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THE PROBLEM (1)

¢ There is not "the" frequency assignment problem.
¢ Frequency assignment is necessary in many

different types of wireless networks.
¢ Depending on the particular network, the

understanding of frequency assignment varies.
¢ For this reason, several "flavors" of frequency

assignment are present in the literature.
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¢ Wireless communication between two points is
established with the use of a transmitter and a
receiver.

¢ The transmitter generates electrical oscillations at
a radio frequency.

¢ The receiver detects these oscillations and
transforms them into sounds or images.

¢ When two transmitters use the same frequency,
they may interfere.
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THE PROBLEM (2)

One of the most popular applications of wireless
communication is the establishment of fixed cellular
telecommunication networks.
In contrast to mobile cellular networks, in non-mobile
or fixed systems both the transmitters and the
receivers are located at fixed points in the area of
interest.
Fixed cellular networks provide a financially
attractive alternative to the construction of
conventional wired networks.
…
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THE PROBLEM (3)

Moreover, the introduction of new services, such as
data communication (internet, e-mail) and video-
conferencing cause shortage of capacity in existing
wired networks.
Point-to-point wireless connections can be used as an
alternative to the extension of the capacity of these
wired networks.
In both cases no cable connections have to be
established.
…
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THE PROBLEM (4)

A disadvantage of point-to-point connections is that
the transmitter and receiver have to see each other,
which means that there should be no obstacles in
between them.
As a consequence, transmitters and receivers have to
be built at high locations (e.g., at the roof of
apartment and office buildings).
Although the transmitters are directed to the
receivers, their signals can interfere. Especially if
signals cross each other, the use of (almost) the same
frequencies should be avoided.
… 8

THE PROBLEM (5)



Another application that has similarities with fixed
cellular networks stems from the military.
In military communication networks, wireless
connections have to be established between pairs of
transceivers.
These connections, or radio links, can interfere with
each other, if they use similar frequencies in the
same area.
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THE PROBLEM (6)

The rapid development of new wireless services (e.g.
digital cellular phone networks) resulted in a run out
of the most important (and expensive) resource:
frequencies in the radio spectrum.

Like with all scarcely available resources, the cost of
frequency-use provides the need for economic-use of
the available frequencies.

Reuse of frequencies within a wireless communication
network can offer considerable economies.

…
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THE PROBLEM (7)

However, reuse of frequencies may also lead to a loss of
quality of communication links.

Namely, the use of (almost) the same frequency for
multiple wireless connections can cause an
interference between the signals that is unacceptable.

A solution to the frequency assignment problem
balances the economies of reuse of frequencies and
the loss of quality in the network.

Quantification of the different aspects results in a
mathematical optimization problem.

… 11

THE PROBLEM (8)

In general, Frequency Assignment Problems (FAPs) have
two basic aspects:

1. a set of wireless communication connections must be
assigned frequencies such that, for every connection,
data transmission between the transmitter and
receiver is possible. The frequencies should be selected
from a given set that may depend on the location.

2. The frequencies assigned to two connections may incur
interference resulting in a loss of quality of the signal.

But, what interference is? 12

THE PROBLEM (9)



Two conditions must be fulfilled in order to have
interference of two signals:
a) The two frequencies must be close on the

electromagnetic band (Doppler effects) or (close
to) harmonics of one another.
The latter effect is limited, since the frequency
bands from which we can choose are usually so
small that they do not contain harmonics.

b) The connections must be geographically close to
each other.
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THE PROBLEM (10)

Both aspects are modeled in many different ways in
the literature.

Hence: various models.
They differ in the types of constraints and in the

objectives to be optimized.
Here we describe a simplified model.
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THE PROBLEM (11)

THE GRAPH MODEL
15

In our model:

Direct Collision
Hidden Collision
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THE MODEL (1)



Interference due to re-use of the same channel at
“close” or “very close” sites.

Contributions also from sites using only close
channels, since in practice transceivers do not
operate exclusively within the frequencies of their
assigned channels.

