
Prof. Tiziana Calamoneri

Network Algorithms

A.y. 2016/17

1

THE PROBLEM OF MINIMIZING
BOOLEAN CIRCUITS

I.E.
THE MINIMUM

SET COVER PROBLEM
THE PROBLEM

2

MINIMIZING BOOLEAN FUNCTIONS (1)

!  All the datapath and control structures of a digital
device can be represented as boolean functions, which
can take a disjunctive normal form (DNF) on the
variables and their complements:

 y=C1 ��C2�…�Cm
where Ci=li1�…�liki and lij is choosen among n boolean
variables.
!  These boolean functions must be converted into logic

networks in the most economical way possible.
!  What qualifies as the “most economical way possible”

varies, depending on whether the network is built using
discrete gates, a programmable logic device with a fixed
complement of gates available, or a fully-customized
integrated circuit. But in all cases, minimization yields
a network with as a small number of gates as possible,
and with each gate as simple as possible. 3

MINIMIZING BOOLEAN FUNCTIONS (2)

To appreciate the importance of minimization,
consider as an example the following function:
 y=(a’�b’�c)��a’�b�c’���a�b’�c’��(a�b’�c)�(a�b�c’) �(a�b�c)

which can be easily translated in circuit as follows:

4

Note: lij’
means
not lij

MINIMIZING BOOLEAN FUNCTIONS (3)

! But there is another circuit that produces at y
exactly the same result if you put the same pattern
of values into the corresponding inputs.

! Yet, this second network uses far fewer gates, and
the gates it uses are simpler (have smaller fan-ins)
than the gates of the first network.

5

MINIMIZING BOOLEAN FUNCTIONS (4)

! Clearly, the minimized circuit is less expensive to
build than the unminimized version.

! Although it is not true in this case, it is often the
case that minimized networks will be faster (have
fewer propagation delays) than unminimized
networks.

6

MINIMIZING BOOLEAN FUNCTIONS (5)

Problem: We are given a particular Boolean function
of n variables, which for each of the 2n possible input
vectors describes whether the desired output is 0 or 1.
We seek the simplest circuit that exactly implements
this function.
 Example: y=(a�b’)��a�c���b’�c’��(a’�c)�(a�b) �(b�c)

7

abc 1st 2nd 3rd 4th 5th 6th

000 1

001 1

010

011 1 1

100 1 1

101 1 1

110 1

111 1 1 1

Note:
•  Rows indicate inputs;
•  Columns indicate clauses;
•  1 means that the clause

is true for that input;
•  0s are omitted.

MINIMIZING BOOLEAN FUNCTIONS (6)

We could build one and term for each input vector
and then or them all together, but we might save
considerably by factoring out common subsets of
variables.
Given a set of feasible and terms, each of which
covers a subset of the vectors we need, we seek to or
together the smallest number of terms that realize
the function.

8

y=(a�b’)��a�c���a’�c’���
���������������(a’�c)�(a�b) �(b�c)

abc 1st 2nd 3rd 4th 5th 6th

000 1

001 1

010 1

011 1 1

100 1

101 1 1

110 1

111 1 1 1

Note: orange columns can
be ignored without

affecting the realization of
the function

MINIMIZING BOOLEAN FUNCTIONS (7)
This is exactly the set cover problem:
Set Covering Problem:
Given a set of subsets S={S1, …, Sn} of the universal set U
such that

what is the smallest subset J of {1, ..n} such that

 ?

9

abc 1st 2nd 3rd 4th 5th 6th

000 1

001 1

010 1

011 1 1

100 1

101 1 1

110 1

111 1 1 1

Si =U
i∈J


Si =U
i=1..m


000 001 010 011

100 101 110 111

000 001 010 011

100 101 110 111

Incidence matrix of the set of subsets

THE SET COVERING PROBLEM
10

ILP FORMULATION OF SET COVER

! Let xi be a boolean variable associated with each
subset Si.

!  xi is 1 if Si is in the solution, and 0 otherwise.
!  The following ILP encodes the Set Covering

Problem:
 s.t.

