
§ l2,1(G) ≤ 2Δ+4 because G has treewidth 2

§ Jonas [’93]: l2,1(G) ≤ 2Δ+2

§ Bodlaender et al. [’04]: l2,1(G) ≤ Δ+8 but they conjecture 
that l2,1(G) ≤ Δ+2 -> possible students’ lesson

§ C.& Petreschi [’04] Δ+1 ≤ l2,1(G) ≤ Δ+2 and they conjecture 
that this algorithm gives the optimum value.
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Def. A graph is said to 
be outerplanar if it can 
be represented as a 
plane graph so that 
each node lies on the 
border of the external 
face
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§ Ordered Breadth First Tree:

§ Choose a node r

§ Induce a total order on the 
nodes on the external face

§ Run a BFS from r so that 
nodes coming before in the 
ordering are visited before 
than the others.
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Th. (well known) 

G=(V, E); BFT T=(V, E’)

Each non tree edge (vl,h, vl’,k)
satisfies one of the following:

§ l’=l

§ l’=l-1 and r<k, where vl-1,r is the 
parent of vl,h.
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Th.  G=(V, E); OBFT T=(V, E’):

§ If (vl,h, vl,k), h<k, then k=h+1

§ If vl,h is a child of vl-1,i and (vl,h, vl-1,k) is a non tree edge,
i<k, then k=i+1 and vl,h is the rightmost of its siblings
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(orange edges are not
admissible)

Lemma. If D³4, D+2 colors are necessary.

Proof.
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0

6 4 2 5 3

0  1  2  3  4  5  6 

0

4 2 5

§ Lemma. If the root of the tree has an already assigned 
color, then D+3 colors are necessary.

Proof.
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General 
technique



§ INPUT: G outerplanar with max degree D
§ OUTPUT: a feasible L(2,1)-labeling for G

§ Consider a node v with max degree and run an OBFS 
starting from v

§ Label(v)¬ 0
§ Label the first layer according to the previous Lemma
§ For each layer l³2, top-down, from left to right

repeat

Label the children of vl,k according to the previous
Lemma, eliminating from the palette the forbidden colors

64 (only for the right child…)

§ INPUT: G outerplanar with max degree D
§ OUTPUT: a feasible L(2,1)-labeling for G
§ Consider a node v with max degree and run an OBFS starting from v
§ Label(v)¬ 0
§ Label the first layer according to the previous Lemma
§ For each layer l³2, top-down, from left to right

repeat
Label the children of vl,k according to the previous Lemma, 

eliminating from the palette the forbidden colors
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An example:

0

6 4 2 5 30  1 2  3  4  5  6 

0 1 2  3  4 5  6
1

0 1 2 3 4 5  6 7 

1 7

5 3
3

5

2 0

8

Correctness and Bounds

§ Best previously known results: l£D+8 for each D [BKTL’00]

§ Conjecture [BKTL00]:l£D+2 for each D
§ Th. The provided algorithm correctly L(2,1)-labels each

outerplanar graph with max degree D³8 with l£D+2 in
linear time; otherwise, at most 11 colors are anyway
necessary.

§ Proof. By induction, considering the edges coming out
from the subgraph induced by any node and its children…
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§ a. one tree-edge to the father of vl-1,k

§ b. at most three non-tree edges connecting vl-1,k with some nodes
either at the same layer or at the previous layer

§ c. at most two non-tree edges from the leftmost sibling

§ d. at most two non-tree edges from the rightmost sibling

The other outgoing edges do not contribute to the labeling during this
step.
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vl-1,k



(Proof sketch) By inductive hypothesis at most D+3 colors have been
used.We prove that they are sufficient to label the children of vl-1,k.

We cannot use:

§ At most 3 colors (for vl-1,k)�D

§ At most 1 color (edge a)�D-1

§ At most x colors (edges b), 0≤x≤3 �D-1-x for the D-1-x children of vl-
1,k

§ The c edges give
conditions only on
1 or 2 nodes, hence it
is possible to arrange

§ Analogously for the d
edges n
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vl-1,k

The special case D=3

§ There exists an infinite class of outerplanar graphs having
D=3 requiring l=D+3

§ It is possible to provide a labeling algorithm for these
graphs using l£D+5
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o An oriented L(2,1)-labeling of a directed
graph G is a function assigning colors from 0,
… ,l to the nodes of G so that nodes at
distance 2 in the graph take different colors
and adjacent nodes take colors at distance 2.

o Oriented L(2,1)-labeling problem
minimizing l

o Note. The minimum value of l can be very
different from the value of the same
parameter in the undirected case. Example:
trees…
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oReminder: In undirected trees, D+1 ≤ l ≤ D+2, and the
exact value is linearly decidible

[Chang & Kuo ‘96, Hasunama et al. 2008]

oIn directed trees, l ≤ 4 [Chang & Liaw ’03]

730

44

222

0

0 0

4 4
Available papers
on the oriented
L(2,1)-labeling of other
graphs for possible student lessons…

With the aim of making the model more realistic:

§ An L(h1, …, hk)-labeling of a graph G is a function
assigning integer values to the nodes of the graph
such that:

|l(u)-l(v)|≥hi if u and v are at distance i in the graph,
1≤i≤k.

§ L(h1, …, hk)-labeling problem: minimizing l

§ Particularly interesting: L(2,1,1) and L(δ, 1, …, 1).

§ Even these special cases are NP-hard on general
graphs, so special classes of graphs are handled.