Direct Collisions: stations positioned in close
locations receive channels at least h apart

Hidden Collisions: channels for stations positioned
in very close locations are at least k apart

L(h,k)-Labeling Problem
17

THE MODEL (2)
Interference Graph
� One node per station
� One edge between two stations if they may 

communicate (and hence interfere)
� Labels interpreted as channels assigned to the nodes. 

f: node coloring function s.t.
- ∀ u, v ∈ V |f(u) - f(v)|≥ h if (u,v)∈ E
- ∀ u, v ∈ V |f(u) - f(v)|≥ k if ∃ w ∈ V s.t. (u,w) ∈ E

and (w,v) ∈ E

Objiective: minimizing the bandwidth σh,k

Minimum bandwidth: λh,k
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L(h,k)-LABELING (1)

Obs. The condition:
- ∀ u, v ∈ V |f(u) - f(v)|≥ k if ∃ w ∈ V s.t. (u,w) ∈ E

and (w,v) ∈ E
is often written as:

- ∀ u, v ∈ V |f(u) - f(v)|≥ k if dist(u,v)=2

The first one works both when h≥k and when h<k. 
It allows a triangle to be labeled with colors at mutual
distance at least max{h,k}, even if its nodes are at distance
1.
When h≥k the two conditions coincide.

Example: L(1,2)

0

1 2

0

2 4
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L(h,k)-LABELING (2)

Usually, the minimum used color is 0.
So, an L(h,k)-labeling having span σh,k(G) uses σh,k(G)+1
different colors.
This is slightly counter-intuitive, but it is used for
historical reasons.

The problem has been introduced in the ’90s with h=2
and k=1 in relation with a frequency assignment problem

[Griggs e Yeh ’92, Robertson ‘91]
This problem was already known in combinatorics in the
case h=1 and k=1 (coloring the square of a graph)

[Wegner ‘77]
20

L(h,k)-LABELING (3)



When h=1 and k=1 the problem is equivalent to the
classical vertex coloring of the square of a graph.

Given a graph G=(V, E), its square G2 is defined as a
graph having node set equal to V, and an edge between u
and v is in G2 iff:
- either (u,v) is in E
- or u and v are connected by a length 2 path in G
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A PARENTHESIS ON THE L(1,1)-LABELING (1)

If the graph is stored in an adjacency matrix:
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A PARENTHESIS ON THE L(1,1)-LABELING (2)

1 2 3

4 5 6

1 2 3

4 5 6

0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 0

A(G)=

0 1 1 1 1 0
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 0 1 0
1 1 1 1 0 0
0 1 1 0 0 0

A(G2)=

Compute A(G)2:

(aij)2=Σk=1…n aik akj

2 0 1 0 2 0
0 3 0 2 0 1
1 0 2 0 1 0
0 2 0 2 0 0
2 0 1 0 2 0
0 1 0 0 0 1

A(G) 2=

(aij)2=x iff there are x 2-length paths between i and j.
To store together the knowledge about 1-and 2-length paths: 
A(G)2+A(G) -> A(G2)

After its definition, the L(h,k)-labeling problem has been used to
model several problems:
• a kind of integer ‘control code’ assignment in packet radio
networks to avoid hidden collisions (L(0,1)-labeling problem)
• channel assignment in optical cluster-based networks (L(0,1)-
or L(1,1)-labeling depending on the fact that the clusters can
contain one ore more nodes)
• more in general, channel assignment problems, with a channel
defined as a frequency, a time slot, a control code, etc.

L(h,k)-labeling has been studied following many different
approaches: graph theory and combinatorics, simulated annealing,
genetic algorithms, tabu search, neural networks, … 23

L(h,k)-LABELING (4)
Example: L(2,1)-labeling of:

λ2,1≤5

0 0

3 5

1

4

λ2,1=5: by contradiction 0/4

0 2

4

!!! 24

L(h,k)-LABELING (5)



Lemma: λdh,dk=d λh,k
Proof. Divided into two parts: λdh,dk≥d λh,k and λdh,dk≤d λh,k.
1. λdh,dk≥d λh,k
Let f an L(dh, dk)-labeling. Define f’=f/d.
f’ is an L(h,k)-labeling and λdh,dk/d = σh,k(f’) ≥ λh,k.

2. λdh,dk≤d λh,k
Similarly, let f an L(h,k)-labeling. Define f’=fd.
f’ is an L(dh, dk)-labeling and λdh,dk ≤ σdh,dk(f’) =d λh,k. n

It follows that we can restrict to use values of h and k mutually
prime.
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L(h,k)-LABELING (6)
PROBLEM: What if f’=f/d does not produce integer values?

