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THE PROBLEM OF MINIMIZING 
BOOLEAN CIRCUITS 

I.E. 
THE MINIMUM  

SET COVER PROBLEM 
THE PROBLEM 
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MINIMIZING BOOLEAN FUNCTIONS (1) 

!  All the datapath and control structures of a digital 
device can be represented as boolean functions, which 
can take a disjunctive normal form (DNF) on the 
variables and their complements: 

   y=C1 ��C2�…�Cm 
where Ci=li1�…�liki and lij is choosen among n boolean 
variables.  
!  These boolean functions must be converted into logic 

networks in the most economical way possible.  
!  What qualifies as the “most economical way possible” 

varies, depending on whether the network is built using 
discrete gates, a programmable logic device with a fixed 
complement of gates available, or a fully-customized 
integrated circuit. But in all cases, minimization yields 
a network with as a small number of gates as possible, 
and with each gate as simple as possible. 3 

MINIMIZING BOOLEAN FUNCTIONS (2) 

To appreciate the importance of minimization, 
consider as an example the following function: 
     y=(a’�b’�c)��a’�b�c’���a�b’�c’��(a�b’�c)�(a�b�c’) �(a�b�c) 

which can be easily translated in circuit as follows: 
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Note: lij’ 
means 
not lij  



MINIMIZING BOOLEAN FUNCTIONS (3) 

! But there is another circuit that produces at y 
exactly the same result if you put the same pattern 
of values into the corresponding inputs.  

! Yet, this second network uses far fewer gates, and 
the gates it uses are simpler (have smaller fan-ins) 
than the gates of the first network. 
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MINIMIZING BOOLEAN FUNCTIONS (4) 

! Clearly, the minimized circuit is less expensive to 
build than the unminimized version.  

! Although it is not true in this case, it is often the 
case that minimized networks will be faster (have 
fewer propagation delays) than unminimized 
networks.      
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MINIMIZING BOOLEAN FUNCTIONS (5) 

Problem: We are given a particular Boolean function 
of n variables, which for each of the 2n possible input 
vectors describes whether the desired output is 0 or 1.  
We seek the simplest circuit that exactly implements 
this function.  
 Example: y=(a�b’)��a�c���b’�c’��(a’�c)�(a�b) �(b�c) 
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abc 1st 2nd 3rd 4th 5th 6th 

000 1 

001 1 

010 

011 1 1 

100 1 1 

101 1 1 

110 1 

111 1 1 1 

Note:  
•  Rows indicate inputs; 
•  Columns indicate clauses; 
•  1 means that the clause 

is true for that input; 
•   0s are omitted. 

MINIMIZING BOOLEAN FUNCTIONS (6) 

We could build one and term for each input vector 
and then or them all together, but we might save 
considerably by factoring out common subsets of 
variables.  
Given a set of feasible and terms, each of which 
covers a subset of the vectors we need, we seek to or 
together the smallest number of terms that realize 
the function.  
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y=(a�b’)��a�c���a’�c’���
���������������(a’�c)�(a�b) �(b�c) 
 

abc 1st 2nd 3rd 4th 5th 6th 

000 1 

001 1 

010 1 

011 1 1 

100 1 

101 1 1 

110 1 

111 1 1 1 

Note: orange columns can 
be ignored without 

affecting the realization of 
the function 



MINIMIZING BOOLEAN FUNCTIONS (7) 
This is exactly the set cover problem: 
Set Covering Problem: 
Given a set of subsets S={S1, …, Sn} of the universal set U 
such that             
 
what is the smallest subset J of {1, ..n} such that 

          ? 
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abc 1st 2nd 3rd 4th 5th 6th 

000 1 

001 1 

010 1 

011 1 1 

100 1 

101 1 1 

110 1 

111 1 1 1 

Si =U
i∈J


Si =U
i=1..m


000 001 010 011 

100 101 110 111 

000 001 010 011 

100 101 110 111 

Incidence matrix of the set of subsets 

THE SET COVERING PROBLEM 
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ILP FORMULATION OF  SET COVER 

! Let xi be a boolean variable associated with each 
subset Si.  

!  xi  is 1 if Si  is in the solution, and 0 otherwise. 
!  The following ILP encodes the Set Covering 

Problem: 
   s.t. 
 