In other words, every element of U is present in at
least one of the chosen subsets, and their number
must be minimized. 11

min xi
i=1

n

∑
xi ≥1∀e∈U

i:e∈Si

∑

xi ∈ 0,1}{

COMPLEXITY OF SET COVER

! Vertex cover can be seen as a special case of set
covering, namely:
!  Instance of VC: G=(V,E)
!  Instance of SC: the universe is the set of edges E and the subsets

are: for each node v, Sv ={ej : v is adjacent to edge ej}.
!  Solving SC implies solving VC hence:

 Th. The Set Covering Problem is NP-hard.
! Note that this collection of sets has the property that

each universe element appears in exactly two sets.
! This leads to what is called the f-frequency set cover

problem where each element occurs in at most f sets.
! Vertex cover is essentially the 2-frequency set cover

problem.
12

OTHER APPLICATIONS

The set covering problem has many applications. Two
are listed here.
! There are n files S1, …, Sn, and there are m

requests for information. Each unit of information is
stored in at least one file. Find a subset of the files
of minimum cardinality such that searching these
will retrieve all the requested information.

! An airline has m flights x1, …, xm. These flights can
be combined into “flight legs” S1, …, Sn such that
the same crew can service all the flights in leg Sj.
Find the minimum number of crews required to
service all flights. Note that the number of flight
legs may be much larger than the number of crews. 13

APPROXIMATION ALGORITHMS (1)

A simple approximation algorithm is the greedy
algorithm, whose performance is O(log |U|).
Algorithm Greedy
Input: family S={S1, …, Sn} of the universal set U
Output: J subset of {1, …, n} s.t.
X = U /*currently uncovered elements
J=empty set
While X is not empty do
 choose a subset Sj in S such that |Sj X| is max
 X=X\Sj

 J=J {j}
14

Si =U
i∈J






APPROXIMATION ALGORITHMS (2)

Th. The performance ratio of Algorithm Greedy is
O(ln |U|).
Proof. The proof is based on the key point that the
greedy chosen set Sj is such that:

This obs. is a consequence of the greedy choice, and
the def. of optimal solution: Jopt covers all elements of
U, and hence also the elements of X. By averaging
among the sets in Jopt, the one which covers the max
number of points of X must cover at least |X|/|Jopt|.
Since the greedy alg. chooses among all the sets the
one with the max new coverage, this coverage must be
at least as much as claimed. 15

| Sj∩X |≥ | X |
| Jopt |

APPROXIMATION ALGORITHMS (3)

(proof of the performance ratio of Alg Greedy – cntd)

Let the indices of the sets picked by the greedy alg. in
the order they were picked be j1, …, jg.
For t=1, …, g let Xt be the set X just before the set Jjt
was picked.
So, for example, X1=U.
Define Xg+1=empty set.
The following simple recurrency holds:
|Xt+1|=|Xt|-|Sjt Ut|.

16



APPROXIMATION ALGORITHMS (4)

(proof of the performance ratio of Alg Greedy – cntd)

Join together
|Xt+1|=|Xt|-|Sjt Ut| and to get:

|Xt+1|≤|Xt|-|Xt|/|Jopt|=|Xt|(1-1/|Jopt|).
Enrolling the recurrence:
|Xt+1|≤|Xt|(1-1/|Jopt|) ≤|Xt-1|(1-1/|Jopt|)2 ≤ …
 ≤|Xt-(t-1)|(1-1/|Jopt|)t=|X1|(1-1/|Jopt|)t=

 =|U|(1-1/|Jopt|)t
17

 | Sj∩Xt |≥
| Xt |
| Jopt |

APPROXIMATION ALGORITHMS (5)

(proof of the performance ratio of Alg Greedy – cntd)
|Xt+1|≤|U|(1-1/|Jopt|)t

Since Xg is not empty: |Jgreedy|-1=g-1≤|Jopt| ln |U|.

 "
18

| Xt+1 |
|U |

≤ 1− 1
| Jopt |

#

$
%%

&

'
((

t

⇒
|U |
| Xt+1 |

≥
| Jopt |
| Jopt |−1

#

$
%%

&

'
((

t

⇒ ln |U |
| Xt+1 |

≥ t ln 1+ 1
| Jopt |−1

#

$
%%

&

'
((≈

t
| Jopt |

⇒ t ≤| Jopt | ln
|U |
| Xt+1 |

∀t =1,...,g

APPROXIMATION ALGORITHMS (6)

This result is the best we can do, indeed:

If we call n=|U|, Set Cover cannot be approximated
within:
!  a factor of ½ log n [Lund & Yannakakis ‘94]