Lemma: Let x, y ≥ 0, d>0 and k in �+.
If|x-y|≥kd, then |x’-y’|≥kd,
where and

It follows we can restrict to use values of h and k integer
and mutually prime.
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L(h,k)-LABELING (7)

€ 

x'= x /d" #d

€ 

y'= y /d" #d

• The case k=0, for any h, is not usually considered
as an L(h,k)-labeling problem, as it coincides with
the classical vertex coloring
• The case h=k is very studied in the literatue as
the vertex coloring of the square of a graph.
• The case h=2k is the most studied.
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L(h,k)-LABELING (8) NP-COMPLETENESS RESULTS (1)
The decisional version of the problem is NP-complete,
even for small values of h and k:

L(0,1)-labeling of planar graphs
[Bertossi, Bonuccelli ‘95]

L(1,1)-labeling of general, planar, bounded degree 
and e unit-disk graphs

[McCormick ‘83], [Ramanathan, Loyd ‘92], 
[Ramanathan ‘93], [Sen, Huson ‘97]

28



NP-COMPLETENESS RESULTS (2)

Th. The L(2,1)-labeling problem on diam. 2 graphs is NP-
complete [Griggs, Yeh ‘92]
Proof. Consider the following special form of the decisional 
problem:

DL. Instance: G=(V,E) diam. 2 graph
Question: λ2,1(G)≤|V|?

IDL. Instance: G=(V,E)
Question: Does exist an f injective s.t.

|f(x)-f(y)|≥2 if (x,y) ∈ E 
and  its codomain is {0, …, |V|-1}?

29

it never maps
distinct elements of 

its domain to the 
same element of its

codomain

NP-COMPLETENESS RESULTS (3)
(proof of NP-completeness cntd)

Finding a solution for IDL means finding a Hamiltonian 
path in GC:

Since f is injiective, f-1 is defined.
Give an order to nodes:
vi=f-1(i), 0≤i≤|V|-1
Observe that, since vi and vi+1 cannot be adjacent in G, they 

are adjacent in GC, hence 
v0, v1, …, v|V|-1 is a Hamiltonian path.

30

NP-COMPLETENESS RESULTS (4)

Even the reverse holds:
Given a Hamiltonian path in GC

v0, v1, …, v|V|-1 define f such that f(vi)=i,
0≤i≤|V|-1.
f is trivially injiective; furthermore, given an edge {x,y}

of G, x=vi and y=vj, it must hold:
|f(x)-f(y)|≥2 because x and y are not adjacent in GC.

It follows that the two problems are equivalent.
31

(proof of NP-completeness cntd)

NP-COMPLETENESS RESULTS (5)

The following problem:
HP. Instance: G=(V,E)

Question: Does G have a hamiltonian path?
is NP-complete, so even IDL is NP-complete.

DL is in NP:
We can verify in polynomial time that G has diameter 2, 

whether a labeling f is a feasible L(2,1)-labeling, and 
whether λ2,1(G) ≤||f(G)|| ≤|V|.
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(proof of NP-completeness cntd)

Instance: G=(V,E) diam. 2 graph
Question: λ2,1(G)≤|V|?



NP-COMPLETENESS RESULTS (6)

Transformation from IDL to DL to prove that DL is
NP-complete:

Given an instance of IDL G, construct G’:
• V’=V U{x}
• E’=E U {{x,a} for each a in V}
So|V’|=|V|+1 and G’ has diameter 2

33

(proof of NP-completeness cntd)

NP-COMPLETENESS RESULTS (7)

We prove that from a solution for DL it is possible to deduce 
a solution for IDL, i.e. there is an injection f s.t.

|f(x)-f(y)|≥2 for every (x,y) ∈ E iff λ2,1(G’)≤|V’|.
• => If there exists an injection f defined on V that satisfies the 

condition above, define g(v)=f(v) for all v∈ V and 
g(x)=|V|+1=|V’|.

Easily g is an L(2,1)-labeling for G’ and λ2,1(G’) ≤||g(G’)|| ≤|V’|
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(proof of NP-completeness cntd)

NP-COMPLETENESS RESULTS (8)

• <= Conversely, suppose that λ2,1(G’) ≤|V’|, i.e. there exists
a feasible L(2,1)-labeling g s.t. ||g(V’)||≤|V’|=|V|+1.

Observe that G’ of diam. 2 implies that
g(a)≠g(b) for each a≠b

• Suppose g(x)≠|V|+1 and ≠0. By the property of L(2,1)-
labeling, there is no v in V such that g(v)=g(x)-1 or 
g(x)+1. So we need |V|+3 labels for V’ i.e. 
λ2,1(G’)≥|V’|+1: a contardiction.
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(proof of NP-completeness cntd)

NP-COMPLETENESS RESULTS (9)

• So g(x) is either 0 or |V|+1.
• If g(x)=|V|+1 => f(v)=g(v) OK
• If g(x)=0 => f(v)=g(v)-2 OK
In any case, there exists f injective s.t. its codomain 

is {0, …, |V|-1}.