    
In other words, every element of U is present in at 
least one of the chosen subsets, and their number 
must be minimized. 11 

min xi
i=1

n

∑
xi ≥1∀e∈U

i:e∈Si

∑

xi ∈ 0,1}{

COMPLEXITY OF  SET COVER 

! Vertex cover can be seen as a special case of set 
covering, namely:  
!  Instance of VC: G=(V,E) 
!  Instance of SC: the universe is the set of edges E and the subsets 

are: for each node v, Sv ={ej : v is adjacent to edge ej}.  
!  Solving SC implies solving VC hence: 

   Th. The Set Covering Problem is NP-hard. 
! Note that this collection of sets has the property that 

each universe element appears in exactly two sets.  
! This leads to what is called the f-frequency set cover 

problem where each element occurs in at most f sets.  
! Vertex cover is essentially the 2-frequency set cover 

problem.  
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OTHER APPLICATIONS 

The set covering problem has many applications. Two 
are listed here.  
! There are n files S1, …, Sn, and there are m  

requests for information. Each unit of information is 
stored in at least one file. Find a subset of the files 
of minimum cardinality such that searching these 
will retrieve all the requested information.  

! An airline has m flights x1, …, xm.  These flights can 
be combined into “flight legs” S1, …, Sn  such that 
the same crew can service all the flights in leg Sj.  
Find the minimum number of crews required to 
service all flights. Note that the number of flight 
legs may be much larger than the number of crews.  13 

APPROXIMATION ALGORITHMS (1) 

A simple approximation algorithm is the greedy 
algorithm, whose performance is O(log |U|). 
Algorithm Greedy 
Input: family S={S1, …, Sn} of the universal set U 
Output: J subset of {1, …, n} s.t. 
X = U /*currently uncovered elements  
J=empty set 
While X is not empty do 
   choose a subset Sj in S such that |Sj   X| is max 
   X=X\Sj 

   J=J   {j} 
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Si =U
i∈J






APPROXIMATION ALGORITHMS (2) 

Th. The performance ratio of Algorithm Greedy is 
O(ln |U|). 
Proof. The proof is based on the key point that the 
greedy chosen set Sj is such that: 
 
This obs. is a consequence of the greedy choice, and 
the def. of optimal solution: Jopt covers all elements of 
U, and hence also the elements of X. By averaging 
among the sets in Jopt, the one which covers the max 
number of points of X must cover at least |X|/|Jopt|. 
Since the greedy alg. chooses among all the sets the 
one with the max new coverage, this coverage must be 
at least as much as claimed. 15 

| Sj∩X |≥ | X |
| Jopt |

APPROXIMATION ALGORITHMS (3) 

(proof of the performance ratio of Alg Greedy – cntd) 
 
Let the indices of the sets picked by the greedy alg. in 
the order they were picked be j1, …, jg. 
For t=1, …, g  let Xt  be the set X  just before the set Jjt  
was picked. 
So, for example, X1=U.  
Define Xg+1=empty set. 
The following simple recurrency holds: 
|Xt+1|=|Xt|-|Sjt    Ut|. 
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



APPROXIMATION ALGORITHMS (4) 

(proof of the performance ratio of Alg Greedy – cntd) 
 
Join together 
|Xt+1|=|Xt|-|Sjt    Ut| and                        to get: 
 
|Xt+1|≤|Xt|-|Xt|/|Jopt|=|Xt|(1-1/|Jopt|). 
Enrolling the recurrence: 
|Xt+1|≤|Xt|(1-1/|Jopt|) ≤|Xt-1|(1-1/|Jopt|)2 ≤ … 
  ≤|Xt-(t-1)|(1-1/|Jopt|)t=|X1|(1-1/|Jopt|)t=  

  =|U|(1-1/|Jopt|)t 
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 | Sj∩Xt |≥
| Xt |
| Jopt |

APPROXIMATION ALGORITHMS (5) 

(proof of the performance ratio of Alg Greedy – cntd) 
|Xt+1|≤|U|(1-1/|Jopt|)t 

 
 
 
 
 
 
 
Since Xg is not empty: |Jgreedy|-1=g-1≤|Jopt| ln |U|. 

