the problem is NP-hard and
there is a 2-approximate alg. in 2 dim. [Kirousis, Kranakis,

Krizanc, Pelc ’01]; there exists an r>1 s.t. the problem is not
r-approximable.

!  The transmission graph is required to have diameter at
most h. Not trivial approximate results are not known.

!  Given a source node s, the transmission graph is
required to include a spanning tree rooted at s. … 8

THE PROBLEM (7)

In this latter case:
!  A Broadcast Range Assignment (for short

Broadcast) is a range assignment that yields a
communication graph G containing a directed
spanning tree rooted at a given source station s.

! A fundamental problem in the design of ad-hoc
wireless networks is the Minimum-Energy
Broadcast problem (for short Min Broadcast), that
consists in finding a broadcast of minimal overall
energy.

9

THE PROBLEM (8)

Th. Min Broadcast is not approximable within any
constant factor.

 Proof. Recall the MinSetCover problem:
 given a collection C of subsets of a finite set S, find a
subset C’ of C with min cardinality, s.t. each element
in S belongs to at least one element of C’.

 Example:
 S={1,2,3,4,5} C={{1,2}, {1,2,3}, {3}, {3,4,5}}
 C’={{1,2,3},{3,4,5}}

10

THE PROBLEM (9)

Proof (cntd).

 Note. MinSetCover is not approximable within c log n
for some constant c>0, where n=|S|.

Given an instance x of MinSetCover it is possible to

construct an instance y of MinBroadcast s.t. there
exists a solution for x of cardinality k iff there exists a
solution for y of cost k+1.

So, if MinBroadcast is approximable within a constant,
then even MinSetCover is. Contradiction.

11

THE PROBLEM (10)

Proof (cntd). Reduction:
x=(S,C) instance of MinSetCover with:
 S={s1, s2, …, sn} and C={C1, C2, …, Cm}.
We construct y=(G,w,s) of MinBroadcast.
Nodes of G: {s} U {VC} U {VS}
Edges of G:{(s, vi

C), 1≤i≤m}U{(vi
C, vj

S), 1≤i≤m, s.t. sj in Ci}

12

s

v1
C

vi
C

vm
C

VC

vj
S s.t. sj is in Ci

VS

THE PROBLEM (11)

Proof (cntd).

Finally, define w(e)=1 for any edge e.
Let C’ be a solution for x.
A sol. for y assigns 1 to s and to all nodes of VC in C’.
The resulting transmission graph contains a spanning

tree rooted at s because each element in S is contained
in at least one element of C’. The cost of such a
solution is |C’|+1.

13

THE PROBLEM (14)

Proof (cntd).

…
Conversely, assume that r is a feasible sol. for y, (w.l.o.g.

r(v) is either 0 or 1 if v is in VC: other values would be
meaningless) and r(v)=0 if v is in VS.

We derive a solution C’ for x selecting all subsets Ci s.t.
r(vi

C)=1.
It holds that |C’|=cost(r)-1. "

14

THE PROBLEM (15)

Note
We proved that Min Broadcast is not approximable

within a constant factor, but we have dealt with the
general problem.

There are some special cases (e.g. the Euclidean
bidimensional one) that are particularly interesting
and that behave better!

In the following, we restrict to the special case of
Euclidean plane…

15

THE PROBLEM (16)

! Collaborating in order to minimize the overall energy
is crucial:

16

S2 S3

S1

! S1 needs to communicate with S2

!  let�=2
! Cost of S1!S2 = dist(S1, S2)2

! Cost of S1!S3!S2=
 dist(S1, S3)2+dist(S3, S2)2

! When angle S1S3S2 is obtuse:
 dist(S1, S2)2>
 dist(S1, S3)2+dist(S3, S2)2

THE PROBLEM (17)

!  In the Euclidean case, a range assignment r can be
represented by the correspondent family D =
{D1, . . . , Dl} of disks, and the overall energy is
defined as:

 where ri is the radius of Di.

17

€

cos t(D) = ri
α

i=1

l

∑

THE PROBLEM (18)

! Consider the complete and weighted graph G(�)
where the weight of each arc e=(u,v) is dist(u,v)�.

! The broadcast problem is strictly related with the
minimum spanning tree on G(�), in view of some
important properties…

18

THE PROBLEM (19)

19

The set of connections used to
perform a broadcast from s:
•  cannot generate a cycle, because
nodes do not need to be informed
twice

 tree
•  minimizes the overall energy

long arcs waste more energy than
short ones.

THE PROBLEM (20)

20

•  The energy used by each node
u is

(i.e. not all the arcs appear with
their contribution)

€

max(u,v)∈T dist(u,v){ }α

! Nevertheless, the Minimum Broadcast problem is not
the same as the Min Spanning Tree problem:

•  Leaves waste no energy

THE PROBLEM (21)

! The Minimum Broadcast problem is NP-hard in its
general version and it is neither approximable within
(1-�)� where� is the maximum degree of T and �is
an arbitrary constant

! Nothing is known about the hardness of the geometric
version (i.e. on the Euclidean plane).