The NP-compleness of DL follows. n

36

(proof of NP-completeness cntd)



Literature in different directions:

n Lower and upper bounds for  λh,k

n Limitation to special graph classes:

• Exact labelings
• Approximate labelings

37

LOWER BOUNDS (1)

¢ λ2,1 ≥ Δ+1
0

1
…

Δ-1
Δ+1

n λh,k ≥ (Δ-1)k+h
for h≥k

= (Δ-1)1+2

38

Incidence graph of a projective plane π(n) of order n, 
G=(U∪V, E) s.t.

- |U|=|V|=n2+n+1
- u∈U corresonds to a point Pu of π(n)
- v∈V corresonds to a line lv of π(n)
- E={(u,v) s.t. Pu∈ lv }

n ∃ G s.t. λ2,1(G) ≥ Δ2- Δ [Griggs, Yeh ‘92]
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LOWER BOUNDS (2)

- G is regular and Δ=n+1
- For each pair of nodes in U (or in V), their distance 

is 2,
- ∀ u,v∈U (∈V), |Adj(u) ∩ Adj(v)|=1 
⇒ λ2,1(G) ≥ |U|-1=|V|-1=Δ2- Δ

40

LOWER BOUNDS (3)



Greedy Algorithm:
Given a graph G with nodes v1, v2, …, vn, 

label its nodes in order assigning to vi the smallest color 
not conflicting with the labels of its neighborhood (dist. 1 
and 2)

41

UPPER BOUNDS (1)

¢ Th. λ2,1(G) ≤ Δ2+2Δ [Griggs, Yeh ‘92]
¢ Proof.

In order to label this… →

…we have to eliminate at most 3 colors
for each one of these…                  →

…and at most one color for 
each one of these…        →

We can label all the graph with at most 1+3Δ+(Δ-1)Δ
colors.
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UPPER BOUNDS (2)

Conjecture: λ2,1(G) ≤ Δ2 [Griggs, Yeh ‘92]

This upper bound is tight: some graphs with degree
Δ, diameter 2 and Δ2+1 nodes have λ at leats Δ2.

0

32

14

3

75

91

0

28

46
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UPPER BOUNDS (3)

Conjecture: λ2,1(G) ≤ Δ2 [Griggs, Yeh ‘92]

n λ2,1(G) ≤ Δ2+2Δ-4 [Jonas ‘93]

n λ2,1(G) ≤ Δ2+Δ [Chang, Kuo ‘96]

n λ2,1(G) ≤ Δ2+Δ-1 [Kral, Skrekovski ‘03]

n λ2,1(G) ≤ Δ2+Δ-2 [Goncalves ‘05]

n λ2,1(G) ≤ Δ2 for sufficiently large values of Δ
[Havet, Reed and Sereni ‘08]
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UPPER BOUNDS (4)



EXACT RESULTS: CLIQUES Kn

n λ2,1(Kn)=2(n-1)
n All nodes are pairwise 

adjacent

45

0

4

2

6

2(n-1)

EXACT RESULTS: STARS K1,t
n λ2,1(K1,t)=t+1
Proof.
n λ2,1(K1,t)≤t+1 easy
n λ2,1(K1,t)≥t+1 

by contradiction 0

4

2

1

3.

t-1

t+1
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EXACT RESULTS: TREES Tn (1)

n λ2,1(Tn)=Δ+1 or Δ+2
Proof.
n λ2,1(Tn) ≥Δ+1 because Tn contains a K1,Δ

n λ2,1(Tn) ≤Δ+2 
first-fit (greedy) labeling:

Order the nodes of Tn: Tn-1=Tn-{vn} where vn is a leaf. 
In general Ti=Ti+1-{vi+1}

Label v1 with 0.
Label vi with the first available color. 

47

(proof: either λ2,1(Tn)=Δ+1 orΔ+2 – cntd)

…
vi+1

vj

vj parent of vi+1
necessarily j≤i+1 (the nodes
that are closer to the leaves have
larger numebring)
vj has at most Δ-1 further
adjacent nodes

At most 3 colors are forbidden due to vj
At most Δ-1 colors are forbidden due to the nodes that
are adjacent to vj
If we have at least (Δ-1)+3+1 colors, we are always
able to label vi+1 i.e. λ2,1(Tn) ≤Δ+2. n
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EXACT RESULTS: TREES Tn (2)

Assume we have already labeled all nodes from v1 to vi and we
are going to label vi+1:



• This proof has been proposed by Griggs e Yeh [’92], who
have also conjectured that it is NP-complete to decide
whether the correct value is Δ+1 or Δ+2.