74

If the topology has a backbone, where the transmitting
power is higher wrt the rest of the network:

§ A Backbone coloring of a graph G wrt a graph H is a
function assigning integer values to the nodes of the
graph such that:

|l(u)-l(v)|≥2 if (u,v) is an edge of H and

|l(u)-l(v)|≥1 if (u,v) is an edge og G-H.

§ Backbone coloring problem:

minimizing l

Available papers on this coloring for student lessons…
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In practice, each transmitting station is able to handle
more than one channel, so a set of channels is
assigned to it.

§ Given two set of integer values I and J, we define

dist(I,J)=min{|i-j|: i in I and j in J }

Example:

I={0,1,2}; J={4,5,6}; dist{I,J}=2.
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§ An n-multiple L(h,k)-labeling of a graph G is a function
assigning n integer values to each node of the graph
so that:

dist(l(u),l(v)) ≥ h if (u,v) is an edge of G and

dist(l(u),l(v)) ≥ k if u and v are at dist. 2 in G.

§ n-multiple L(h,k)-labeling problem:

minimizing l, given n.
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In the special case in which the network is a GSM:

§ The network is a cellular network with hexagonal
cells.

§ Each cell has its own station connecting the fixed
network devices with the mobile devices that are at
moment inside the cell.

§ Mobile phones connect to the GSM network trying to
communicate with the station associated to the cell
where they lie. 78

In a GSM network, the cells need to use different
frequences, in order not to interfere.

§ Coloring map problem: given a plane map, the
problem consists in coloring each region in such a
way that adjacent regions take different colors and
that the min number of colors is used.

§ Four Color Theorem: It is always possible to color a
map using at most 4 colors.

79



§ It follows that 4 different frequencies are sufficient for 
an arbitrary GSM network:
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§ In fact, more sofisticated variations of this problem
lead to 7 colors -> L(h,k)-labeling again
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More in detail…

§ In wireless communication networks of the 1st and
2nd generation, the concept of cellular channel
allocation and spatial frequency reuse were the key
ideas that have driven the initial success of mobile
telephony.

§ For example, a seven color labeling of a hexagonal
grid was on the basis of the AMPS (American Mobile
Phone System).

§ The same scheme existed for GSM.

§ …

82

§ In the 3rd generation of mobile systems, the
introduction of CDMA (Code Division Multiple
Access) has enabled the reuse of the whole frequency
band in each cell: instead of dividing the signal space
in time or frequency, a code of pseudorandom
sequence is used to differentiate the signal from each
transmitter.

§ In this context, the labeling schemes were of much
reduced importance.

§ …
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§ The 4th generation mobile standards mainly use
Orthogonal Frequency Division Multiple Access
schemes.

§ These schemes divide the signal space in time slots
and orthogonal frequencies.

§ At the middle of a cell, all slots of time and
frequencies are allocated to users. At the edge of a
cell, only part of the band is used and a three color
scheme is used.

§ Even this model can be reduced to a labeling scheme.
For further details:

[Archetti, Bianchessi, Hertz, Colombet, Gagnon ’13]
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§ Given a map, it can be naturally considered a planar 
graph G.

§ Given G, let G* its dual graph:
§ Put a node of G* in each region of G
§ Connect two nodes of G* iff the corresponding

regions (faces) are adjacent (i.e. share an edge in 
G)

§ A vertex coloring of G* corresponds to a map coloring
of G.
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§ In fact, cartographers have always known that 4 colors
were enough for each kind of map, but in 1852 Francis
Guthrie wondered whether this fact could be proved.

§ After more than 100 years, and many (wrong)
announcements, Appel and Haken proved the 4 Color
Theorem in 1976.

§ The complete proof is computer assisted because it
exhaustively examines more than 1700 configura- tions.

§ More recently, Robertson, Sanders, Seymour, and Thomas
wrote a new proof, needing to examine “only” 633
configurations.
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There are some interesting results for other numbers of 
colors:

§ 2-coloring. 
Polynomially solvable:
§ Assign a color to a region. 
§ Assign the other color to its neighbor regions. 
§ Assign the first color to its neighbor regions.
§ Continue until the regions have been all colored or 

there is a color conflict. In this latter case the map is
not 2-colorable.
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§ 3-coloring 
§ NP-hard, hence no algorithms to decide whether a map

is 3-colorable or not.
§ Method: exhaustively try all the color combinations for

the regions.
§ Inapplicable: for N regions, there are 3N possibilities. (if

N=48 the combinations are about 8x1022)
§ …
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§ 3-coloring (cntd) 
§ There are some techniques in order to simplify the map

before coloring it (for example, if a region has only 2
neighbor regions, it can be eliminated from the map:
when it is re-inserted, it will be colored with the third
color) but the worst case time complexity is the same.
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§ 4-coloring 
§ The proof of the 4 color theorem is constructive, and so

it shows how to find a feasible coloring, but the
number of cases is too high to be useful in practice.

§ There are some transformations, similar to those used
for the 3-coloring, but they do not eliminate the need
of exhaustively try all the possibilities.
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§ 5-coloring 
§ It is relatively easy to color a map using 5 colors. There

is an algorithm that first simplifies the map eliminating
all the regions and then re-insert them assigning the
correct color.
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We conclude with a puzzle:

Try to 4-color these 2 maps…
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In 1975 Martin Gardner claimed
he could prove that this map was
not 4-colorable (April fool)

Solutions
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