21

THE PROBLEM (22)

! An approx algorithm is based on the computation of the
MST:
!  compute the MST of the complete graph induced by S,
!  Assign a direction to arcs (from s to the leaves)
!  Assign to each node i a radius equal to the length of the

longest arc outgoing from i
! Easy to implement # deep analysis of the approx ratio.

!  [Clementi+al.’01] the first constant approx ratio (about 40)
!  [Ambüehl ’05] the best (tight) known approx ratio (6)

22

THE MINIMUM SPANNING TREE
PROBLEM (RECUP)

23

MINIMUM SPANNING TREE (1)

24

! Obs. 1: If the weights are positive, then a MST is in fact
a minimum-cost subgraph connecting all nodes.

! Proof: A subgraph containing cycles necessarily has a
higher total weight. "

! Obs. 2: There may be several minimum spanning trees of
the same weight having a minimum number of edges.

!  In particular, if all the edge weights of a given graph are
the same, then every spanning tree of that graph is
minimum.

MINIMUM SPANNING TREE (2)

25

! Obs. 3: If each edge has a distinct weight, then there is a
unique MST.

!  This is true in many realistic situations, where it's
unlikely that any two connections have exactly the same
cost

! Proof: Assume by contradiction that MST T is not
unique. So, there is another MST with equal weight, say
T’.

 …

MINIMUM SPANNING TREE (3)

26

(proof – cntd)
! Let e1 be an edge that is in T but not in T’. As T’ is a MST,

{e1} U T’ contains a cycle C and there is at least one edge e2
in T’ that is not in T and lies on C.

!  If the weight of e1 is less than that of e2:
replacing e2 with e1 in T’ yields tree {e1} U T’ \ {e2} which
has a smaller weight compared to T’.
Contradiction, as we assumed T’ is a MST but it is not.

!  If the weight of e1 is larger than that of e2:
a similar argument involving tree {e2} U T \ {e1} also leads
to a contradiction.

! We conclude that the assumption that there is a further
MST was false. "

MINIMUM SPANNING TREE (4)

27

! Obs. 4: For any cycle C in the graph, if the weight of an
edge e of C is larger than the weights of all other edges of
C, then this edge cannot belong to an MST.

! Proof: Assuming the contrary, i.e. that e belongs to an
MST T1, then deleting e will break T1 into two subtrees
with the two endpoints of e in different subtrees. The
remainder of C reconnects the subtrees, in particular
there is an edge f of C with endpoints in different
subtrees, i.e., it reconnects the subtrees into a tree T2
with weight less than that of T1, because the weight of f
is less than the weight of e. "

MINIMUM SPANNING TREE (5)

28

! Obs. 5: If the edge of a graph with the minimum cost e is
unique, then this edge is included in any MST.

! Proof: If e was not included in the MST, removing any of
the (larger cost) edges in the cycle formed after adding e
to the MST, would yield a spanning tree of smaller
weight. "

MINIMUM SPANNING TREE (6)

29

! Obs. 6: For any cut C in the graph, if the weight of an
edge e of C is strictly smaller than the weights of all
other edges of C, then this edge belongs to all MSTs of
the graph.

! Proof: If e was not included in the MST, adding e to the
MST produces a cycle. Removing any of the (larger cost)
edges of the cut in the cycle, would yield a spanning tree
of smaller weight. "

! By similar arguments, if more than one edge is of
minimum weight across a cut, then each such edge is
contained in a minimum spanning tree.

MINIMUM SPANNING TREE (7)

30

Three classical algorithms:
! Kruskal [‘56]
! Prim [‘57]
! Boruvka [’26]

MINIMUM SPANNING TREE (8)

31

! The three algorithms are all greedy algorithms and
based on the same structure:
!  Given a set of arcs A containing some MST arcs, e is a

safe arc w.r.t. A if A U {e} contains only MST arcs, too.
!  A=empty set

 While A is not a MST
 find a safe arc e w.r.t. A
 A=A U e

“difficult” issue

MINIMUM SPANNING TREE (9)

32

!  A=empty set
 while A is not a MST

 find a safe arc e w.r.t. A
 A=A U e

whenever:
! A is acyclic
!  graph GA=(V, A) is a forest whose each connected

component is either a node or a tree
! Each safe arc connects different connected components of

GA

!  the while loop is run n-1 times

KRUSKAL ALGORITHM (1)

33

!  A=empty set
 While GA is not a MST

 find a safe arc e w.r.t. A
 A=A U {e}

Implementation using:
! Data structure Union-Find
! The set of the arcs of G is sorted w.r.t. their weight
! Time Complexity: O(m log n)