• Chang e Kuo [’96] have disproved this conjecture by
providing a polynomial algorithm based on the dynamic
programming technique and having time complexity
O(Δ4.5 n).

• Many authors have proposed many other algorithms
aiming at improving the time complexity.

• Finally, Hasunama, Ishi, Ono, Uno [’08] have proposed
a linear algorithm.

49

EXACT RESULTS: TREES Tn (3) EXACT RESULTS: PATHS Pn
n λ2,1(P2)=2
n λ2,1(P3)=3
n λ2,1(P4)=3

n λ2,1(Pn)=4 if n≥5

From the results for the stars

4 2 0 3 1 To prove that λ2,1(P5)≤4: 

1 3 0 2

P5 includes a P4 so λ2,1(P5)≥3.
By contradiction λ2,1(P5)=3

0 2 0 !!!3

If n≥5 the result follows from the previous one
and from the result for trees.
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EXACT RESULTS: CYCLES Cn (1)
n λ2,1(Cn)=4

If n≤4: case by case: 4 2 0

If n≥5: Cn contains Pn so λ2,1(Cn) ≥4.
It also holds λ2,1(Cn) ≤4:

3 cases: …

41 3 0

51

1. n=0 (mod 3)

(proof: λ2,1(Cn)=4 – cntd)

0 2 4 0 2 4

2. n=1 (mod 3) 0 2 4 0 3 1 4

3. n=2 (mod 3) 0 2 4 0 2 4 1 3
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EXACT RESULTS: CYCLES Cn (2)



EXACT RESULTS: GRIDS (1)
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Fig. 3: L(1, 1)-, L(2, 1)- and L(3, 1)-labelings of regular grids.
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EXACT RESULTS: GRIDS (2)
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feasible both for the hexagonal and for the squared
tiling; for the triangular tiling we can color H with the
sequence 0; 1; 4; 3; 2; 5 plus 0 in the middle, where f1 ¼
"2; f2 ¼ "2 and f3 ¼ 2: &

Theorem 2.3. For any degree D regular tiling of the plane
and h ¼ 0; 1; 2; it holds lh;1 ¼ Dþ 2h " 2:

Proof. Lemmas 2.1 and 2.2 prove the assertion. &

We remark that our bound on the number of colors
has the same elegant appearance as the following
general lemma:

Lemma 2.4 (Bertossi and Bonuccelli [1], Griggs and Yeh
[12], Yeh [18]). For any graph G; the following lower
bound holds: lh;1XDþ h" 1:

For these networks, a channel can be assigned to any
node in constant time, provided that relative positions
of the node in the network is locally known. As an
example, we will show only the function relative to the
hexagonal tiling, in order not to make tedious the
reading. Analogous functions can be derived for the
other tilings.

Let us consider the hexagonal tiling as in Fig. 3. The
general node of coordinates ði; jÞ must be labeled with
color:

0 if either i ¼ 0 mod 3 and j ¼ Ii=3mþ 0 mod 4 or
i ¼ 1 mod 3 and j ¼ Ii=3mþ 2 mod 4;

1 if either i ¼ 0 mod 3 and j ¼ Ii=3mþ 1 mod 4 or
i ¼ 2 mod 3 and j ¼ Ii=3mþ 0;

2 if either i ¼ 1 mod 3 and j ¼ Ii=3mþ 3 mod 4 or
i ¼ 2 mod 3 and j ¼ Ii=3mþ 1 mod 4;

3 if either i ¼ 0 mod 3 and j ¼ Ii=3mþ 2 mod 4 or
i ¼ 1 mod 3 and j ¼ Ii=3mþ 3þ 0 mod 4;

4 if either i ¼ 0 mod 3 and j ¼ Ii=3mþ 3 mod 4 or
i ¼ 2 mod 3 and j ¼ Ii=3mþ 2 mod 4;

5 if either i ¼ 1 mod 3 and j ¼ Ii=3mþ 1 mod 4 or
i ¼ 2 mod 3 and j ¼ Ii=3mþ 3 mod 4:

3. Preliminary results

In this section we introduce some notations and two
lemmas which the algorithm presented in the next
section is based on.

A graph G is called planar if it can be represented on a
plane by distinct points for nodes and simple curves for
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APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(1)

¢ λ2,1(G) ≤ 2Δ+4 because G has treewidth 2
¢ Jonas [’93]: λ2,1(G) ≤ 2Δ+2
¢ Bodlaender et al. [’04]: λ2,1(G) ≤ Δ+8 but they conjecture 

that λ2,1(G) ≤ Δ+2 -> possible students’ lesson
¢ C.& Petreschi [’04] Δ+1 ≤ λ2,1(G) ≤ Δ+2 and they conjecture 

that this algorithm gives the optimum value.