        " 
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|U |
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∀t =1,...,g

APPROXIMATION ALGORITHMS (6) 

This result is the best we can do, indeed: 
 
If we call n=|U|, Set Cover cannot be approximated 
within: 
!   a factor of ½ log n [Lund & Yannakakis ‘94] 

!  a factor of (1-o(1))ln n [Feige ‘98] 

(unless NP has quasi-polynomial time algs) 

!  a factor of c log n [Raz & Safra ‘97] 

!  a similar result with a higher value of c [Alon, 
Moshkovitz & Safra ‘06] 

(unless P does not coincides with NP – weaker hypothesis). 19 

APPROXIMATION ALGORITHMS (7) 

Another approximation algorithm is based on a 
relaxation of the ILP formulation. 
Let F the max frequency of an element, i.e. the max 
number of subsets an element appears in. 
Algorithm LP 
Input: family S={S1, …, Sn} of the universal set U 
Output: J subset of {1, …, n} s.t. 
Solve the LP formultion and let x’1,…, x’n be a solution 
for i=1 to n do 
   if x’i≥1/F  
      then xi=1  
      else xi=0 20 



APPROXIMATION ALGORITHMS (8) 

Th. Alg LP works correctly and its approximation 
ratio is F. 
Proof. Let us remind the LP formulation: 
                    s.t. 
 
In every constraint, there are at most F variables to 
be summed, so at least one of them must have value 
≥1/F. So, the whole universe U is covered. 
 
Since xi=1 if x’i≥1/F and 0 otherwise, it holds that 
x’i≥xi/F from which: |Jopt|≥                       ≥|J|.   " 
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min xi
i=1

n

∑ xi ≥1∀e∈U
i:e∈Si

∑

x 'i ≥
1
F

xi
i=1

n

∑
i=1

n

∑

APPROXIMATION ALGORITHMS (9) 

The same approximation ratio can be achieved by 
extending one of the algorithms designed for the vertex 
covering problem: 
Algorithm SetCover 
Input: family S={S1, …, Sn} of the universal set U 

Output: J subset of {1, …, n} s.t. 
X = U /*currently uncovered elements  
J=empty set 
While X is not empty do 
   pick an element e of X not covered by J  
   add to J the indices of all sets Si containing e  
   eliminate from X all element covered by the found sets 
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Si =U
i∈J


APPROXIMATION ALGORITHMS (10) 

Th. Alg. SetCover works correctly and its    
      approximation ratio is F. 
Proof. It is a generalization of the proof for the Vertex 
Cover. 
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RELATED PROBLEMS (1) 

! Besides Vertex Cover, that is a special case of Set 
Cover, many other problems are related with Set 
Cover. 

! An instance of set covering can be viewed as an 
arbitrary bipartite graph, with sets represented by 
nodes on the left, the universe represented by nodes 
on the right, and edges representing the inclusion of 
elements in sets.  

! The task is to find a minimum cardinality subset of 
left-nodes which covers all of the right-nodes.  
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RELATED PROBLEMS (2) 

Example: 
U={1,2,3,4,5,6} 
S={{4}, {1,3}, {1,2,5},{2,4},{1,3,6},{3,5},{5},{2,6}} 
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{4} 
{1,3} 

{1,2,5} 
{2,4} 

{1,3,6} 
{3,5} 

{5} 
{2,6} 

1 
2 
3 
4 
5 
6 

RELATED PROBLEMS (3) 

Hitting set problem: 
Given a bipartite graph, the objective is to cover the left-
nodes using a minimum subset of the right nodes. 
Converting from Set Cover to the Hitting Set is therefore 
achieved by interchanging the two sets of vertices. 
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{4} 
{1,3} 

{1,2,5} 
{2,4} 

{1,3,6} 
{3,5} 

{5} 
{2,6} 

1 
2 
3 
4 
5 
6 

{4} 
{1,3} 
{1,2,5} 
{2,4} 

{1,3,6} 
{3,5} 
{5} 
{2,6} 

1 
2 
3 
4 
5 
6 

RELATED PROBLEMS (4) 

Edge Cover problem: 
Given a graph, an edge cover is a set of edges such that 
every node is incident to at least one edge of the set.  
The minimum edge cover problem is the problem of 
finding an edge cover of minimum size. 
! Edge Cover is a special case of Set Cover, where: 

!  U=V and S=E 
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RELATED PROBLEMS (5) 

Set Packing problem: 
Given a universe U and a family S of subsets of U, a 
packing is a subfamily J of S of sets such that all sets in 
are pairwise disjoint.  
In the set packing problem, the input is a pair (U,S), 
and the task is to find a set packing that uses the most 
sets. 
! Set Packing is the dual problem of Set Cover. 
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RELATED PROBLEMS (6) 

Exact Cover problem: 
Exact cover problem is to choose a Set Cover with no 
element included in more than one covering set. 
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