 [Johnson ‘75, Cheriton & Tarjan ‘76]

Among those
connecting two

different connected
components in GA,

choose the one
with minimum

weight

34

KRUSKAL ALGORITHM (2)

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6 4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

PRIM ALGORITHM (1)

35

!  A=empty set
 While GA is not a MST

 find a safe arc e w.r.t. A
 A=A U {e}

Implementation using:
! Nodes in a min-priority queue w.r.t. key(v)=min weight

of an arc connecting v to a node of the main connected
component; ∞ if it does not exist

!  If the priority queue is a heap # Complexity: O(m log n)
!  If the priority queue is a Fibonacci heap

 # Complexity: O(m+n log n)
 [Ahuja, Magnanti & Orlin ‘93]

Among those
connecting the
main connected
component with
an isolated node,

choose the one
with minimum

weight

36

PRIM ALGORITHM (2)

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

37

BORUVKA ALGORITHM (1)

(purpose: an efficient electrical
 coverage of Moravia)
Hipothesis: each arc has a
distinct weight

!  A=empty set
 While A is not a MST

 for each connected component Ci of GA

 find a safe arc ei w.r.t. Ci

 A=A U {ei}
Trick: handle many arcs (exactly log of the # of connected

components) during the same loop
Impossible to introduce cycles, thanks to the hipothesis!
Complexity: O(m log n)

Among those
connecting Ci to

another
component, the

one with minimum
weight

38

BORUVKA ALGORITHM (2)

3

8

11

12 5
9

14
10

2

7

1 13

4
6

4

8

11

8 7
9

14
10

2

7

1 2

4
6

3

8

11

12 5
9

14
10

2

7

1 13

4
6

3

8

11

12 5
9

14
10

2

7

1 13

4
6

OTHER ALGORITHMS (1)

!  [Friedman & Willard ‘94] Linear time algorithm, but it
assumes the edges are already sorted w.r.t. their
weight. Not used in practice, as the asymptotic
notation hides a huge constant.

!  [Matsui ’95] Linear time algorithm for planar graphs
(possible lesson)

39

OTHER ALGORITHMS (2)

!  [Frederickson ‘85, Eppstein ‘94] Given a graph and its
MST, it is even interesting to find a new MST
after that the original graph has been slightly
modified. It can be performed in average time
O(log n)

! Only O(n+m) time is necessary to verify whether
a given spanning tree is minimum.

40

ANOTHER APPLICATION

! A telecommunication company wants to lay cable to
a new neighborhood.

!  It is constrained to bury the cable only along certain
paths (e.g. along roads).

! Model as a (not geometrical) graph:
!  nodes: represent points
!  edges: represent those paths
!  (edge) weight: cost of adding cable on that path.

Note 1. some of those paths might be more expensive, because
they are longer, or require the cable to be buried deeper
Note 2. there is no requirement for edge lengths to obey
normal rules of geometry such as the triangle inequality.

!  A minimum spanning tree for that graph would be a
subset of those paths that has no cycles but still
connects to every house with the lowest total cost, thus
would represent the least expensive path for laying the
cable.

41

AGAIN ON
MINIMUM ENERGY BROADCAST

42

HEURISTICS (1)

In [Wieselthier, Nguyen, Ephremides, 00]: three heuristics all
based on the greedy technique:

! SPT (spanning path tree): it runs Dijkstra algorithm to
get the minimum path tree, then it directs the edges of
the tree from the root to the leaves.

! BAIP (Broadcast Average Incremental Power): it is a
modification of the Dijkstra algorithm based on the
nodes (i.e. a new node is added to the tree on the basis
of its minimum average cost).

! MST (min spanning tree): it runs Prim algorithm to get
a MST, then it directs the edges of the tree from the
root to the leaves.

43

HEURISTICS (2)
GREEDY IS NOT ALWAYS GOOD

Greedy is not always good [Wan, Calinescu, Li, Frieder ‘02]:
! SPT: it runs Dijkstra algorithm to get the minimum path

tree, then it directs the edges of the tree from the root to
the leaves

44

(let�=2)
! SPT outputs a tree with total

energy:
 �2+n/2(1-�)2

!  If the root transmits with
radius 1 the energy is 1

! When �$0 SPT is far n/2
from the optimal solution.

p1q1

q2

p3

q3

p2

pm

qm

1−ε ε o

HEURISTICS (3)
GREEDY IS NOT ALWAYS GOOD

! BAIP (Broadcast Average Incremental Power): it is a
modification of the Dijkstra algorithm based on the
nodes: a new node is added to the tree on the basis of
the min average cost=energy increasing/# of added
nodes.

!  It has been designed to solve the problems of SPT.