56



APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(2)

Def. A graph is said to 
be outerplanar if it can 
be represented as a 
plane graph so that 
each node lies on the 
border of the external 
face

57

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(3)

¢ Ordered Breadth First Tree:
¢ Choose a node r
¢ Induce a total order on the 

nodes on the external face
¢ Run a BFS from r so that 

nodes coming before in the 
ordering are visited before 
than the others.
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APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(4)
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APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(5)
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Th. (well known) 
G=(V, E); BFT T=(V, E’)
Each non tree edge (vl,h, vl’,k)

satisfies one of the following:
¢ l’=l
¢ l’=l-1 and r<k, where vl-1,r is

the parent of vl,h.



APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(6)
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Th.  G=(V, E); OBFT T=(V, E’):
¢ If (vl,h, vl,k), h<k, then k=h+1
¢ If vl,h is a child of vl-1,i and (vl,h, vl-1,k) is a non tree edge,

i<k, then k=i+1 and vl,h is the rightmost of its siblings

(orange edges are not
admissible)

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(7)
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Lemma. If Δ≥4, Δ+2 colors are necessary.
Proof.

0

6 4 2 5 3

0  1  2  3  4  5  6 

0

4 2 5

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(8)
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¢ Lemma. If the root of the tree has an already assigned 
color, then Δ+3 colors are necessary.

Proof. 2

7 5 0 6 4

0  1  2  3  4  5  6  7 
General 
technique

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(9)
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¢ INPUT: G outerplanar with max degree Δ

¢ OUTPUT: a feasible L(2,1)-labeling for G
¢ Consider a node v with max degree and run an OBFS 

starting from v
¢ Label(v)← 0
¢ Label the first layer according to the previous Lemma
¢ For each layer l≥2, top-down, from left to right

repeat
Label the children of vl,k according to the previous
Lemma, eliminating from the palette the forbidden
colors



(only for the right child…)

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(10)
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¢ INPUT: G outerplanar with max degree Δ
¢ OUTPUT: a feasible L(2,1)-labeling for G

¢ Consider a node v with max degree and run an OBFS starting from v
¢ Label(v)← 0
¢ Label the first layer according to the previousLemma
¢ For each layer l≥2, top-down, from left to right

repeat
Label the children of vl,k according to the previous Lemma, 

eliminating from the palette the forbidden colors

An example:

0

6 4 2 5 30  1 2  3  4  5  6 

0 1 2  3  4 5  6
1

0 1 2 3 4 5  6 7 

1 7

5 3
3

5

2 0

8

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(11)
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Correctness and Bounds

¢ Best previously known results: λ≤Δ+8 for each Δ
[BKTL’00]

¢ Conjecture [BKTL00]:λ≤Δ+2 for each Δ
¢ Th. The provided algorithm correctly L(2,1)-labels each

outerplanar graph with max degree Δ≥8 with λ≤Δ+2 in
linear time; otherwise, at most 11 colors are anyway
necessary.

¢ Proof. By induction, considering the edges coming out
from the subgraph induced by any node and its
children…

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(12)
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¢ a. one tree-edge to the father of vl-1,k
¢ b. at most three non-tree edges connecting vl-1,k withsome nodes either at the same layer or at the previouslayer
¢ c. at most two non-tree edges from the leftmost sibling
¢ d. at most two non-tree edges from the rightmost sibling
The other outgoing edges do not contribute to the labeling

during this step.

vl-1,k

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(13)
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(Proof sketch) By inductive hypothesis at most Δ+3 colors
have been used. We prove that they are sufficient to
label the children of vl-1,k.