!  a factor of (1-o(1))ln n [Feige ‘98]

(unless NP has quasi-polynomial time algs)

!  a factor of c log n [Raz & Safra ‘97]

!  a similar result with a higher value of c [Alon,
Moshkovitz & Safra ‘06]

(unless P does not coincides with NP – weaker hypothesis). 19

APPROXIMATION ALGORITHMS (7)

Another approximation algorithm is based on a
relaxation of the ILP formulation.
Let F the max frequency of an element, i.e. the max
number of subsets an element appears in.
Algorithm LP
Input: family S={S1, …, Sn} of the universal set U
Output: J subset of {1, …, n} s.t.
Solve the LP formultion and let x’1,…, x’n be a solution
for i=1 to n do
 if x’i≥1/F
 then xi=1
 else xi=0 20

APPROXIMATION ALGORITHMS (8)

Th. Alg LP works correctly and its approximation
ratio is F.
Proof. Let us remind the LP formulation:
 s.t.

In every constraint, there are at most F variables to
be summed, so at least one of them must have value
≥1/F. So, the whole universe U is covered.

Since xi=1 if x’i≥1/F and 0 otherwise, it holds that
x’i≥xi/F from which: |Jopt|≥ ≥|J|. "

21

min xi
i=1

n

∑ xi ≥1∀e∈U
i:e∈Si

∑

x 'i ≥
1
F

xi
i=1

n

∑
i=1

n

∑

APPROXIMATION ALGORITHMS (9)

The same approximation ratio can be achieved by
extending one of the algorithms designed for the vertex
covering problem:
Algorithm SetCover
Input: family S={S1, …, Sn} of the universal set U

Output: J subset of {1, …, n} s.t.
X = U /*currently uncovered elements
J=empty set
While X is not empty do
 pick an element e of X not covered by J
 add to J the indices of all sets Si containing e
 eliminate from X all element covered by the found sets

22

Si =U
i∈J


APPROXIMATION ALGORITHMS (10)

Th. Alg. SetCover works correctly and its
 approximation ratio is F.
Proof. It is a generalization of the proof for the Vertex
Cover.

23

RELATED PROBLEMS (1)

! Besides Vertex Cover, that is a special case of Set
Cover, many other problems are related with Set
Cover.

! An instance of set covering can be viewed as an
arbitrary bipartite graph, with sets represented by
nodes on the left, the universe represented by nodes
on the right, and edges representing the inclusion of
elements in sets.

! The task is to find a minimum cardinality subset of
left-nodes which covers all of the right-nodes.

24

RELATED PROBLEMS (2)

Example:
U={1,2,3,4,5,6}
S={{4}, {1,3}, {1,2,5},{2,4},{1,3,6},{3,5},{5},{2,6}}

25

{4}
{1,3}

{1,2,5}
{2,4}

{1,3,6}
{3,5}

{5}
{2,6}

1
2
3
4
5
6

RELATED PROBLEMS (3)

Hitting set problem:
Given a bipartite graph, the objective is to cover the left-
nodes using a minimum subset of the right nodes.
Converting from Set Cover to the Hitting Set is therefore
achieved by interchanging the two sets of vertices.

26

{4}
{1,3}

{1,2,5}
{2,4}

{1,3,6}
{3,5}

{5}
{2,6}

1
2
3
4
5
6

{4}
{1,3}
{1,2,5}
{2,4}

{1,3,6}
{3,5}
{5}
{2,6}

1
2
3
4
5
6

RELATED PROBLEMS (4)

Edge Cover problem:
Given a graph, an edge cover is a set of edges such that
every node is incident to at least one edge of the set.
The minimum edge cover problem is the problem of
finding an edge cover of minimum size.
! Edge Cover is a special case of Set Cover, where:

!  U=V and S=E

27

RELATED PROBLEMS (5)

Set Packing problem:
Given a universe U and a family S of subsets of U, a
packing is a subfamily J of S of sets such that all sets in
are pairwise disjoint.
In the set packing problem, the input is a pair (U,S),
and the task is to find a set packing that uses the most
sets.
! Set Packing is the dual problem of Set Cover.

28

RELATED PROBLEMS (6)

Exact Cover problem:
Exact cover problem is to choose a Set Cover with no
element included in more than one covering set.

29