45

HEURISTICS (4)
GREEDY IS NOT ALWAYS GOOD

46

(let �=2):
! The min transmission power of the source to reach k

receiving nodes is √k2=k and thus the average power
efficiency is k/k=1

! On the other hand, the min transmission power of the
source to reach all receiving nodes is
(√n-�)2=n-�and thus the average power efficiency is (n-
�)/n=1-�/n…

√1
√2

√3 …

€

n −ε

HEURISTICS (5)
GREEDY IS NOT ALWAYS GOOD

47

! BAIP will let the source to transmit at power
√n-�to reach all nodes in a single step.

! However, the opt. routing is a path consisting of all
nodes from left to right. Its min power is:

√1
√2

√3 …

€

n −ε

€

(i − i −1)2 + (n −ε − n −1)2
i=1

n−1

∑ < (i − i −1)2 =
i=1

n

∑

€

(i − i −1)2 (i + i −1)2

(i + i −1)2i=1

n

∑ =
((i − i −1)(i + i −1))2

(i + i −1)2i=1

n

∑ =

€

=
(i − (i −1))2

(i + i −1)2i=1

n

∑ =
1

(i + i −1)2i=1

n

∑ =1+
1

(i + i −1)2i=2

n

∑ ≤

HEURISTICS (6)
GREEDY IS NOT ALWAYS GOOD

48

(computation of the performance ratio of BAIP – cntd)
√1

√2
√3 …

€

n −ε

≤1+ 1
2i−1+ 2(i−1)

=1+ 1
4i−3i=2

n

∑ ≤1+ 1
4(i−1)i=2

n

∑ ≤
i=2

n

∑

Substituting i=j+1:

Thus the approx ratio of BAIP is at least:

€

n −ε
ln(n −1) + 5

4

→(ε →0) 4n
ln(n −1) + 5

=
4n
lnn

+ o(1)
€

≤1+
1
4 j

≤
j=1

n−1

∑ 1+
1
4

1
j
≤1+

1
4
(ln(n −1) +1) =

ln(n −1) + 5
4j=1

n−1

∑
€

≤1+
1

i + (i −1) + 2 i i −1)i=2

n

∑ ≤1+
1

2i −1+ 2(i −1)
≤

i=2

n

∑

49

HEURISTICS (7)
GREEDY IS NOT ALWAYS GOOD

MST: it runs Prim algorithm to get a MST, then it directs
the edges of the tree from the root to the leaves

49

!  Path op1…p6 is the unique
MST, and its total energy is 6.

! On the other hand, the opt.
routing is the star centered at
o, whose energy is (1+�)�.

! The approx. ratio converges to
6, as � goes to 0.

1

1

1

1

1

1

p3

p4

p5

p6

p1

p2

o

1+ε
1+ε

1+ε

1+ε

1+ε

50

HEURISTICS (8)

!  We have just shown a lower bound on the
approximation ratio of MST.

! This ratio is a constant and an upper bound is 12.
! The proof involves complicated geometric arguments,

and therefore we only sketch some of them:
!  …

50

51

HEURISTICS (9)

51

! Any pair of edges do not cross each other

The blue edge is necessarily
shorter than at least one of the
two crossing edges

52

HEURISTICS (10)

52

(properties of the geometric MST – cntd)

! The angles between any two edges incident to a
common node is at least π/3

The blue edge is necessarily
shorter than at least one of the
two orange edges

53

HEURISTICS (11)

53

(properties of the geometric MST - cntd)

! The lune determined by each edge does not
contain any other nodes.

The lune through points p1 and
p2 is the intersection of the two
open disks of radius dist(p1,p2)
centered at p1 and p2,
respectively, hence an internal
node would create a cycle
 54

HEURISTICS (12)

54

(properties of the geometric MST – cntd)

! Let p1p2 be any edge. Then the two endpoints of any
other edge are either both outside the open disk D(p1,
dist(p1, p2)) or both outside the open disk D(p2,
dist(p1, p2))

The red edges are added before
than the blue edge because
they are shorter. The blue
edge would create a cycle.

55

HEURISTICS (13)

! Obs. The proof in [Wan, Calinescu, Li, Frieder ‘02] contains a
small flaw that can be solved, arriving to an
approximation ratio of 12,15 [Klasing, Navarra, Papadopoulos,
Perennes ’04]

!  Indipendently, an approximation ratio of 20 has been
stated in [Clementi, Crescenzi, Penna, Rossi, Vocca ‘01]

! Approx. ratio improved to 7,6 [Flammini, Klasing, Navarra,
Perennes ‘04]

! Approx. ratio improved to 6,33 [Navarra ‘05]

! Optimal bound 6 [Ambüehl ’05]

56

HEURISTICS (14)

! For realistic instances, experiments suggest that the
tight approximation ratio is not 6 but 4 [Flammini, Navarra,

Perennes ‘06] -> possible lesson