We cannot use:
¢ At most 3 colors (for vl-1,k)�Δ
¢ At most 1 color (edge a)�Δ-1
¢ At most x colors (edges b), 0≤x≤3 �Δ-1-x for the Δ-1-xchildren of vl-1,k
¢ The c edges give

conditions only on
1 or 2 nodes, hence it
is possible to arrange

¢ Analogously for the d
edges n

vl-1,k



APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(14)

69

The special case Δ=3

¢ There exists an infinite class of outerplanar graphs
having Δ=3 requiring λ=Δ+3

¢ It is possible to provide a labeling algorithm for these
graphs using λ≤Δ+5

2 5 0 2

4 1 3 6

40

APPROXIMATE RESULTS: OUTERPLANAR GRAPHS(15)
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VARIATIONS OF THE PROBLEM
71

VARIATIONS OF THE PROBLEM (1)
ORIENTED L(2,1)-LABELING

o An oriented L(2,1)-labeling of a directed graph G
is a function assigning colors from 0, … ,λ to the
nodes of G so that nodes at distance 2 in the
graph take different colors and adjacent nodes
take colors at distance 2.

o Oriented L(2,1)-labeling problem
minimizing λ

o Note. The minimum value of λ can be very
different from the value of the same parameter
in the undirected case. Example: trees… 72



o Reminder: In undirected trees, Δ+1 ≤ λ ≤ Δ+2, and the
exact value is linearly decidible

[Chang & Kuo ‘96, Hasunama et al. 2008]
o In directed trees, λ ≤ 4 [Chang & Liaw ’03]

0

44

222

0

0 0

4 4
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VARIATIONS OF THE PROBLEM (2)
ORIENTED L(2,1)-LABELING

Available papers
on the oriented
L(2,1)-labeling of other
graphs for possible student lessons…

With the aim of making the model more realistic:
¢ An L(h1, …, hk)-labeling of a graph G is a function

assigning integer values to the nodes of the graph
such that:
|l(u)-l(v)|≥hi if u and v are at distance i in the
graph, 1≤i≤k.

¢ L(h1, …, hk)-labeling problem: minimizing λ
¢ Particularly interesting: L(2,1,1) and L(δ, 1, …, 1).
¢ Even these special cases are NP-hard on general

graphs, so special classes of graphs are handled.
74

VARIATIONS OF THE PROBLEM (3)
L(h1, …, hK)-LABELING

If the topology has a backbone, where the transmitting
power is higher wrt the rest of the network:

¢ A Backbone coloring of a graph G wrt a graph H is a
function assigning integer values to the nodes of the
graph such that:
|l(u)-l(v)|≥2 if (u,v) is an edge of H and

|l(u)-l(v)|≥1 if (u,v) is an edge og G-H.
¢ Backbone coloring problem:

minimizing λ
Available papers on this coloring for student lessons…

75

VARIATIONS OF THE PROBLEM (4)
BACKBONE COLORING

In practice, each transmitting station is able to handle
more than one channel, so a set of channels is
assigned to it.

¢ Given two set of integer values I and J, we define
dist(I,J)=min{|i-j|: i in I and j in J }

Example:
I={0,1,2}; J={4,5,6}; dist{I,J}=2.

76

VARIATIONS OF THE PROBLEM (5)
n-MULTIPLE L(h,k)-LABELING



¢ An n-multiple L(h,k)-labeling of a graph G is a
function assigning n integer values to each node of
the graph so that:
dist(l(u),l(v)) ≥ h if (u,v) is an edge of G and
dist(l(u),l(v)) ≥ k if u and v are at dist. 2 in G.

¢ n-multiple L(h,k)-labeling problem:
minimizing λ, given n.

77

VARIATIONS OF THE PROBLEM (6)
n-MULTIPLE L(h,k)-LABELING

In the special case in which the network is a GSM:
¢ The network is a cellular network with hexagonal

cells.
¢ Each cell has its own station connecting the fixed

network devices with the mobile devices that are at
moment inside the cell.

¢ Mobile phones connect to the GSM network trying to
communicate with the station associated to the cell
where they lie.

78

VARIATIONS OF THE PROBLEM (7)
FREQUENCY ASSIGNMENT IN A GSM NETWORK

In a GSM network, the cells need to use different
frequences, in order not to interfere.

¢ Coloring map problem: given a plane map, the
problem consists in coloring each region in such a
way that adjacent regions take different colors and
that the min number of colors is used.

¢ Four Color Theorem: It is always possible to color a
map using at most 4 colors.

79

VARIATIONS OF THE PROBLEM (8)
FREQUENCY ASSIGNMENT IN A GSM NETWORK

¢ It follows that 4 different frequencies are sufficient
for an arbitrary GSM network:

80

VARIATIONS OF THE PROBLEM (9)
FREQUENCY ASSIGNMENT IN A GSM NETWORK



¢ In fact, more sofisticated variations of this problem
lead to 7 colors -> L(h,k)-labeling again
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VARIATIONS OF THE PROBLEM (10)
FREQUENCY ASSIGNMENT IN A GSM NETWORK

More in detail…

¢ In wireless communication networks of the 1st and
2nd generation, the concept of cellular channel
allocation and spatial frequency reuse were the key
ideas that have driven the initial success of mobile
telephony.

¢ For example, a seven color labeling of a hexagonal
grid was on the basis of the AMPS (American Mobile
Phone System).

¢ The same scheme existed for GSM.
¢ …
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VARIATIONS OF THE PROBLEM (11)
FREQUENCY ASSIGNMENT IN A GSM NETWORK

¢ In the 3rd generation of mobile systems, the
introduction of CDMA (Code Division Multiple
Access) has enabled the reuse of the whole frequency
band in each cell: instead of dividing the signal space
in time or frequency, a code of pseudorandom
sequence is used to differentiate the signal from each
transmitter.

¢ In this context, the labeling schemes were of much
reduced importance.

¢ …
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VARIATIONS OF THE PROBLEM (12)
FREQUENCY ASSIGNMENT IN A GSM NETWORK

¢ The 4th generation mobile standards mainly use
Orthogonal Frequency Division Multiple Access
schemes.

¢ These schemes divide the signal space in time slots
and orthogonal frequencies.

¢ At the middle of a cell, all slots of time and
frequencies are allocated to users. At the edge of a
cell, only part of the band is used and a three color
scheme is used.

¢ Even this model can be reduced to a labeling scheme.
For further details:

[Archetti, Bianchessi, Hertz, Colombet, Gagnon ’13]
84

VARIATIONS OF THE PROBLEM (13)
FREQUENCY ASSIGNMENT IN A GSM NETWORK



¢ Given a map, it can be naturally considered a planar 
graph G.

¢ Given G, let G* its dual graph:
� Put a node of G* in each region of G
� Connect two nodes of G* iff the corresponding

regions (faces) are adjacent (i.e. share an edge in 
G)

¢ A vertex coloring of G* corresponds to a map coloring
of G.
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A PARENTHESIS ON THE 4 COLOR PROBLEM (1)
¢ In fact, cartographers have always known that 4 colors

were enough for each kind of map, but in 1852 Francis
Guthrie wondered whether this fact could be proved.

¢ After more than 100 years, and many (wrong)
announcements, Appel and Haken proved the 4 Color
Theorem in 1976.

¢ The complete proof is computer assisted because it
exhaustively examines more than 1700 configura- tions.

¢ More recently, Robertson, Sanders, Seymour, and
Thomas wrote a new proof, needing to examine “only”
633 configurations. 86

A PARENTHESIS ON THE 4 COLOR PROBLEM (2)

There are some interesting results for other numbers of 
colors:

¢ 2-coloring. 
Polynomially solvable:
� Assign a color to a region. 
� Assign the other color to its neighbor regions. 
� Assign the first color to its neighbor regions.
� Continue until the regions have been all colored or 

there is a color conflict. In this latter case the map is
not 2-colorable. 87

A PARENTHESIS ON THE 4 COLOR PROBLEM (3)

¢ 3-coloring 
� NP-hard, hence no algorithms to decide whether a map

is 3-colorable or not.
� Method: exhaustively try all the color combinations for

the regions.
� Inapplicable: for N regions, there are 3N possibilities. (if

N=48 the combinations are about 8x1022)
� …

88

A PARENTHESIS ON THE 4 COLOR PROBLEM (4)



¢ 3-coloring (cntd) 
� There are some techniques in order to simplify the map

before coloring it (for example, if a region has only 2
neighbor regions, it can be eliminated from the map:
when it is re-inserted, it will be colored with the third
color) but the worst case time complexity is the same.
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A PARENTHESIS ON THE 4 COLOR PROBLEM (5)

¢ 4-coloring 
� The proof of the 4 color theorem is constructive, and

so it shows how to find a feasible coloring, but the
number of cases is too high to be useful in practice.

� There are some transformations, similar to those used
for the 3-coloring, but they do not eliminate the need
of exhaustively try all the possibilities.
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A PARENTHESIS ON THE 4 COLOR PROBLEM (6)

¢ 5-coloring 
� It is relatively easy to color a map using 5 colors.

There is an algorithm that first simplifies the map
eliminating all the regions and then re-insert them
assigning the correct color.
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A PARENTHESIS ON THE 4 COLOR PROBLEM (7)
We conclude with a puzzle:
Try to 4-color these 2 maps…
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A PARENTHESIS ON THE 4 COLOR PROBLEM (8)

In 1975 Martin Gardner claimed he 
could prove that this map was not 4-
colorable (April fool)



Solutions
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A PARENTHESIS ON THE 4 COLOR PROBLEM (9)


